
Microservice Disaster Crash Recovery:
A Weak Global Referential Integrity

Management

Maude Manouvrier1, Cesare Pautasso2, and Marta Rukoz1,3

1 Université Paris-Dauphine, PSL Research University, CNRS UMR [7243]
LAMSADE, France

2 Software Institute, Faculty of Informatics, USI, Lugano, Switzerland
3 Université Paris-Nanterre, France

Abstract. Microservices which use polyglot persistence (using multiple
data storage techniques) cannot be recovered in a consistent state from
backups taken independently. As a consequence, references across mi-
croservice boundaries may break after disaster recovery. In this paper,
we give a weak global consistency definition for microservice architec-
tures and present a recovery protocol which takes advantage of cached
referenced data to reduce the amnesia interval for the recovered microser-
vice, i.e., the time interval after the most recent backup, during which
state changes may have been lost.

Keywords: Microservices · Referential Integrity · Backup · Weak Global
Consistency.

1 Introduction

Microservices are small autonomous services, deployed independently, that im-
plement a single, generally limited, business functionality [6, 14, 21, 23]. Microser-
vices may need to store data. Different data storage pattern exist for microser-
vices [21]. In the Database per Service pattern, defined in [19]: each microservice
stores its persistent data in a private database. Each microservice has full control
of a private database, persistent data being accessible to other services only via
an API [24]. The invocation of a service API will result in transactions which
only involve its database.

Relationships between related entities of an application based on a microser-
vice architecture are represented by links: the state of a microservice can include
links to other entities found on other microservice APIs [18]. Following the hy-
permedia design principle of the REST architectural style, these links can be
expressed with Uniform Resource Identifiers (URIs) which globally address the
referenced entities.

Since microservices are autonomous, not only do they use the most appro-
priate database technology for persistent storage of their state, but they also
operate following an independent lifecycle, when their database is periodically

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


2 M. Manouvrier, C. Pautasso and M. Rukoz

backed up. For an entire microservice architecture, in practice, it is not very fea-
sible to take an atomic snapshot of the state of all microservices. Thus, in case
of one microservice crashes, which then needs to be recovered from its backup,
the overall state of the microservice architecture may become inconsistent after
recovery [18]. After recovery, such inconsistency may manifest itself as broken
links between different microservices.

This paper presents a solution to ensure that the links between different en-
tities managed by different microservices remain valid and intact even in the
case of a database crash. The solution assumes that microservices referring to
entities managed by other microservices will not only store the corresponding
link, but also conserve a cached representation of the most recent known val-
ues. We present a recovery protocol when the crashed microservice can merge
its own possibly stale backup with the possibly more recent cached representa-
tions obtained from other microservices. Thus, we revisit the definition of weak
referential integrity across distributed microservice architectures.

2 Background and Related work

2.1 Database consistency, durability, backup and disaster crash
recovery

A database has a state, which is a value for each of its elements. The state of
a database is consistent if it satisfies all the constraints [22]. Among constraints
that ensure database consistency, referential integrity [8] is a database constraint
that ensures that references between data are indeed valid and intact [4]. In a
relational database, the referential integrity constraint states that a tuple/row
in one relation referring, using a foreign key, to another relation, must refer to
an existing tuple/row in that relation [11]. When a reference is defined, i.e. a
value is assigned to a foreign key, the validity of the reference is checked, i.e.
the referenced tuple should exist. In case of deletion, depending on the foreign
key definition, the deletion of a tuple is forbidden if there are dependent foreign-
key records, or the deletion of a record may cause the deletion of corresponding
foreign-key records, or the corresponding foreign keys are set to null. Referential
integrity is really broader and encompasses databases in general and not only
relational ones [4].

Durability means that once a transaction, i.e. a set of update operations on
the data, is committed, it cannot be abrogated. In the centralized databases sys-
tems, checkpoint and log are normally used to recover the state of the database
in case of a system failure (e.g. the contents of main memory disappear due to
a power loss and the content of a broken disk becoming illegible) [22]. Check-
point is the point of synchronization between the database and transaction log
file when all buffers are force-written to secondary storage [7]. For this kind of
failure, the database can be reconstructed only if:

– the log has been stored on another disk, separately from the failure one(s),
– the log has been kept after a checkpoint, and

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


Weak Global Referential Integrity Management for Microservices 3

– the log provides information to redo changes performed by transactions be-
fore the failure, and after the latest checkpoint.

