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Abstract. Kernel Machines, such as Kernel Ridge Regression, provide
an effective way to construct non-linear, nonparametric models by pro-
jecting data into high-dimensional space and play an important role
in machine learning. However, when dealing with large-scale problems,
high computational cost in the prediction stage limits their use in real-
world applications. In this paper, we propose hashing based prediction,
a fast kernel prediction algorithm leveraging hash technique. The al-
gorithm samples a small subset from the input dataset through the
locality-sensitive hashing method and computes prediction value approx-
imately using the subset. Hashing based prediction has the minimum
time complexity compared to the state-of-art kernel machine prediction
approaches. We further present a theoretical analysis of the proposed
algorithm showing that it can keep comparable accuracy. Experiment
results on most commonly used large-scale datasets, even with million-
level data points, show that the proposed algorithm outperforms the
state-of-art kernel prediction methods in time cost while maintaining
satisfactory accuracy.

Keywords: Kernel machine · Locality-sensitive hashing · Kernel pre-
diction.

1 Introduction

Kernel methods have been widely implemented in practice, allowing one to dis-
cover non-linear structure by mapping input data points into a feature space,
where all pairwise inner products can be computed via a nonlinear kernel func-
tion. Kernel machines, such as Kernel Ridge Regression (KRR), have attracted
a lot of attention as they can effectively approximate any function or decision
boundary with enough training data [17][18][19].

Despite excellent theoretical properties, they have been limited applications
in large scale learning because computing the decision function for new test sam-
ples is extremely expensive. As the scale of data increases, not only the training
time will become longer, but the prediction time will also increase. However,
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more and more improvement methods devoted to reducing training complexity
have been proposed, while fewer algorithms have been designed to improve the
performance of the prediction stage [12]. As is known to us all, the Nyström
and random feature methods are devoted to reaching faster training and predic-
tion speed by constructing low-rank approximation of kernel matrix. Nyström
method [4][14][16] construct a small scale subset of landmark data points by sam-
pling to approximate the raw kernel matrix. Random feature [17][20] maps data
into a relative low-dimensional randomized feature space to improve both train-
ing and prediction speed. Random sketch [15][23] is another family of techniques
that projects the kernel matrix into a small matrix to reduce the computational
requirement. Although these methods perform well and are applied into practice
widely, they still need huge computational requirements in the prediction stage
when faced with large-scale datasets. Based on the innovation of further reduc-
ing the computational costs when dealing with large-scale datasets, we attempt
to develop a fast prediction algorithm for kernel methods.

Hashing is an efficient algorithm to solve the approximate large-scale nearest
Neighbor search problem. The main idea of the hashing method is to construct a
family of hash functions to map the data points into a binary feature vector such
that the produced hash code preserves the structure of the original space [9]. In
recent years, a large number of effective hashing methods have emerged, but they
are rarely used in the prediction of kernel machines. Charikar and Siminelakis
presented a hashing-based framework for kernel density estimate problem in
[5]. Inspired by this paper, we consider applying the hashing algorithm to the
prediction stage of kernel machine and proposed the hashing based prediction
(HBP) algorithm. The algorithm leverages locality-sensitive hashing (LSH) [6][8]
method to search the nearest neighbors of the test data point to approximately
compute the decision value in the kernel prediction problem.

Specifically, our HBP algorithm consists of two stages: the pre-processing
stage and the query stage. LSH was used to find the neighbors of the test point
as the sampled subset in the pre-processing stage. And in the query stage, the
samples are used to approximately compute the decision value. We provide a

theoretical analysis that we can compute the decision function in O( log(n/ετ)
τ0.5ε2.5 )

time cost with accuracy guarantees ‖ŷ − y∗‖p ≤ ε · (3τn1/p + ‖y∗‖p), where
ε, τ ∈ (0, 1). It is novel to use the hash method directly in the KRR problem
which is an attempt to break through the traditional method. As will be demon-
strated later, experiment results on most commonly used large-scale datasets,
even with million-level data points, show that the proposed HBP algorithm
outperforms the state-of-art kernel prediction methods in time cost while main-
taining satisfactory accuracy.

