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Abstract. Tsunami early detection systems are of great importance as
they provide time to prepare for a tsunami and mitigate its impact. In
this paper, we propose a method to determine the optimal location of
a given number of sensors to report a tsunami as early as possible. The
rainfall optimization algorithm, a population-based algorithm, was used
to solve the resulting optimization problem. Computation of wave travel
times was done by illustrating the kinematics of a wave front using a
linear approximation of the shallow water equations.
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1 Introduction

Tsunamis are considered as one of the most powerful and destructive natural
disasters. They are a series of waves caused by a rapid and massive displacement
of the seafloor or disruption of standing water. Earthquakes, volcanic eruptions,
underwater landslides and meteor impacts all have the potential of generating a
tsunami. However, the most common cause is undersea earthquakes, generated
in subduction zones. The water above such event is disturbed significantly by the
uplifting, that it create waves travelling at around 500 miles per hour. Moreover,
their wavelength is much longer than normal sea waves, so they build up to
higher heights as the depth of water decreases. With the large volume of water
moving at high speed, tsunamis can cause massive destruction to the physical
environment and loss of human lives.

The Philippines is one of the most disaster-prone countries due to its ge-
ographic location. As such, it has a high risk of exposure to intense tropical
cyclones, seismic activities and tsunamis [24]. Up to date, a total of 41 tsunamis
occurred since 1589 [5]. Thus, compared to other countries, occurrence of tsunami
in the Philippines is more than average, but still moderate. However, as stated
in [13], tsunami research in the Philippines received less than its deserved atten-
tion. Moreover, lack of awareness and sufficient preparation may further increase
the hazards. So, developing techniques to assess risks and to mitigate impacts
of a tsunami are of great importance. There are a number of methods focused
in reduction of tsunami hazards and risk management in literature [9, 20, 10]. In
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this study, we aim to provide early tsunami warnings by determining the opti-
mal location of tsunami sensors that can guarantee minimal possible tsunami
detection time.

The traditional instrument used for detecting a tsunami is called a tide gauge,
which is usually located near the coast. It measures changes in the sea level
relative to some height reference. While the tide gauge is capable of detecting
a tsunami, they are at a worst location, since this is where the tsunami is most
energetic. Moreover, as they are near the coast, it may take a lot of time for
tsunami detection, leaving only a small amount of time for evacuation. Hence,
we consider using deep-ocean sensors, which are capable of reporting a tsunami
in the open ocean. Thus, this technology provides a relatively secure and rapid
detection of tsunami, but at a cost. Details regarding these tsunami observing
systems were well documented and reviewed in [22, 18]. In particular, we will
consider the bottom pressure recorders (BPRs) as our tsunami sensor. These
sensors measure changes in water pressure and seismic activity. They use an
acoustic link to transmit data on surface buoys, which are then relayed via
satellite to ground stations [8]. For optimal sensor placement, we assume that
the tsunami originates from a fixed location, e.g., subduction zones. Rogue waves
[7] are not considered in this work because of the uncertainty of their origin.

Studies regarding selection of location of tsunami sensors for tsunami warn-
ings are limited. Some were based on expert judgments while considering various
deciding factors like financial limitations [3], and legal aspects such as geograph-
ical boundaries or legal jurisdictions [1]. There are also researches that incor-
porated accurate estimation of tsunami parameters [17, 16]. An attempt to en-
compass tsunami warning efficacy has been proposed in [19, 23]. They identified
location of tsunami sensors based on several criteria (e.g. installation conditions),
though no optimization algorithm was applied. Bradock et al. [6] considered six
potential buoy sites, and they determined the optimal location of a minimum
number of BPRs that will maximize the population being warned. However, they
considered a fixed average speed of wave travel, and thus, bathymetric data can-
not be taken into account. Astrakova et al. [4] developed an optimal sensor
location problem, which guarantees minimal possible time of tsunami detection.
However, the method used in computing the wave travel time is very slow, and
takes too much amount of computer memory.

The objective of this paper is to improve the optimal sensor location prob-
lem introduced by Astrakova. We illustrate kinematics of a wavefront, using an
approximation of wave velocity from the linear shallow water equations, which
results to a faster calculation of wave travel time and low computer cost. Finally,
we test our method to a simple problem, then apply it to a real world problem of
optimal sensor location in one of the areas in the Philippines, near a subduction
zone.

To solve the resulting optimization problem, we use a population-based algo-
rithm called the Rainfall Optimization Algorithm (RFO) introduced by Kaboli
et al. [11]. RFO is a nature-inspired algorithm which is modelled on raindrop
flow over a mountainous surface and has been shown to be effective, fast and ca-
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pable of solving various optimization problems. It has been tested on benchmark
functions against the genetic algorithm (GA), the particle swarm optimization
algorithm (PSO) and the group search optimizer (GSO), and it outperforms
them on most functions, as it provides better solutions and faster convergence.