To protect the database against media failures an up-to-date backup of the
database, i.e. a copy of the database separate from the database itself, is used
[22]. A backup of the database and its log can be periodically copied onto offline
storage media [7]. In case of database corruption or device failure, the database
can be restored from one of the backup copies, typically the most recent one [3].
In this case, the recovery is carried out using the backup and the log – see [15],
for more details.

A database has a Disaster Crash when the main memory and the log, or a part
of the log, are lost. Therefore, to recover the database, an old, maybe obsolete,
backup of the database is used. Data which was not part of the backup will
be lost. In case of a disaster crash, the system cannot guarantee the durability
property. However, in a centralized database, recovery from a backup provides
a database which has a consistent state.

2.2 Microservices as a federated multidatabase

Each database of a microservice can be seen as a centralized database. Seen
across an entire microservice architecture, the microservice databases represent
a distributed database system. A multidatabase is a distributed database sys-
tem in which each site maintains complete autonomy. Federated multidatabase
is a hybrid between distributed and centralized databases. It is a distributed
system for global users and a centralized one for local users [7]. According to the
definitions above, stateful microservice architectures can therefore be seen as a
federated multidatabase.

A microservice database can store either a snapshot of the current state of the
data, containing the most recent value of data, or an event log, i.e. the current
state of the data can be rebuilt by replaying the log entries, which record the
changes to the microservice state in the database transaction log. Let’s consider
an example of a microservice managing orders. Using the snapshot architecture,
the current state of an order can be stored in a row of a relational table Order.
When using the event sourcing (log) [17], the application persists each order
as a sequence of events e.g., listing the creation of the order, its update with
customer details and the addition of each line item.

Each microservice ensures the durability and the consistency of its database,
like in centralized databases. In the microservice context, each microservice man-
ages its own database and stores independent backup of its own database, in or-
der to permit disaster recovery from backup. However, while managing consistent
backup is simple in a centralized database, maintaining consistent backups with
distributed persistence in a federated multidatabase is challenging, as shown in
the survey of [13]. So a model providing global consistent backup is necessary
for microservices.

Microservice architecture deals with breaking foreign key relationships [16].
Each microservice can refer to other microservices data through loosely coupled

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


4 M. Manouvrier, C. Pautasso and M. Rukoz

references (i.e., URLs or links), which can be dereferenced using the API provided
by the microservice managing the referenced data. Microservices are independent
and the managing reference integrity between them is challenging. As for the
World Wide Web [9, 12], there is no guarantee that a link retrieved from a
microservice points to a valid URL [18]. In the following section, we propose a
model providing global reference integrity for microservices.

2.3 Microservice disaster recovery

In [18], the authors have addressed the problem of backing up an entire mi-
croservice architecture and recovering it in case of a disaster crash affecting one
microservice. They defined the BAC theorem, inspired from the CAP Theorem
[5], which states that when backing up an entire microservice architecture, it is
not possible to have both availability and consistency.

Let us consider the microservice architecture defined in [18], where each mi-
croservice manages its own database and can refer to other microservices data
through loosely coupled references. Each microservice does independent backup
of its own database for the purpose of allowing disaster recovery from backup.

Figure 1 presents an example of two microservices with their independent
backup, data of the microservice Order referring data of microservice Customer.
Database of each microservice is represented in gray and data in black. Each
database contains three entities. Entities C/i (i ∈ {1, 2, 3}) correspond to cus-
tomers, described by a name, and are managed by microservice Customer. En-
tities O/i (i ∈ {1, 2, 3}) correspond to orders and are managed by microservice
Order. Each order O/i refers to a customer C/i. Backups of the database are
represented in blue. The backup of microservice Customer only contains a copy
of customers C/1 and C/2. The backup and the database of microservice Order
are, on the contrary, synchronized.

As explained in [18], in case of disaster crash, independent backup may lead
to broken link (see Figure 2): no more customer C/3 exists after Customer
recovery, then O/3 has a broken link.

A solution to avoid broken link is to synchronize the backup of all microser-
vices, leading to limited autonomy of microservices and loss of data. In Figure
3, both order and customer C/3 and O/3 are lost after the recovery.

Fig. 1. An example of microservice architecture with independent backup

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


Weak Global Referential Integrity Management for Microservices 5

Fig. 2. The link from the Order microservice to entity C/3 is broken after the recovery
of Customer microservice from an old backup

Please note that broken link can also appear when a referenced data is
deleted, e.g. when a customer is deleted in the local database of microservice
Customer. In this case, the referential integrity is not respected.