The remainder of the paper is organized as below: We start with presenting
related work in Section 2, and the background material is given in Section 3. In
Section 4, we introduce our hashing-based prediction algorithm for the prediction
of kernel machine, while in Section 5, we discuss the theoretical analysis. Section
6 presents the experimental results on real-world datasets. The following section
is conclusions and the last section presents proof of theoretical results.
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2 Related Work

In this section, we will introduce several important works on reducing time com-
plexity in the prediction stage of KRR, and most of the algorithms can be used
to other kernel machines [11]. Practical methods are proposed to overcome the
computational and memory bottleneck of kernel machines. One popular family
of techniques is based on low-rank approximation of the kernel matrix to im-
prove both training and prediction speed. Nyström [13][14][22] method is one
of the most well-known representation methods. Nyström samples a subset C
of m columns to approximate the kernel matrix G ∈ Rn×n. Typically, the sub-
set of columns is randomly selected by uniform sampling without replacement
[13][22]. Recently, more and more outstanding extension methods of Nyström
are proposed to solve the KRR problem. For example, an accurate and scalable
Nyström scheme has been proposed in [14] which first samples a large column
subset from the input matrix, but then only performs an approximate SVD on
the inner submatrix by using the recent randomized low-rank matrix approx-
imation algorithms. [16] present a new Nyström algorithm based on recursive
leverage score sampling. Based on Nyström method, a fast prediction method
called DC-Pred++ was proposed in [11]. However, the scale of the subset in
Nyström method can’t be too small to keep the accuracy, and as a result, the
lower bound of computational complexity is limited. Random features [17][20]
project the data into a relative low-dimensional feature space where the inner
product between a pair of input points approximates their kernel evaluation
so as to reduce the computation requirement of training and prediction stage.
Another family of techniques is random sketches which improving the compu-
tational speed by projecting the kernel matrix into a small matrix [15][23]. As
shown in [23], a simple hash method was applied to generate the randomized
sketch matrix.

Hashing algorithms [6][8][9] have been a continuously “hot topic” since it
birth because of its superior performance in the Approximate Nearest Neigh-
bor Search. However, hashing algorithms have not widely been used in kernel
prediction problems. Inspired by the idea of “sample” of the Nyström method,
we consider employing Locality-sensitive hashing (LSH) to sample the subset
and approximately compute the result using the subset. Compared with the
currently optimal and most popular Nyström methods, our HBP method can
further greatly reduce the number of samples while ensuring accuracy. HBP re-

duces computational efficiency from O(n) to O( log(n/ετ)
τ0.5ε2.5 ) with less accuracy loss

‖ŷ − y∗‖p ≤ ε · (3τn1/p + ‖y∗‖p).

3 Preliminaries

This paper focuses on the typical kernel machines: KRR. [7][10][21]. Given
dataset {xi, yi}ni=1 , xi ∈ Rd, k(xi, xj) denotes the kernel function value of the
two points xi, xj , α̂ ∈ Rn in the formula is generated in the training process by
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Fig. 1. Schematic diagram of algorithm structure. Given the training data points and a
test point q, the HBP algorithm samples some hash functions and construct a separate
hash table for each hash function leveraging LSH in the pre-processing stage. In the
query stage, for each hash table, we sample a point randomly from the hash bucket
that the test point maps to.

solving the below optimization problem:

α̂← argmin
α

αTKα+ λαTα− 2αT y, (1)

where K ∈ Rn×n is the kernel matrix with Kij = k(xi, xj), y = [y1, ..., yn]T ∈ Rn
is the response vector, λ > 0 is the regularization parameter.

Our goal in the prediction process is to compute the decision value of a testing
data x̄, following the equation:

y∗ =

n∑
i=1

α̂ik (xi, x̄) , (2)

whose time cost is O(n). The problem to solve Eq.(2) is challenging as n in-
creases. To improve the speed of kernel prediction, we proposed the following
HBP algorithm.