The rest of the paper is organized as follows: in the next section, we discuss
the methods used in solving the optimal sensor location problem. Results of the
optimal location of tsunami sensors in different domains and bathymetries are
presented in the third section. Finally, we summarize our results and provide
recommendations for future work.

2 Methodology

In this section, we discuss the optimization problem, the method for com-
puting the wave travel time, and details of the rainfall optimization algorithm.

2.1 The Optimization Problem

Let Ω be the domain with parts of water, D ∈ Ω be a part of the domain
where tsunami sensors can be placed, and P be the subduction zone. For an
illustration, please refer to Figure 1. The problem of interest is to find the location
of L sensors such that any seismic event on P will be detected after minimal
possible time. Let {pj}Pj=1 denote the points in the subduction zone, where
pj = (xj , yj) ∈ P, and qi = (xi, yi) ∈ D (i = 1, . . . , L) be the coordinates of the
L sensors. Also, we denote by Q = {q1, . . . , qL} the set of L sensors representing
a possible solution to the optimization problem.

Fig. 1. Illustration of a Domain

Suppose that a disturbance arises on a source pj ∈ P. This disturbance will
propagate over water at a certain speed. We are interested in finding the minimal
time it takes for the disturbance on the source pj to arrive at some water point
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x ∈ D. Let γ be one of the ways connecting pj and x, and τγ be its travel time.
We denote τ(pj , x) be the minimal time to approach x from pj , i.e.,

τ(pj , x) = min
γ
τγ (1)

The time required for determination of tsunami wave by Q is given by

t(pj ,Q) = min
1≤i≤L

τ(pj , qi).

For guaranteed time registration for any point pj ∈ P by Q, we set

T (Q) = max
1≤j≤P

t(pj ,Q).

Thus the optimization problem is stated as: Find Q = {q1, . . . , qL} which
gives the minimal value of the function T (Q), i.e.,

minT (Q), (2)

where the number L is given and subject to the phase restriction

Q ∈ D.

This minimization problem is based on [4].

2.2 Kinematics of a Wave Front

We discuss here how we can illustrate the kinematics of a wave front, which
we will use to calculate the wave travel time in (1). We consider the linear
approximation of the shallow water equations [21]. In this case, the wave velocity
is proportional to the square root of the water depth h:

v ≈
√
gh, h ≥ 0,

where g = 9.8 m/s2 is the gravitational constant. Also, we note that for any
propagation velocity distribution in a medium, all the points on a wave front are
moving in the orthogonal direction to the frontal line [15]. This will be the basis
for the numerical method of the step-by-step wave frontal line advancement that
will now be described.

Consider a closed and convex curve (e.g., a circle) as the initial wave front.
This wave front is represented by a limited number of computational points
(xi, yi) (i = 1, . . . , N) along the curve. Figure 2(a) presents an example of an
initial wave front. Our next aim is to calculate the moving direction for all wave
front points to establish their next positions. In this method, the moving direc-
tion of the point (xi, yi) is determined by the outer-normal of the circle passing
through three computational points points: (xi−1, yi−1), (xi, yi) and (xi+1, yi+1).
Moving the point (xi, yi) in this direction with a distance of v · 4t, where 4t is
the time step, will give us the next position of (xi, yi). Hence, we can compute
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(a) Initial Wave Front (b) Wave Propagation of the Initial
Wave Front in Water with Constant
Depth after 15s

Fig. 2. Kinematics of a Wave Front

the location of all wave front points at the time instant t = 4t. We repeat this
process until we reach the boundaries of the domain. Figure 2(b) demonstrates
the wave propagation of the initial wave front in water with constant depth after
15s.

Let (x, y) be the coordinates of a computational point and z = f(x, y) be
be the time it takes to for the wave to reach the point (x, y). To determine
the travel time, to an arbitrary point (x̃, ỹ) (not necessarily a computational
point) in the domain, we can compute the travel time z of the three nearest
computational points, say (x1, y1), (x2, y2) and (x3, y3), to (x̃, ỹ). Using (x1, y1),
(x2, y2), (x3, y3), f(x1, y1), f(x2, y2) and f(x3, y3), we apply linear interpolation
to estimate the travel time to (x̃, ỹ).

2.3 The Rainfall Optimization Algorithm

In order to solve the optimization problem in (2), we will use a new nature-
inspired algorithm called the rainfall optimization algorithm (RFO) [11]. Many
optimization problems have been solved using RFO as it was proven to be fast, ef-
fective and efficient. Some applications are in solving problems in facility-location
[2], economic dispatch [11], and scheduling [12].