Fig. 3. Synchronized backup of an entire microservice architecture

As aforementioned, several approaches indicate that microservice architec-
ture implies some challenging problems of data integrity and consistency man-
agement [2, 18], as well as the difficulty of managing consistent backups due to
distributed persistence [13]. However, as far as we know, no approach proposes
a solution to such problems. In the following, we present a solution that can
bypass such referential integrity violation and broken links.

3 Our solution: a weak referential integrity management

In this work, we focus on referential integrity. We present a solution to help the
user in the recovery of the system referential integrity in case of a disaster crash.
We define the global consistency as a time-dependent property. We propose a
new global consistency definition, called the weak global referential consistency.
Our solution provides information about the global state in case of a disaster
crash that the users can pinpoint exactly the location, and time interval, of
missing data which needs to be manually repaired.

In the following, we first present the context and assumptions (Subsection
3.1), without taking disaster crash into consideration. Then, we introduce our
definition of global consistency (Subsection 3.2). Based on this definition, we

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


6 M. Manouvrier, C. Pautasso and M. Rukoz

Table 1. Table of symbols

Symbol Description

µs Microservice

D Database of microservice µs

e Entity of a database D

URIe Uniform Resource Identifier of an entity e

tj Date of the last update of an entity e in D

de Dependency counter associated with entity e

Ek Epoch identity, k being a timestamp

t(i,k) ith timestamp related to epoch Ek

B Backup of the local database of microservice µs

]t(i,k), t(j,k′)] Amnesia interval of an entity e

show the method of recovery from a disaster crash affecting one microservice.
All symbols used in this article can be found in Table 1 above.

3.1 Context and assumptions

In this article, microservice follows the pattern called Database per Service (de-
fined in [19]), where each microservice has full control of a private database,
persistent data being accessible to other services only via an API. Each mi-
croservice also use an event-driven architecture, such as the one defined in [20],
consuming and publishing a sequence of state-changing events.

The following are our assumptions:

– Microservices are part of the same application.
– All microservices of an application trust each other.
– Each microservice µs has a database D storing a set of entities.
– Each entity e ∈ D can be either a RESTful API resource, a relational tuple,

a key-value record, a document or graph database item.
– Each entity e has a Uniform Resource Identifier, URIe, that identifies the

entity.
– The state of each entity e is read, updated and deleted using standard HTTP

protocol primitives (GET, PUT and DELETE). In addition, we introduce
two additional operations: getReference, deleteReference.

– Each microservice µs ensures the consistency and the durability of its own
database D.

Taking into consideration the following ; handling the references between the
different microservices and ensuring that the system is reliable when no failure
occurs:

– Each microservice has its own clock. The clock of different microservices are
not necessarily synchronized.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


Weak Global Referential Integrity Management for Microservices 7

– An entity e′, managed by a microservice µs′, can refer to another entity e
managed by a microservice µs.

– The reference from microservice µs′ to an entity e, managed by a microser-
vice µs, is the couple (URIe, tj) with the timestamp tj marking the date of
the last update of entity e in D as it is known by the microservice µs′, i.e.
exactly when µs′ queries the microservice µs, using the clock of microservice
µs.

There are 2 cases as far as reference storage is concerned:

1. the minimalist case consists in just storing the reference and the most recent
modified timestamp, i.e. couple (URIe, tj);

2. the eager/self-contained backup case consists in storing a copy of the refer-
enced entity state, that can be cached by µs′. When microservice µs′ stores
a copy of the referenced entity in its cache, this former copy is considered
as detached, identical to detached entity in object-relational mapping using
JPA specification [10]. Detached means that the copy is not managed by µs,
microservice µs′ being responsible for keeping its cache up-to-date. Cached
representation is only a representation of the original entity state, thus it may
only contain a projection. For our solution, we assume that it is possible to
reconstruct the original entity state from its cached representation.

3.2 Global consistency

In case of no disaster crash, the global consistency can be defined as follows:

Definition 1. The global consistency
A global state is consistent if:

– (local database consistency) each local database is locally consistent in the
traditional sense of a database, i.e. all its integrity constraints are satisfied.

and

– (global referential integrity) the timestamp value associated with each
reference is less than or equal to the timestamp value of the corresponding
referenced entity.
Formally: for each couple (URIe, tj) associated with an entity e′ referencing
another entity e of µs, tj ≤ ti, with ti the most recent update timestamp of
e in µs.