4 Hashing Based Prediction

The proposed HBP method is an importance sampling algorithm. The algorithm
solves the problem of designing a model that given a set of data points X =
{xi, yi}ni=1 ⊂ Rd and a kernel function k, returns the approximation of the
decision value of a test point x̄:

∑n
i=1 α̂ik (xi, x̄). Given a hashing based data

structure, HBP performs a two-stage computation to approximate the prediction
result. The architecture of HBP is illustrated in Fig.1. In the pre-processing
stage, we select data points which close to the test data point as the sampling
points. In the query stage, we use the sampling points to estimate the response
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value. As shown in Fig.1, the hashing technique plays an important role in
the proposed method. The hashing technique we leverage is called Localization-
sensitive-hashing (LSH). Before explaining the algorithm in detail, we will first
introduce the LSH method.

4.1 Localization-sensitive hashing

Localization-sensitive hashing (LSH) is an approximate neighbor search tech-
nology. The key idea of LSH is that two adjacent data points in the original
data space are mapped by the same projection, the probability that these two
data points are still adjacent in new data space is high. For example, the LSH
method employed by this paper map a d dimension vector x into a ρ dimension
vector consisting entirely of 0 and 1, where ρ < d. The vector of ρ dimension is
the hash value. If two data points get the same hash value through the hashing
technique, it is said that the two data points fall into the same hash bucket.
The construction goal of the hash scheme is to make the adjacent points in the
original data space fall into the same hash bucket through the hashing function.
So the hash functions need to meet two conditions shown in definition 2. We will
first introduce the definition of collision probability which indicates the prob-
ability that two data points are mapped to the same hash bucket through the
given hash function.

Definition 1. Given a hashing scheme H, the collision probability between two
elements x, x̄ ∈ Rd is defined by p(x, x̄) := Pr

h∼H
[h(x) = h(x̄)], where h ∼ H

denote a hash function h is sampled from the hashing scheme H.

The collision probability of two data points x and x̄ is closely related to the
distance between the two points. The larger the distance, the smaller the collision
probability.

Let D(·, ·) be a distance function of elements from a dataset S, and for any
x ∈ S, let B(x, r) denote the set of elements from S within the distance r from
x.

Definition 2. A family of functions H = {h : S → U} is called (r1, r2, p1, p2)-
sensitive for D(·, ·) if for any x, x̄ ∈ S
– if x̄ ∈ B(x, r1) then p(x, x̄) ≥ p1,
– if x̄ 6∈ B(x, r2) then p(x, x̄) ≤ p2.

In order to guarantee the hash functions in a locality-sensitive family to be
useful, it has to satisfy that p1 > p2 and r1 < r2. The hash methods employed
by this paper are presented in algorithm 1.

Proposition 1. For every x, x̄ ∈ Rn, the LSH family H constructed by Algo-
rithm 1 satisfies :

p(x, x̄) = e−‖x−x̄‖1/(2σ) = k(x, x̄)
1
2 . (3)

The proof is shown in Section 8.1.
After all input data points have been hashed into hash buckets, one can

determine neighbors of query point by hashing the query point and searching
elements in the bucket containing that query point.
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Algorithm 1 Localization-sensitive hashing.

Require: Dataset {xi, yi}ni=1; Dimension of data d; Bandwidth σ.
Ensure: Hash function h.
1: Sample ρ ∼ Poisson(d/(2σ)).
2: Sample ρ dimensions from d dimensions ζ1.....ζρ ∈ {1.....d} at random.
3: Sample ρ reference values ξ1.....ξρ ∈ [0, 1] at random.
4: Given a data point x, for every i = 1.....ρ, set bi = 1 if xζi > ξζi and bi = 0

otherwise.
5: The hash value is the concatenation of b1.....bρ.

4.2 Hashing based prediction

As mentioned before, HBP uses LSH to create a two-stage structure to compute
the decision value approximately. Now, we will explain the main algorithm in
detail.

Pre-processing In the pre-processing stage, training data points are hashed to
different buckets according to the hash function.

1) Randomly construct L hash functions h1...hL from hash scheme H.
2) For each hash function hj , sample a subset from dataset Xj ∈ X, every point

in Xj is selected with probability δ = L
n . In order to reduce computational

complexity, we only run the hash process on a small subset rather than the
whole training set. The result of our theorem proves that the method can
still guarantee accuracy.

