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Abstract. Inverse Distance Weighting (IDW) is a widely adopted in-
terpolation algorithm. This work presents a novel formulation for IDW
which is derived from a weighted linear regression. The novel method is
evaluated over study cases related to elevation data, climate and also on
synthetic data. Relevant aspects of IDW are preserved while the novel
algorithm achieves better results with statistical significance. Artifacts
are alleviated in interpolated surfaces generated by the novel approach
when compared to the respective surfaces from IDW.
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1 Introduction

Most natural properties vary continuously. However, in general, we can observe at
only a finite number of the infinity of possible locations [20]. Spatial interpolation
is the estimation of approximate values for specific locations from known values
measured at other locations. Given a set of spatial data either in the form of
discrete points or for subareas, spatial interpolation aims to find the function
that will best represent the whole surface and that will predict values at other
points or for other subareas [14]. This general problem has long been a concern
majorly in geosciences, water resources, environmental sciences, agriculture, soil
sciences among other disciplines [29, 15].

Environmental data collected from field surveys are often difficult and ex-
pensive to acquire. In such cases, spatial interpolation methods provide a tool
for estimating an environmental variable at unsampled sites [15]. For instance,
in [11] as a result from the sparsity of observational networks the distance to the
nearest station can be of the order of several hundred kilometers. As a result, the
only available data may not be representative of the climatology at the desired
location. Ideally, the nearest recording station would be situated such that its
climatology was identical to that of the location of interest.

Point interpolation deals with data collectable at a point, such as temperature
readings or elevation [14]. Several solutions are available, such as Kriging [13, 17],
interpolating polynomials, splines, among others [7]. Inverse distance weighting
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(IDW) [25] is one of the most simple and widespread adopted [15]. The method
does not require specific statistical assumptions, as the case for Kriging and
other statistical interpolation methods. However, although empirical evaluations
consistently show that IDW delivers inferior results when compared to other
methods [19, 30, 15], the evaluation of improvements in IDW is a relevant topic
of research [28, 16, 9, 22, 2].

The IDW interpolation of a value ŷj for a given location j is computed as:

ŷIDWj =

n∑
i=1

wi,jyi (1)

where each yi, i = 1, · · · , n is a data point available at a location i. The weights
wi,j for each data point are given as:

wi,j =
d−αi,j∑n
k=1 d

−α
k,j

(2)

where di,j is the Euclidean distance between a data point available at location i
and the unknown data at location j; n is the number of data points available; α
means the power, and is a control parameter. In this work, IDW is restricted to
Inverse Squared-Distance Weighting since α = 2 is assumed, which is the most
commonly adopted value.

The maximum and minimum of the estimated values from IDW are limited
to the extreme data points: min yi ≤ ŷIDWj ≤ max yi. This is considered to be
an important shortcoming because, to be useful, an interpolated surface should
predict accurately certain important features of the original surface, such as
the locations and magnitudes of maxima and minima even when they are not
included as original sample points [14].

This work aims to (i) introduce an alternative interpolation algorithm which
is similar to IDW and (ii) evaluate the novel method under a variety of conditions
considering diverse of sampling densities, sample spatial distributions and surface
types. Those are pointed out as important factors that affect the performance
of spatial interpolation methods [15].

The paper is organized as follows. The proposed approach is presented in
Section 2. The resulting model is evaluated and compared to the original IDW in
Section 4, following the methodology proposed in Section 3. Section 5 concludes
the paper.

2 Proposed Method

Consider a variable Y which is measured at n locations. One might be interested
in obtaining an estimation for the value of Y at a specific location j, where a
value for Y is not available for some reason.

Let us assume that variable Y is related to a function of the distance to j.
This leads to a model which represents the relationship between the variable Y ,
which occurs at diverse locations, and a single explanatory variable which is a
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function of the distance from a given reference j to the location of each available
measure of Y . One might assume, for instance, that squared distance from j
influences Y as:

Y = β0
j + β1

jDj + Ej (3)

where coefficients β0
j and β1

j are both scalars which must be obtained for each
j. Y = {y1, y2, · · · , yn} is a vector with n values of the variable under con-
sideration at diverse locations i = 1, 2, · · · , n and the corresponding vector
Dj = {d21,j , d22,j , · · · , d2n,j} contains the squared distances d2i,j from location j
to each location i corresponding to a respective yi. Ej = {ε1, ε2, · · · , εn} is the
vector of residues.