Case of snapshot data storage pattern. When using the snapshot data
storage pattern, each local database contains the current state of its microservice.
In order to guarantee the referential integrity in the microservice architecture,
a microservice µs, cannot delete an entity e, if there is an entity e′ managed
by another microservice µs′ that refers to the entity e. We suggest a referential
integrity mechanism based on dependency counters, as follows:

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


8 M. Manouvrier, C. Pautasso and M. Rukoz

– Each entity e managed by a microservice µs is associated with a dependency
counter de. This counter indicates how many other entities managed by other
microservices refer to entity e. It is initially set at 0.

– When a microservice µs′ wants to create the entity e′ that refers an entity e
managed by µs, it sends a getReference message to microservice µs. The
corresponding dependency counter de is incremented. Then, µs sends the
couple (URIe, tj) back to µs′, with tj , the date of the most recent update
of entity e.

– When microservice µs′ receives the information about e, it creates the entity
e′.

– When microservice µs′ deletes an entity e′ that refers e, it sends a message
deleteReference to microservice µs, indicating that the reference to e does
not exist any more. de is therefore decremented.

– Microservice µs cannot delete an entity e if its dependency counter is de > 0.
It retains the most recent value of entity e with its most recent update time,
tj , and flags the entity by ⊥ indicating that e must be deleted when its
dependency counter reaches the value of 0.

According to definition 1, a reliable microservice system using the referential
integrity mechanism based on dependency counters, will always be globally con-
sistent.

Case of event sourcing data storage pattern. When choosing event sourc-
ing as data storage pattern [20], each local database contains an event log, which
records all changes of the microservice state. Thus, it is possible to rebuild the
current state of the data by replaying the event log. In this case, we propose the
following referential integrity mechanism:

– When a microservice µs′ wants to create the entity e′ that refers an entity e
managed by µs, it sends a getReference message to microservice µs. When
µs′ receives the information about e, it creates the entity e′ and a creation
event, associated with the corresponding reference (URIe, tj), is stored in
the log of µs′.

– When an entity e of microservice µs must be deleted, instead of deleting it,
the microservice µs flags it by ⊥, and a deletion event, associated with the
related timestamp, is stored in its log, representing the most recent valid
value of entity e.

Thus, it is easy to prove that global consistency state can be obtained from
the logs. For each couple (URIe, tj) of a referenced entity e, timestamp tj must
appear in the event log of microservice µs. Moreover the most recent record
associated with entity e, corresponding to an update or deletion of e, in the
event log of µs, has a timestamp ti ≥ tj , with tj , any timestamp appearing in
any reference couple (URIe, tj) stored in the event log of any other microservice
referencing e.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


Weak Global Referential Integrity Management for Microservices 9

3.3 Fault tolerant management of microservice referential integrity

As explained in Section 2.3, disaster crash can occur in microservice architec-
tures. In the following, we consider disaster crash affecting only one microservice.

To protect the local database from media-failure, each microservice stores
an up-to-date backup of its database, i.e. a copy of the database separate from
the database itself. Each microservice individually manages the backup of its
database. The way in which microservices independently manage their backup
is out of the scope of this paper.

A disaster crash of a microservice µs means that its local database and its
log are lost and we have to recover the database from a past backup.The backup
provides a consistent state of the local database. However, as the database has
been recovered from a past backup, data could have been lost. In order to provide
a state of the local database as close as possible to the one of the database
before the failure, data cached by other microservices can be used. When a
microservice µs′ refers to an entity managed by another microservice µs, it can
store a detached copy of the referenced entity. Therefore, these detached copies
can be used to update the state of the database obtained after recovery from
the backup.

In the following, we present the concepts used to manage disaster crash, our
recovery protocol, how to optimize it and we define the Weak Global Referential
Integrity.

Backup and Recovery, Amnesia interval and new Epoch. To manage
disaster crash, our assumptions are:

– Each entity of the local database of microservice µs is associated with an
epoch identity Ek. An epoch is a new period after a disaster crash recovery. A
new epoch Ek begins at the first access of an entity after recovery. Therefore, a
timestamp t(i,k) associated with an entity e represents the ith timestamp related
to epoch Ek. k = 0 when no crash has occurred, k > 0 otherwise. The value of
k always increases, being associated with time.