3) For each hash function, each data point in Xj is mapped to a hash value
through the hash function. All data points in Xj of the same hash value con-
stitute a hash bucket. And all hash buckets form a hash table corresponding
to the hash function.

4) L hash functions can produce L hash tables.

Query In the query stage, the sampling points were used to estimate the re-
sponse value.

1) Compute the hash value of the test point x̄ through each hash function, and
map the test point x̄ to a hash bucket for each hash table.

2) For each hash table, randomly select a data point x(j), j ∈ (1, L) from the
hash bucket to which the test point is mapped if that hash bucket is not
empty except for the test point x̄. The L hash tables allow us to produce at
most L independent samples because if the hash bucket where the test point
is mapped is empty except for the test point, we can’t get a sample for this
hash table.

3) Compute the estimated values using every sample point:

Zj =
α̂j∑n
j=1 α̂j

k(x(j), x̄) · |bj(x̄)|
δ · p(x(j), x̄)

, (4)
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where bj(x̄) = {x ∈ X ′j : hj(x) = hj(x̄)} represents the set of the elements in
the hash bucket where the point x̄ mapped, and |bj(x̄)| represents the number
of elements in bj(x̄).

4) Compute the accurate prediction value by averaging all of the samples pro-
duced by hash tables:

ŷ =
1

L

L∑
j=1

Zj . (5)

5) The approximate prediction value can achieve the accuracy of ‖ŷ − y∗‖p ≤
ε · (3τn1/p + ‖y∗‖p) with the time and space cost of O( log(n/ετ)

τ0.5ε2.5 ).

Algorithm 2 Hashing Based Kernel Prediction.

Require: Dataset {xi, yi}ni=1; test data point x̄ ∈ Rd; kernel k(·, ·); LSH family H;
interger 1 ≤ L ≤ n; the result of training stage α̂;

Ensure: Estimated response value ŷ.
1: Pre-processing:
2: For j = 1.....L:
3: Sample a random hash function hj from H.
4: Get sampling dataset Xj ⊂ X, each point of Xj was selected with independent

probability δ = L
n

.
5: For every x ∈ Xj , compute the hash value hj(x).
6: Query:
7: For j = 1.....L:
8: Compute the hash value of test data hj(x̄).
9: Sample a random point x(j) from bj(x̄) = {x ∈ X ′j : hj(x) = hj(x̄)}.

10: Let Zj ←− α̂j∑n
i=1 α̂j

· k(x
(j),x̄)·|bj(x̄)|
δ·p(x(j),x̄)

.

11: The prediction value ŷ = 1
L

∑L
j=1 Zj .

5 Theoretical Assessments

The problem of our proposed algorithm aims to solve is to obtain an approxi-
mation ŷ to y∗ =

∑n
i=1 α̂ik (xi, x̄). In this section, we introduce the theoretical

bound of the proposed algorithm.

Theorem 1. Given a kernel k, if there exists a distribution H of hash functions
and M ≥ 1 such that for every x, x̄ ∈ Rd,

M−1 · k(x, x̄)1/2 ≤ Pr
h∼H

[h(x) = h(x̄)] ≤M · k(x, x̄)1/2, (6)

then we can compute an approximate vector ŷ for kernel prediction in time

O( log(n/ετ)
τ0.5ε2.5 ) such that with probability at least 1 − n−1 for all i ∈ [n] it holds

|ŷi − y∗i | ≤ 3ετ + ε |y∗i | and

‖ŷ − y∗‖p ≤ ε · (3τn
1/p + ‖y∗‖p). (7)
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Table 1. Datasets used in this paper.

Dataset Instance Feature Type Bandwidth

covtype 581,012 54 Multi-Classification 0.1

SUSY 1,000,000 18 Bi-classification 0.1

Census 2,458,285 68 Regression 0.05

The proof of Theorem 1 is in Section 8.2. τ ∈ (0, 1) in Theorem 1 denotes
a lower bound of 1

n

∑
i k (xi, x̄). As shown in Eq.(3) in Section 4.1, the hashing

scheme constructed by HBP algorithm satisfies the condition in Theorem 1.
The above result shows the upper bound of error and the time complexity of
the HBP method. As discussed before, the computational complexity of kernel

prediction is O(n), while we need only O( log(n/ετ)
τ0.5ε2.5 ) with accuracy guarantees

‖ŷ − y∗‖p ≤ ε · (3τn1/p + ‖y∗‖p).