The estimation of the scalars β0
j and β1

j from (3) can be achieved by solving

a weighted linear regression, where the regression weights wR1,j , w
R
2,j , · · ·wRn,j for

a given j are computed similarly to the IDW weights in (2) with α = 2:

wRi,j =
d−2i,j∑n
k=1 d

−2
k,j

(4)

For the sake of clarity, let us define the scalar variable sj for a given j as:

sj =
1∑n

k=1 d
−2
k,j

(5)

Then, substituting (5) on (4):

wRi,j = d−2i,j sj (6)

The weighted sum of squared residuals (WSSE) of model (3) for data points
{y1, y2, · · · , yn} is given by:

WSSE =

n∑
i=1

wRi,j(yi − ŷi)2 =

n∑
i=1

wRi,j(yi − β0
j − β1

j d
2
i,j)

2 (7)

Substituting (6) into (7) leads to:

WSSE =

n∑
i=1

d−2i,j sj(yi − β
0
j − β1

j d
2
i,j)

2

where the analytical solution for the minimal WSSE is:

β̂0
j = sj

n∑
i=1

yidi,j
−2 − nβ1

j sj (8)

β̂1
j =

∑n
i=1 yi − nsj

∑n
i=1 yidi,j

−2∑n
i=1 di,j

2 − n2sj
(9)

The estimated value for Y as a function f̂ of the distance r from j using the
model (3) is:
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f̂(r) = β̂0
j + β̂1

j r
2 (10)

Since the aim of interpolation is the estimation of a value for Y at j, therefore
the distance is r = 0. Then, from (10):

ŷRj = f̂(0) = β̂0
j + β̂1

j 02 = β̂0
j (11)

Substituting (9) into (8) and (11) leads, after simplification, to the expression
for the interpolated value at a given location j, from a set of values {y1, y2, · · · , yn}
and respective distances {d1,j , d2,j , · · · , dn,j} from j :

ŷRj = sj

n∑
i=1

yidi,j
−2 + n

∑n
i=1 yi − nsj

∑n
i=1 yidi,j

−2

n2 −
∑n
i=1 d

−2
i,j

∑n
i=1 di,j

2 (12)

From (1), (2) and (5) one can find out that sj
∑n
i=1 yidi,j

−2 = ŷIDWj (with
α = 2), therefore (12) can be rewritten as:

ŷRj = ŷIDWj + n

∑n
i=1 yi − nŷIDWj

n2 −
∑n
i=1 d

−2
i,j

∑n
i=1 di,j

2 (13)

The resulting expression, which is derived from a weighted linear regression,
results equivalent to IDW with an additional term. We call this method as Inverse
Distance Weighted Regression (IDWR). More specifically, since α was set to 2,
this paper investigates Inverse Squared-Distance Weighted Regression.

2.1 Analisys of IDWR

Similarly to IDW, IDWR is also a deterministic, nonstatistical interpolation
method, defined by a simple expression (13). The computational complexity for
interpolating a single location j for IDWR is O(n), linear in the number of data
points n, which is the same for IDW.

This section presents an initial analysis of some relevant situations. Initially,
the form of expression 13 raises some concerns as the denominator might be
equal to or near zero. For instance, when all data points are or tend to be at
the same distance r from location j, the denominator is or tends to be equal to
n2 −

∑n
i=1 r

−2∑n
i=1 r

2 = n2 − nr−2nr2 = 0. While this situation would not be
expected in most real-world applications, even when input data is distributed on
a bidimensional regular grid, this feature of IDWR must be carefully taken into
account before using the method. Also, one can realize that as the distance r →
∞ additional numerical concerns might arise since

∑n
i=1 r

−2∑n
i=1 r

2 → 0×∞.
This differs from IDW, which tends to 1

n

∑n
i=1 yi as r →∞.

The behavior of IDWR at the neighborhood of any given data point is also
analysed. We are interested in the value of ŷRj as dlj → 0 for a given data point
at location l, with dij 6= 0 for the remaining data points i 6= l. Since dlj → 0,
then

∑n
i=1 d

−2
ij →∞ in expression 13 and

∑n
i=1 d

2
ij → c where c =

∑
i 6=l d

2
ij is a

constant. This results ŷRj → ŷIDWj in expression 13, since the denominator tends
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to −∞, under the condition that the numerator should be finite. As a result IDW
and IDWR will tend to compute similar values for locations which are nearby
any given data point. IDWR is an exact interpolator since ŷRj = ŷIDWj = yi for
j = i. At other locations, IDWR might be able to provide useful extrapolation,
since −∞ ≤ ŷRj ≤ +∞, differently from IDW which is restricted to the interval

min yi ≤ ŷIDWj ≤ max yi. From the discussion above, any differences between
both methods might occur at locations that are not too close to any data point.
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Fig. 1. The behavior of IDW and IDWR for the interpolation from a dataset with
n = 3 data points.