– When a backup B of the local database of microservice µs is done, oper-
ation BCK, the backup is associated with clock epoch identity Ek′ , and with a
creation timestamp t(i,k′), such that: all entities e, stored in backup B, have an
updated timestamp t(j,k′) ≤ t(i,k′). Epoch Ek′ associated with backup and epoch
Ek associated with the local database are such that: k′ ≤ k.

– As long as there is no disaster crash, the local database and the backup
are associated with the same epoch identity.

– In case of disaster crash of microservice µs, when the local database is
locally recovered from an past obsolete backup created at time t(c,k′), it is known
that local database has an amnesia interval starting from t(c,k′). This amnesia
interval is associated with all entities saved in the backup and lasts until such
entities are accessed again (see Definition 2).

– Each entity of the recovered database is associated with a timestamp re-
lated to epoch E′

k of the backup. This timestamp remains as long as no updates
have been carried out. A new epoch Ek begins at the first reading or written

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


10 M. Manouvrier, C. Pautasso and M. Rukoz

access of an entity, k containing the current date. A written operation, PUT,
overwrites whatever value was recovered. However, epoch should also be updated
after a reading operation, GET. Any other microservice reading from the state
of the recovered entity will establish a causal dependency, which would be in
conflict with further more recent recovered values from the previous epoch (see
[1] for more details).

Definition 2. Amnesia Interval
An amnesia interval of microservice µs is a time interval indicating that a dis-
aster crash has occurred for the local database of µs. This interval is associated
with each entity managed by µs. An amnesia interval ]t(i,k′), t(j,k)] of an entity
e means that:

– Epoch Ek′ is the epoch associated with the backup used for the database re-
covery.

– Timestamp t(i,k′) corresponds to the time of most recent known update of e.
It is either the timestamp associated with the backup used for recovery, or
the timestamp of a cached copy of e stored in a microservice referring entity
e.

– Timestamp t(j,k) corresponds to the first reading or written operation on e
from another microservice µs′, after t(i,k′) (k′ < k).

Weak global referential integrity. After a crash recovery, data can be lost,
so we define a weak global referential integrity of the microservice architecture.
Weak means that either the global referential integrity has been checked, verify-
ing Definition 1, or an amnesia is discovered ; data has been lost as well as the
interval of time when the data was lost. This makes it possible to focus on the
manual data recovery and reconstruction effort within the amnesia interval.

Definition 3. Weak global consistency
After a disaster crash recovery of a microservice µs, the system checks a weak
global consistency iff :

– (local database consistency) each local database is locally consistent in the
traditional sense of a database, i.e. all its integrity constraints are satisfied.

and

– (weak global referential integrity) the timestamp value associated with
each reference is either less than or equal to the timestamp value of the
corresponding referenced entity or included in an amnesia interval.
Formally: for each couple (URIe, t(`,κ)) associated with an entity of µs′ ref-
erencing another entity e of µs:

• either t(`,κ) ≤ t(i,k′), with t(i,k′) the most recent update timestamp of e
in µs, epochs κ and k′ being comparable (κ ≤ k′);

• or t(`,κ) ∈]t(i,k′), t(j,k)], with ]t(i,k′), t(j,k)] the amnesia interval associated
with the referenced entity e, after a disaster crash of µs that manages e.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


Weak Global Referential Integrity Management for Microservices 11

Fig. 4. Example of a scenario with 2 microservices, without cached data. PUT repre-
sents a state change of the referenced entity. BCK indicates when a backup snapshot
is taken. LR shows when the microservice is locally recovered from the backup.

Consider a scenario of two microservices µs and µs′, µs′ referencing an entity
managed by µs (see Figure 4), but without storing any cache of the referenced
entity. In figures, only timestamps of one entity of microservice µs are considered,
timestamps and epoch identities being only represented by numbers. In Figure 4,
at time t(1,1) an entity is created by microservice µs ; operation PUT. A backup B
is made, storing entities of microservice µs created before t(2,1) ; operation BCK.
Microservice µs′ refers the entity of µs created at time t(1,1) ; operation GET. An
update of the entity is carried out by the microservice µs at time t(2,1) ; operation
PUT. When disaster crash appears to µs (see red flash), µs mustrecover using
the backup, update of time t(2,1) is lost, therefore it has amnesia that begins
from t(1,1). An update is done to the entity, then a new epoch 2 begins and
timestamp t(1,2) is associated to the updated value. The amnesia interval is then
updated to ]t(1,1), t(1,2)]. If µs′ does another GET to refresh the referenced value,
the up-to-date timestamp t(1,2) is sent by µs.