RFO is a population-based algorithm which is based on the behavior of rain-
drops flowing over a mountainous surface. As always, raindrops tend to fall on
surfaces with a steeper slope. RFO utilizes this tendency, allowing determination
of a solution superior to a guess. Raindrops may also be stuck in puddles (local
optimum). However, as raindrops accumulates, it may overflow, allowing drops
of water to flow downwards again. RFO simulates this behavior, enabling the
algorithm to overcome local optimal solutions and reach the global optimum.
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Before presenting the algorithm, we first discuss some important terms. De-
fine

Di := xi,1, xi,2, . . . , xi,n (i = 1, 2, . . . ,m)

be the raindrop i in a population, where n is the number of variables of opti-
mization variables, m is the number of raindrops in a population and xi,j is the
variable of interest in the optimization problem. The generation of raindrops are
uniformly randomly distributed and must be within the bounds, if there is any.

Each raindrop randomly produces neighbor points in a neighborhood with a
radius vector r. We denote the neighbor points as NP ik that satisfies

‖(Di −NP ik) · uj‖ ≤ ‖r · uj‖, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, k ∈ {1, . . . , np},

where uj is the unit vector in the jth dimension. Among all the neighbor points,
we are interested in finding a dominant neighbor point, i.e., a neighbor point
whose cost function value is less than the cost function values of the raindrop
and the other neighbor points. We call a drop active if it has a dominant
neighbor point. Otherwise, the drop is inactive .

Algorithm 1 Rainfall Optimization Algorithm

Input: npop: population size, np: number of neighbor points on each drop, r :
radius vector, Ne: maximum number of explosion process, eb: explosion base,
ec: explosion counter, maxiter : maximum number of iterations

Output: Location of raindrop with minimal cost function value
1. Initialization: Generate randomly the first population of raindrops of

size npop such that each raindrop satisfy the constraints. Set iter = 1.
Set to active all the raindrops’ status.

2. Iterative Procedure:
while iter ≤ maxiter and active set of raindrops 6= ∅ do

Do the following for each active raindrop:

– Generate np neighbor points.
– Obtain the cost function values of drops and their neighbor points.
– If there is a dominant neighbor point, then change the drop’s

present position to that point. Otherwise, apply explosion process
to the drop.

– If there is no dominant neighbor point after Ne times of explosion,
set the drop’s status to inactive.

Create a merit-order list and remove specific numbers of low-ranking
drops or assign a higher Ne to high-ranking drops.
Set iter = iter + 1.

end while
3. Generation of Minimizer: Calculate the cost function values for all

raindrops. Find the raindrop with the minimum cost function.
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If a raindrop has no dominant neighbor point, then it may have already con-
verged the global optimum, or it is stuck in a local optimum (due to insufficient
number of neighbor points). To prevent the latter, an explosion process is made.
In this process, the raindrop produces new npex neighbor points where

npex = np× eb× ec

with eb as the explosion base (indicating the explosion range) and ec as the
explosion counter. If the drop still has no dominant neighbor point after doing
the explosion process Ne times, we make it inactive.

At the end of the algorithm, we create a merit-order list, which contains
the rank of the drops in ascending order. Lower ranking drops may be removed
from the population, or higher ranking drops may be given special rights (such
as higher number of explosion process). The calculation of rank is given by:
rankit = 1

2order(C1it) + 1
2order(C2it), where

(C1it) = F (Di)
∣∣
at the tth iteration

− F (Di)
∣∣
at the 1st iteration

and

(C2it) = F (Di)
∣∣
at the tth iteration

.

Here, F represents the objective function. The step-by-step procedure of the
RFO is summarized in Algorithm 1.

3 Results

We first consider a domain with a semicircle subduction zone (in red) as
shown in Figure 3.

Fig. 3. Domain with a semicircle subduction zone
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Assume that we have L = 2 sensors, say (x1, y1) and (x2, y2). We set x2 and
y1 to 55 and 45 respectively, while (x1, y2) are in the domain [35, 65]× [40, 70].
The plot of time versus x1 and y2, corresponding to the semicircle subduction
zone, is presented in Figure 4. From the surface plot, it can be seen how the min-
imization problem is neither convex nor differentiable. Thus, gradient-based and
local search methods might not work. This justifies why a population-based algo-
rithm is an appropriate numerical optimization method to estimate the optimal
solution.