Figure 1 illustrates some of the properties discussed here using a synthetic
one-dimensional dataset with three data points that follow a linear trend (R2 >
0.99).

3 Empirical Evaluation

Two types of experiments were performed, which allow one to compare the
effectiveness of both algorithms considered. The first evaluation involves the
interpolation of points from real functions of two variables. The functions were
selected from the optimization literature, as representatives of varying roughness
of surfaces, so as to impose different levels of difficulty for the interpolation
methods. While those functions would not perfectly mimic real-world situations,
this evaluation is still useful for the purpose of this work since it provides a
scalable comparison between the two methods, through a controlled variation
on the number of samples. In this first experiment sample size was set to four
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Table 1. Functions of two real variables (x1, x2) = x, adopted in empirical evaluation

Function Expression
Interval for
x1 and x2

Rosenbrock y(x) = 100(x2 − x21)2 + (x1 − 1)2 [−2.048, 2.048]

Sombrero y(x) =

{
sin ((16(x1−0.5))2+(16(x2−0.5))2

16(x1−0.5))2+(16(x2−0.5))2)
if x1 6= 0.5 and x2 6= 0.5;

1 otherwise
[0, 1]

Himmelblau y(x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2 [−5, 5]

Rastrigin y(x) = 20 + (x21 − 10 cos(2πx1)) + (x22 − 10 cos(2πx2)) [−5.12, 5.12]

Log
Goldstein-Price

y(x) = 1
2.427

(log((1 + (x1 + x2 + 1)2

×(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22))
×(30 + (2x1 − 3x2)2

×(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)))
−8.693)

[−2, 2]

F102 y(x) = −(x2 + 47) sin
√
| x2 + x1

2
+ 47 |

−x1 sin
√
| x1 − (x2 + 47) |

[−512, 512]

values: N = 100, 200, 300, 400. The variation on sample size is motivated by
the need for capturing spatial changes, thus to improve the performance of the
spatial interpolation methods [15].

Table 2. Average RMSE and standard deviation computed with leave-one-out cross-
validation (LOOCV) for IDW and IDWR applied to 6 benchmark functions, after 30
replications with randomly generated sample points for each benchmark function. The
number of sample points for all functions is N = 300 at each replication. P-values refer
to the result of two-tailed t-tests considering the null hypothesis that algorithms are
equivalent in terms of average RMSE

Function
Avg. IDW
LOOCV
RMSE

σIDW

Avg. IDWR
LOOCV
RMSE

σIDWR
Relative
Reduction

p-value

Rosenbrock 307.65 29.02 222.52 27.48 -27.67% < 2.2e-16
Sombrero 0.083277 0.0089 0.0806 0.0087 -3.20% 1.016e-06
Himmelblau 76.61 3.96 64.75 3.90 -15.48% < 2.2e-16
Rastrigin 16.51 0.68 16.25 0.74 -1.59% 1.728e-07
Log Golsdtein-Price 0.6036 0.02698 0.4378 0.02439 -27.47% < 2.2e-16
F102 391.11 16.93 388.39 16.89 -0.70% 3.379e-09

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_43

https://dx.doi.org/10.1007/978-3-030-50417-5_43


A Novel Formulation for Inverse Distance Weighting from 7

x1

−2

0

2

x2

−2

0

2

y/100

20

40

Rosenbrock

x1

0

1

x2

0

1

y

0

1

Sombrero

x1

−5

0

5

x2

−5

0

5

y/100

2

4

6

8

Himmelblau

x1

−5

0

5

x2

−5

0

5

y

20

40

60

80

Rastrigin

x1

−2

0

2

x2

−2

0

2

y

−2

0

2

Log Goldstein−Price

x1/100

−5

0

5

x2
/100

−5

0

5

y/100

0

10

F102

Fig. 2. Perspective visualization of the 6 functions used for the evaluation of the pro-
posed algorithm.
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Table 3. RMSE computed with leave-one-out cross-validation (LOOCV) for IDW and
IDWR applied to 2 benchmark datasets from the literature

Dataset N
IDW
LOOCV
RMSE

IDWR
LOOCV
RMSE

Relative
Reduction

Calabria 48 67.16 65.72 -2.14%
Texas 18 11.09 8.63 -28.51%

Table 1 summarizes the definitions of the functions adopted. Figure 2 pro-
vides a perspective visualization of the topology of those functions. Himmel-
blau [10], Rosenbrock [24] and Rastrigin [23] are non-linear, non-convex func-
tions widely used to test the performance of optimization algorithms. The 2-
dimensional version of Rastrigin is used here. Log Goldstein-Price is an adjusted
version of the Goldstein-Price function [8] proposed by [21]. The function F102 [1]
was also called Egg Holder in [27] and in other works. It is considered as a difficult
function due to its high multimodality. The Sombrero function was also included
in our evaluation since it was already adopted as a benchmark for evaluation of
IDW, in [30].