Recovery Protocol. When a disaster crash occurs to a microservice µs, µs
informs all other services of its recovery. Moreover, when microservices stored
copies of the entities they refer to, in their cache, the amnesia interval associated
with each recovered entity of µs can be reduced using cached replicas. In order
to do so, the steps are:

– After the recovery of µs, an event indicating that there is amnesia is sent,
or broadcast, to other microservices.

– When a microservice µs′ receives an amnesia event from microservice µs,
managing an entity e it refers to ; if it has stored a replica of e in its cache,
then µs′ sends the replica of the entity it refers to, to µs.

– When microservice µs receives replies carrying information from µs′ about
its entity e, it compares the value of e, associated with timestamp t(i,k′),
with the value, associated with timestamp t(j,k), it stored, if epochs k and
k′ are comparable. Then, it retains the more up-to-date value and shrinks
the amnesia interval associated with e if necessary.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


12 M. Manouvrier, C. Pautasso and M. Rukoz

Fig. 5. Recovery scenario using cached data more recent than the backup.

– Once a read operation or an update operation is done on e, a new epoch
begins, and the first timestamp associated with this new epoch represents
the end of the amnesia interval.

– The beginning of the amnesia interval can still be shifted if more up-to-date
values are received from belated replies from other cached replicas.

In Figure 5, µs′ stores an up-to-date value of the referenced entity, after
the backup of µs ; operation GET. After the recovery from the past backup of
time t(1,1), µs sends an event about its amnesia, associated with interval ]t(1,1), ].
After receiving this amnesia event, µs′ sends its up-to-date value, associated with
t(2,1) > t(1,1), to µs ; event reply. µs stores this up-to-date value, associated with
timestamp t(2,1), and updates the amnesia interval to ]t(2,1), ]. After a update
is done to the entity, a new epoch 2 begins and timestamp t(1,2) is associated
to the updated value ; operation PUT. The amnesia interval is then updated to
]t(2,1), t(1,2)].

Availability vs Consistency. After a disaster crash of µs: either µs is imme-
diately available after its local recovery, or it expects information sent by other
microservices that refer its entities before the disaster crash, to provide a more
recent database snapshot than the past used backup, updating the value stored
in the backup with the copy stored in the cache of the other microservices.

If we are uncertain that all microservices will answer the amnesia event or if
µs ignores or partially knows which microservices refer to (case 1), µs can wait
for a defined timeout.

If we assume that all microservices are available and will answer to the am-
nesia event (case 2), µs waits until all microservices have sent their reply to the
amnesia event.

After the timeout (case 1) or the reception of all responses (case 2), the
recovery is ended and µs is available.

When dependency counters are used (see Section 3.2) and if we are sure that
the identity of all microservices that refer to µs is known after the disaster crash:
an optimization of the recovery process can be used. In this case, an amnesia
event is sent only to all microservices referring to µs, instead of broadcast, and
µs waits until all the aforementioned microservices reply. To do so, the address of

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


Weak Global Referential Integrity Management for Microservices 13

each microservice referring to µs should be stored by µs, when the dependency
counter is updated. Each referencing microservice can either send the value it
stores in its cache, or a message indicating that it is no longer concerned by the
amnesia, because it currently does not refer to any entity of µs.

The choice between the aforementioned steps depends on the focus on avail-
ability (µs is available as soon as possible after its disaster crash, with a large
amnesia interval) or on consistency (we prefer to wait in order to provide a more
recent snapshot than the one used for the recovery before making µs available).

4 Conclusions and Future Work

In this paper, we have focused on preserving referential integrity within mi-
croservice architecture during disaster recovery. We have introduced a definition
of weak global referential consistency and a recovery protocol taking advantage
of replicas found in microservice caches. These are merged with local backup
to reduce the amnesia interval of the recovered microservice. The approach has
been validated under several assumptions (direct references to simple entities,
single crashes and no concurrent recovery of more than one failed microservice).