6 Experiments

We evaluate the efficiency and effectiveness of the proposed algorithm by exper-
iments on 3 large-scale datasets. The experiments with these datasets use the
Laplacian kernel

k(x, y) = e−‖x−y‖1/σ. (8)

All of the experiments are conducted on a server with 2.40GHZ Inter(R) Xeon(R)
E5-2630 v3 CPU and 32GB of RAM in Matlab.

6.1 Datasets preparation

The performance of our proposed algorithm is presented on three large-scale
real-world datasets: covtype3, SUSY 4 and Census 5, which are generally used
in the field of kernel machines [18][19]. The details of the datasets are shown in
table 1.

We randomly selected 2.5 × 105 data points on each dataset. The features
of datasets have been normalized. 70 percent of instances are used for train-
ing experiment and the rest for prediction. We measure the error by calculating
root-mean-square error(RMSE) for regression problems and calculating the clas-
sification error for classification problems.

6.2 Performance of hashing based prediction

Our experiment contains two parts. Every experiment is repeated 10 times to
avoid contingency. The final result is the average value of 10 experiments.

3 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
4 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
5 https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
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Fig. 2. Validate error between the HBP algorithm and the exact prediction method as
well as the average prediction time for each test point of the two methods with respect
to the number of hash table L on 2 large scale datasets: Census and covtype.

To focus on the effectiveness of our algorithm in the prediction stage, we
consider the model α̂ for kernel machine is given in the first part of our exper-
iment. We randomly generate α̂ and compare the error between the results of
our approximation method and the exact value without using any approximation
algorithm as well as the time complexity of the two methods.

Fig.2 shows the error and prediction time concerning the number of hash
table L. The horizontal coordinate represents the number of hash table L. The
vertical coordinate in the left represents the average errors of the prediction value
between our algorithm and the exact algorithm, and the vertical coordinate in
the right represent the prediction time of that two algorithms. With the increase
of L, the error decreases at the beginning, and the rate of decrease become
slow when L increases to a value. The prediction time of HBP increases with
the increase of L. Our algorithm has a significant advantage over the accurate
algorithm in prediction time.

In the second part of our experiment, we also compare our algorithm with
2 representative methods. Our algorithm employs KRR to finish the training
process. For ensuring fairness, we use the same way to tune parameters σ in
2[−2:0.5:5] and λ in 2[−40:3:8] on each dataset and algorithm. The selected pa-
rameters are sufficient to achieve satisfactory results, although they may not be
optimal.

The general introduction of the methods used in the experiment is as follows:

1) HBP: Our proposed algorithm, which uses Locality-Sensitive Hashing (LSH)
for importance sampling to generate a fast prediction method for kernel ma-
chines.

2) Nyström [14]: An accurate and scalable Nyström scheme that made large-
scale Nyström approximation possible. The algorithm first samples a large
column subset from the input matrix, then only performs an approximate
SVD on the inner submatrix.
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Table 2. Comparison of prediction time and test error in solving KRR problem between
HBP, Nyström and RLS-Nyström on covtype, SUSY and Census datasets. We bold the
numbers of the best algorithm.

Dataset Metric HBP Nyström RLS-Nyström

covtype

Time(s) 4.409 73.154 73.311

Error 0.2874 ±0.00003 1.4919±0.00263 0.7713±0.00890

L = 50 m = 2500 m = 2500

SUSY

Time(s) 2.974 24.130 24.211

Error 0.6471± 0.0000 0.6388 ±0.00169 0.6552± 0.00036

L = 50 m = 2500 m = 2500

Census

Time(s) 5.354 87.970 87.683

Error 0.2867±0.00079 0.2900± 0.00163 1.2297± 0.00712

L = 50 m = 2500 m = 2500

3) Recursive RLS-Nyström [16]: A recently Nystöm scheme using leverage score
sampling.

Table 2 shows the experiment result of our algorithm and other methods men-
tioned before. Our algorithm is at a faster prediction speed than other methods.
The larger the scale of data, the more obvious the time advantage of the pro-
posed algorithm is. Simultaneously, HBP keeps the optimal value or just a little
gap with the optimal, which validates the effectiveness of our algorithm.