In a second type of evaluation two datasets representing real-world situations
from the literature are considered. The Calabria dataset, adapted from [5], is a
raster low-resolution (100m) digital elevation map containing 48 elevations which
vary from 760m to 936m. The sample area from a location in Calabria is 610m by
810m in size, which corresponds to a portion of sample area 1 in [5]. The Texas
dataset contains normal annual precipitation (1941-1970) for 18 locations in
Texas, which is the full list of locations from [3]. The lowest annual precipitation
(7.7in) occurs in El Paso, near the western extreme of the state, while the highest
precipitation is assigned to Beaumont-Port Arthur, near the eastern extreme
(55.07in).

In order to allow the comparison between the interpolation methods, leave-
one-out cross-validation (LOOCV) [12] was adopted. In LOOCV, a single data
point yi is used for the estimation of the squared error of the interpolation
(yi − ŷi)2 from a model built from all remaining points N − 1 points. The pro-
cess is repeated for all data points, and the root mean square error (RMSE) is
computed, for both interpolation methods considered.

Since the computation of the RMSE for the evaluation of the interpolation
of real functions is dependent on the specific sample of data points, 30 replica-
tions of leave-one-out cross-validation are performed for each algorithm on each
function, in order to estimate the average RMSE for a number of N data points.
Those data points are randomly generated from uniform distributions delimited
by the specified real intervals for each variable.
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Fig. 3. Average RMSE and standard deviation computed with leave-one-out cross-
validation (LOOCV) for IDW and IDWR applied to 6 benchmark functions, after 30
replications with randomly generated sample points for each benchmark function. The
number of sample points for all functions was set to N = 100, 200, 300, 400 at each
replication.

4 Results

Table 2 shows the results from the first set of experiments, where interpolation
is performed from points sampled from functions defined over the bidimensional
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domain. Average RMSE and respective standard deviation σ are computed for 30
replications of leave-one-out cross-validation on the interpolation of data points
from 6 functions for both algorithms considered. The number of data points in
each replication was set to N = 300. The relative reductions on the values of
the average RMSE for IDWR when compared to IDW are also shown. Resulting
reductions range from 0.70% (F102) to 27.67% (Rosenbrock). All differences
between the mean RMSE values are statistically significant at a 95% confidence
level, considering paired two-tailed t-tests under the null hypothesis that both
methods are equivalent.

The effect of sample size is illustrated in Figure 3. For all functions 4 sample
sizes were considered: N = 100, 200, 300, 400. RMSE is lower for IDWR when
compared to IDW for all functions with all N considered, except for N = 100
and N = 200 where the best RMSE for the F102 function is achieved with IDW.
For N > 200 IDWR is superior for all functions. The tendency from the graphs
in Figure 3 is also favorable to IDWR for N > 400.

In Table 3 the values of LOOCV RMSE for both algorithms applied to two
datasets considered are shown. Under this evaluation, IDWR is superior to IDW
for both datasets. The error for Calabria dataset is 2.14% lower when compared
to IDW. A higher difference was reached for the Texas dataset, where IDWR
achieved a 28.51% reduction in the LOOCV RMSE when compared to the value
obtained with IDW for the same dataset.

In order to allow a better understanding of the behavior of each algorithm,
interpolated surfaces were generated for the sample areas related to each both
datasets considered. For Calabria, two digital elevation maps with a 1m resolu-
tion were obtained representing the interpolated surfaces obtained using both al-
gorithms for the input data, which consists of a digital map with elevations from
48 locations regularly distributed with a resolution of 100m. This high difference
between input and output resolution might not be recommended. However, for
the purpose of this evaluation, the approach allows a better visual comparison
between the results obtained by both methods. Figure 4 shows the resulting maps
for the region on the Calabria dataset using both IDW and IDWR (Figures 4(a)
and 4(b) respectively).