Fig. 4. Surface plot of tsunami detection time versus the coordinates x1 and y2

Now, we present some numerical simulations to identify the optimal locations
of sensors using various domain profiles. Consider the same domain presented in
Figure 3. We let D be the whole rectangular domain with constant water depth.
Figures 5(a) – 5(d) show the optimal location(s) of L = 1, 2, 3 and 4 sensor(s),
represented by black dots. Here, the red dots in P are the source points. These
results were obtained by taking the average of the locations gathered in 10
independent runs. For the case when L = 1, it can be seen that the obtained
location is situated at the center of the semicircle. This makes sense geometrically
since we wish to minimize the guaranteed time registration from all the source
points (red dots) located on the semicircle. One can also observe that as the
number of sensors increases, the estimated locations get closer to the subduction
zone.

We now study how the number of sensors will affect travel time. Figure 6
shows the plot of the time of tsunami detection versus the number of sensors.
We can see here that as the number of sensors increase, the time decreases.
Moreover, we can see from Table 3 that there is a significant improvement when
we increase the number of sensors from 3 to 4 and little improvement from 4
to 5. Hence, L = 4 is a good number of sensors that will give us good tsunami
detection time, without the extra cost of additional sensors.
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(a) Optimal location of L = 1 sensor. (b) Optimal locations of L = 2 sensors.

(c) Optimal locations of L = 3 sensors. (d) Optimal locations of L = 4 sensors.

Fig. 5. Numerical results for a semicircle subduction zone.

Fig. 6. Effect of increasing the number of sensors on the tsunami detection time.

Number of Sensors (n) Tsunami Detection Time
Decrease in Time from
n− 1 to n Sensors

1 3.1756 -
2 2.2465 0.9291
3 1.4940 0.7525
4 1.1449 0.3491
5 1.0731 0.0731

Table 1. Decrease in tsunami detection time as the number of sensors is increased.
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Next, we apply our method to a real-world problem of sensor location in
the Cotabato Trench. The Cotabato trench is an oceanic trench in the Pacific
Ocean, located off the southwestern coast of Mindanao in the Philippines. This
trench is one of the main structures around the Philippines likely to be associated
with tsunamigenic earthquakes. One example is the tsunami generated by the
1976 Moro Gulf earthquake, which is considered as one of the most devastating
disasters in the history of the Philippine islands [14]. Figure 7(a) shows a portion
of the Cotabato Trench. We let the subduction zone P to be the red line, and D
be the water surface above the subduction zone. The corresponding bathymetric
profile of this trench is shown in Figure 7(b).

(a) Cotabato Trench (b) Bathymetry Plot (meters)

Fig. 7. Profile of the Cotabato Trench.

Figure 8(a), 8(b), 8(c), 8(d), 8(e) and 8(f) present the optimal location of L =
1, 2, 3, 4, 5 and 6 sensor/s (blue dots), respectively. These results were obtained
by taking the average of the locations gathered in 10 independent runs. The plot
of the time of tsunami detection versus the number of sensors is shown in Figure
9. The values of time in dependence to the number of sensors is presented in
Table 3. Similar to what we did earlier, we may see from here that L = 5 is a
good number of sensors for this problem.

4 Conclusion and Recommendations

We considered the problem of optimal tsunami sensors placement for early
tsunami warnings. The computation of wave travel times were done by producing
the kinematics of a wave front using an approximation of wave velocity derived
from the linear shallow water equations. The Rainfall Optimization Algorithm
was used to solve the optimization problem. We first applied our model to a
simple problem having a semicircle subduction zone for testing. The obtained
results for this test problem are geometrically sensible. Then we applied our
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(a) Optimal location of 1 sensor. (b) Optimal locations of 2 sensors.

(c) Optimal locations of 3 sensors (d) Optimal locations of 4 sensors.

(e) Optimal locations of 5 sensors. (f) Optimal locations of 6 sensors.

Fig. 8. Numerical results for a portion of the Cotabato Trench.
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Fig. 9. Number of sensors versus time in the case of Cotabato Trench

Number of Sensors (n) Tsunami Detection Time
Decrease in Time from
n− 1 to n Sensors

1 195.9816 s -
2 84.5089 s 111.4727
3 56.0995 s 28.4094
4 28.6910 s 27.4085
5 4.5239 s 24.1671
6 2.4007 s 2.1232

Table 2. Effect of increasing the number of sensors on the tsunami detection time in
the case of the Cotabato Trench
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method to a real-world problem of optimal sensors placement in the Cotabato
Trench. We use the actual bathymetric profile of this trench to make the estima-
tion of the wave travel time more accurate. One can observe that as the number
of sensors increases, the detection time decreases. Moreover, the sensors become
situated closer to the subduction zones. However, more sensors entail additional
cost. Future works include setting cost and location constraints for the sensors.

We note that our method relies on an approximation of the wave velocity, but
one can use the numerical solution of the 2D nonlinear shallow water equations
for a more accurate computation of wave travel time.
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