7 Conclusions

We propose an algorithm HBP to effectively reduce the prediction cost of kernel
machines on large-scale datasets. The algorithm opens the door of solving the
kernel prediction problem by the hashing method. By using Locality-sensitive
hashing (LSH) for importance sampling to achieve approximate calculation, the
HBP algorithm reduces computational complexity and storage cost with less pre-
diction accuracy loss. The experimental analysis on large-scale datasets showed
that our HBP algorithm outperforms previous state-of-art solutions.

Since LSH is the data-independent hash scheme, the result of the approximate
search is not extremely accurate. In the future, we intend to replace the LSH
with the existing data-dependent hash algorithm to further reduce the prediction
errors. For example, the data-dependent hashing schemes designed by [1] and [2]
can be attempted to apply to our hashing based prediction method.
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8 Proof

In this section, we will provide proofs of some theorems in this paper. Section
8.1 presents the proof of Proposition 1 which references [3]. In section 8.2, we
present the proof of Theorem 1 which is our main theoretical result.

8.1 The proof of Proposition 1

Proof. First assume that the data point x, x̄ is one-dimensional. For the sake
of clarity, we will describe LSH families H such that Pr

h∼H
[h(x) = h(x̄)] =

e−‖x−x̄‖1/σ. The Proposition 1 then follows simply by doubling the bandwidth
σ. As shown in the Algorithm 1, we randomly sample ξ ∈ [0, 1] and set the hash
value b(x) = 1, if x > ξ, else b(x) = 0.

Pr[b(x) = b(x̄)] = 1− |x− x̄|. (9)

Then we consider the case that x, x̄ ∈ [0, 1]d, applying this to a random dimension
ζ ∈ {1.....d}, we get:

Pr[b(x) = b(x̄)] =
1

d

d∑
ζ=1

(1− |xζ − x̄ζ |) = 1− 1

d
‖x− x̄‖1 . (10)

We repeat ρ times independently, then,

Pr
h∼H

[h(x) = h(x̄)] = (1− 1

d
‖x− x̄‖1)ρ. (11)

At last, we sample ρ ∼ Possion(d/σ),

Pr
h∼H

[h(x) = h(x̄)] =

∞∑
ρ=0

e−d/σ · (d/σ)ρ

ρ!
· (1− 1

d
‖x− x̄‖1)ρ = e−‖x−x̄‖1/σ. (12)

8.2 The proof of Theorem 1

Note 1. Given a dataset X = {x1, ....., xn} ⊂ Rd and a test data point x̄ ∈ Rd.
ωi = k (xi, x̄) denoted the kernel value of data point xi and test point x̄. Let H
be a family of hash function. For every xi, pi = Prh∼H [h(xi) = h(x̄)] denoted
the collision probability with x̄. bh(x̄) = {i : h(xi) = h(x̄)} is the set of points
with the same hash value as x̄.
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Proof. In our algorithm, we hash each point only with probability δ = 1/(nτ1−β),
where τ ≤ 1

n

∑
i ωi. Set r1, ......, rn be Bernoulli random variables with Pr [ri] =

δ. b′h(x̄) is sparsified counterpart of bh(x̄),

b′h(x̄) = {i : h (xi) = h(x̄) and ri = 1} . (13)

We may assume that all elements of α̂ are positive otherwise we apply our
algorithm to α̂+ and α̂− separately. The vector α̂ can be geometrically divided
into S1, ..., ST such that all elements in each group differ by at most a factor
of two, where T = log2(n/ετ). Therefore, our problem can be expressed as T
subproblem.

On the tth subproblem, our estimated response value is:

Zh,t =
α̂I
At

k(x̄, xI)

δpI
|bh(x̄)| , (14)

where I is a random index from H(x) ⊆ St, At =
∑
i∈St α̂i.