The highest elevation in Calabria dataset is located near the center of the
maps, as indicated. It also corresponds to the maximal value obtained from
IDWR and also from IDW. The same occurs for the lowest elevation, which
occurs at a location near the right bottom extreme of the map. Therefore, IDWR
did not exceed the IDW limitations min yi and max yi for this case. Although
both maps from Calabria are similar, qualitative differences in the behavior of
the algorithms occur. The surface generated by IDWR is smoother, with smaller
variations on the curvature over the space. As a result, the interpolated surface
from IDWR appears as more conceivable when compared to the result from IDW.
The surface generated with IDWR is smoother since artificial bumps generated
between sample points are less evident. However, undesirable artifacts exist since
both algorithms produce unrealistic landscape, with a terraced aspect. Elevation

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_43

https://dx.doi.org/10.1007/978-3-030-50417-5_43


A Novel Formulation for Inverse Distance Weighting from 11

(a) (b)

1

Fig. 4. High resolution interpolated elevation maps generated by IDW (a) and IDWR
(b), for the area of Calabria dataset. 48 regularly distributed sample points are shown in
red and elevation values are represented in grayscale levels discretized into 40 intervals
with increments of ≈ 4.4m. For each map, two elevation profiles (bottom and right)
are shown, each parallel to a coordinate axis and both passing through the coordinates
corresponding to the highest elevation in the dataset, indicated at the border of the
maps.

profiles below and beside both maps (a) and (b) in Figure 4 provide a better
illustration for this feature.

The dataset Texas represents a situation where a low amount of data points
is available which leads to the absence of data points in some areas since large
regions outside the territory of Texas are represented in the interpolated maps.
Figures 5(a) and 5(b) both represent an area of size 1258km×1060km with a
resolution of 2km. The resulting map from IDWR provides a better model for
the expected behavior of precipitation from given data. Precipitation decreases
roughly towards the west or south-west, reaching predicted values as low as
1.139in at where would correspond to the territory of Mexico, which is below
the minimal precipitation from the dataset (7.7in).

5 Conclusion and further work

The selection of an appropriate interpolation model depends largely on the type
of data, the degree of accuracy desired, and the amount of computational effort
afforded [14]. Each method has its advantages and drawbacks, which depend
strongly on the characteristics of the data: a method that fits well with some
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(a) (b)

1

Fig. 5. High resolution interpolated precipitation maps generated by IDW (a) and
IDWR (b), for the area of Texas dataset. Sample points are shown in red and elevation
values are represented in grayscale levels discretized into 40 intervals with increments
of ≈ 1.35in. For each map, two elevation profiles (bottom and right) are shown, each
parallel to a coordinate axis and both passing through the location corresponding to the
highest precipitation in the dataset, indicated at the border of the maps (Beaumont-
Port Arthur).

data can be unsuited for a different set of data points [6]. This also motivates
the improvement of existing methods and search for novel alternatives.

Variations and extensions from the basic IDW method have been proposed in
the literature. In [2] an improvement is presented which is based on a geometric
criterion that automatically selects a subset of the original set of control points.
In [22] data normalization is shown to improve the results of interpolation. In [9]
weighted median of data within a neighborhood is proposed. A distance-decay
parameter is explored in [16] which is adjusted according to the spatial pattern
of sampled locations in the neighborhood.

This paper followed a diverse path by presenting a novel formulation that
is derived from a weighted regression model where squared distance from the
location of interest is assumed to influence a geographically localized variable.
Resulting expression (13) is similar to IDW method while retaining its simplicity
and low computational complexity. Squared distance was arbitrarily chosen, and
other formats for that relationship might be explored further.

Regression is already widely adopted for problems involving spatial data. Ge-
ographically Weighted Regression (GWR), as proposed by [4], adopts weighted
regression in the spatial context by extending the usual regression model. The re-
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gression coefficients are dependent on individual location and the parameters in
GWR are therefore locally estimated by weighted least squares approach where
the weight is higher for observations that are closer to the location considered.
That premise of a higher local relationship [26] which is straightforwardly im-
plemented by IDWR and IDW is already widely exploited [18].

Empirical evaluation of the proposed method adopted leave-one-out cross-
validation using datasets from the literature and synthetic data from benchmark
functions, with varying sample densities on diverse surface types and sample
distributions. Study cases emphasized applications on digital elevation data and
climate.

IDWR was able to attain better results when compared to IDW by obtaining
lower RMSE with statistical significance for benchmark functions. Qualitatively,
the novel method delivered smoother curvatures between sample points when
compared to the maps generated by IDW. Observable artifacts are alleviated in
the surfaces generated by IDWR.

Further empirical and theoretical investigation should be proposed to better
delineate the limitations of the novel method. It might also be studied whether
the proposed method actually produces useful extrapolation. In that case, wider
applicability would be reached when compared to IDW. This, however, must be
carefully considered since the asymptotic behavior of IDWR is much diverse from
IDW, according to the discussion in Section 2. A comparison to other interpola-
tion methods could also be performed, covering a wider variety of applications.
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