In this paper we focused on reliability aspects, whereas as part of future work
we plan to assess the performance implications of our approach in depth. We will
also address more complex relationships between microservices, e.g., transitive
or circular dependencies, which may span across multiple microservices. While
microservice architecture is known for its ability to isolate failures, which should
not cascade across multiple microservices, it remains an open question how to
apply our approach to perform the concurrent recovery of multiple microservices
which may have failed independently over an overlapping period of time.

Acknowledgements

The authors would like to thank Guy Pardon, Eirlys Da Costa Seixas and the
referees of the article for their insightful feedback.

References

1. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory:
Definitions, implementation, and programming. Distributed Computing 9(1), 37–
49 (1995)

2. Baresi, L., Garriga, M.: Microservices: The Evolution and Extinction of Web Ser-
vices? In: Microservices, pp. 3–28. Springer (2020)

3. Bhattacharya, S., Mohan, C., Brannon, K.W., Narang, I., Hsiao, H.I., Subrama-
nian, M.: Coordinating backup/recovery and data consistency between database
and file systems. In: ACM SIGMOD Int. Conf. on Management of data. pp. 500–
511. ACM (2002)

4. Blaha, M.: Referential integrity is important for databases. Modelsoft Consulting
Corp (2005)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36


14 M. Manouvrier, C. Pautasso and M. Rukoz

5. Brewer, E.: CAP Twelve years Later: how the Rules Have Changed. Computer
45(2), 23–29 (2012)

6. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: From Mono-
lithic to Microservices: An Experience Report from the Banking Domain. IEEE
Software 35(3), 50–55 (2018)

7. Connoly, T., Begg, C.: Database systems. ke-3. England: Addison-Wesley (1998)
8. Date, C.J.: Referential integrity. In: 7th Int. Conf. on Very Large Data Bases

(VLDB). pp. 2–12 (1981)
9. Davis, H.C.: Referential integrity of links in open hypermedia systems. In: 9th ACM

Conf. on Hypertext and hypermedia: links, objects, time and space. pp. 207–216
(1998)

10. DeMichiel, L., Keith, M.: Java persistence API. JSR 220 (2006)
11. Elmasri, R., Navathe, S.: Fundamentals of database systems. Addison-Wesley

(2010)
12. Ingham, D., Caughey, S., Little, M.: Fixing the broken-link problem: the w3objects

approach. Computer Networks and ISDN Systems 28(7-11), 1255–1268 (1996)
13. Knoche, H., Hasselbring, W.: Drivers and barriers for microservice adoption–a sur-

vey among professionals in germany. Enterprise Modelling and Information Sys-
tems Architectures (EMISAJ) 14, 1–1 (2019)

14. Lewis, J., Fowler, M.: Microservices a definition of this new architectural term.
URL: http://martinfowler.com/articles/microservices.html (2014)

15. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Transactions on Database Systems (TODS) 17(1),
94–162 (1992)

16. Newman, S.: Building microservices: designing fine-grained systems. O’Reilly
(2015)

17. Overeem, M., Spoor, M., Jansen, S.: The dark side of event sourcing: Managing
data conversion. In: 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER). pp. 193–204. IEEE (2017)

18. Pardon, G., Pautasso, C., Zimmermann, O.: Consistent disaster recovery for mi-
croservices: the BAC theorem. IEEE Cloud Computing 5(1), 49–59 (2018)

19. Richardson, C.: Pattern: Database per service.
https://microservices.io/patterns/data/database-per-service.html

(2018), online accessed 02 April 2020
20. Richardson, C.: Pattern: Event sourcing.

https://microservices.io/patterns/data/event-sourcing.html (2018), on-
line accessed 01 April 2019

21. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural Patterns for Microservices: A
Systematic Mapping Study. In: CLOSER. pp. 221–232 (2018)

22. Ullman, J.D., Garcia-Molina, H., Widom, J.: Database Systems: The Complete
Book. Prentice Hall, 1st edn. (2001)

23. Zimmermann, O.: Microservices tenets. Comput. Sci. Res. Dev. 32(3-4), 301–310
(2017). https://doi.org/10.1007/s00450-016-0337-0

24. Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C., Zdun, U.: Introduction
to Microservice API Patterns (MAP). In: Joint Post-proceedings of the First and
Second International Conference on Microservices (Microservices 2017/2019). Ope-
nAccess Series in Informatics (OASIcs), vol. 78, pp. 4:1–4:17 (2020)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_36

https://dx.doi.org/10.1007/978-3-030-50417-5_36