Now we bound the variance:

Var [Zh,t] ≤ E
[
(Zh,t)

2
]

=
1

δ2
E

[
α̂2
iω

2
i

A2
tp

2
i / |b′h(x̄)|2

]

=
1

δ2 E
h∼H

E
i∈b′h(x̄)

[
|b′h(x̄)|2 α̂

2
iω

2
i

A2
tp

2
i

]

=
1

δ2 E
h∼H

|b′h(x̄)|
∑

i∈b′h(x̄)

α̂2
iω

2
i

A2
tp

2
i


=

1

δ2 E
h∼H

∑
j

[j ∈ b′h(x̄)]
∑
i

[i ∈ b′h(x̄)]
α̂2
iω

2
i

A2
tp

2
i


=

1

δ2

∑
i

α̂2
iω

2
i

A2
tp

2
i

∑
j

E
h∼H

[[j ∈ b′h(x̄)] [i ∈ b′h(x̄)]]

=
1

δ2

∑
i

α̂2
iω

2
i

A2
tp

2
i

∑
j

Pr
h∼H

[j ∈ b′h(x̄)&i ∈ b′h(x̄)] .

(15)

The last term can be split into two expressions:

1

δ2

∑
i

α̂2
iω

2
i

A2
tp

2
i

∑
j:j 6=i

Pr
h∼H

[j ∈ b′h(x̄)&i ∈ b′h(x̄)] (16)

and
1

δ2

∑
i

α̂2
iω

2
i

A2
tp

2
i

E
h∼H

[i ∈ b′h(x̄)] . (17)

Since j 6= i in Eq.(16), we have:

Pr
h∼H

[j ∈ b′h(x̄)&i ∈ b′h(x̄)] = δ2 Pr
h∼H

[j ∈ bh(x̄)&i ∈ bh(x̄)] ≤ δ2pj .
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Therefore, Eq.(16) is upper bounded by
∑
i
α̂2
iω

2
i

A2
tp

2
i

∑
j pj .

As 0 ≤ 2−2β ≤ 1 and 0 ≤ β ≤ 1, the inequalities 1
n

∑
i ω

2−2β
i ≤

(
1
n

∑
i ωi
)2−2β

and 1
n

∑
j ω

β
j ≤

(
1
n

∑
i ωi
)β

hold.

Using the inequalities and the definition in the theorem
wβi
M ≤ pi ≤ Mwβi ,

we have:

∑
i

α̂2
iω

2
i

A2
tp

2
i

∑
j

pj ≤
4M3

n2

∑
i

ω2−2β
i

∑
j

ωβj ≤ 4M3

(
1

n

∑
i

ωi

)2−β

. (18)

Let 1
n

∑
i ωi = µ, Eq.(16) is upper bounded by 4M3µ2−β .

We observe that

E
h∼H

[i ∈ b′h(x̄)] = piδ, (19)

and therefore Eq.(17) is upper bounded by

1

δ

∑
i

α̂2
iω

2
i

A2
tpi
≤ 4M

n2δ

∑
i

ω2−β . (20)

Since 1 ≤ 2− β and ωi ≤ 1, it is easy to get:∑
i

ω2−β
i ≤

∑
i

ωi = nµ. (21)

And we have known that δ = 1
nτ1−β ≥ 1

nµ1−β , so we get the upper bound of

Eq.(17) is 4Mµ2−β .
Eq.(16)+Eq.(17)

Var [Z ′] ≤ 4(M3 +M)µ2−β . (22)

It is obvious that the variance of our estimator is at most 4 times larger
than the variance bound of kernel density estimate using Hashing-based-estimate
method which is (M3 + M) · µ2−β . To derive Theorem 1, set β = 1/2. It is
sufficient to obtain a (1+ε)-approximation for the tth subproblem overO( 1

τ0.5ε2.5 )
independent samples. For all t ∈ T , the overhead of the whole process is at most a
multiplicative factor T = log(n/ετ) compared to the case that we were creating a
single data-structure for the same problem. Combining with the conclusion of [5],
we obtain a straightforward analysis of the estimation error of the algorithm that
for all i ∈ [n] with probability at least 1− n−1, it holds |ŷi − y∗i | ≤ 3ετ + ε |y∗i |.
Summing over all indices and using triangle inequality gives ‖ŷ − y∗‖p ≤ ε ·
(3τn1/p + ‖y∗‖p).
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