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Abstract. Differential privacy algorithm is an effective technology to
protect data privacy, and there are many pieces of research about differ-
ential privacy and some practical applications from the Internet compa-
nies, such as Apple and Google, etc. By differential privacy technology,
the data organizations can allow external data scientists to explore their
sensitive datasets, and the data owners can be ensured provable privacy
guarantees meanwhile. It is inevitable that the query results that will
cause the error, as a consequence that the differential privacy algorithm
would disturb the data, and some differential privacy algorithms are
aimed to reduce the introduced noise. However, those algorithms just
adopt to the simple or relative uniform data, when the data distribu-
tion is complex, some algorithms will lose efficiency. In this paper, we
propose a new simple ε-differential privacy algorithm. Our approach in-
cludes two key points: Firstly, we used Laplace-based noise to disturb
answer to reduce the error of the linear computation queries under in-
tensive data items by workload-aware noise; Secondly, we propose an op-
timized workload division method. We divide the queries recursively to
reduce the added noise, which can reduce computation error when there
exists query hot spot in the workload. We conduct extensive evaluation
over six real-world datasets to examine the performance of our approach.
The experimental results show that our approach can reduce nearly 40%
computation error for linear computation when compared with MWEM,
DAWA, and Identity. Meanwhile, our approach can achieve better re-
sponse time to answer the query cases compared with the start-of-the-art
algorithms.
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1 Introduction

Among the data privacy protection technologies, existing research is based on the
solution from the following perspectives: anonymity-based methods, encryption-
based methods, noise-based method, and differential privacy-based method. There
have been many reliable encryption-based method technology, such as DES[7],
3DES, Blowfish[23], RC5[21], IDEA, RSA, etc. The advance of the encryp-
tion technology is their security. However, the analyzability will be lost due
to the encryption. The anonymity-based methods to protect data privacy can
keep the data’s analyzability, the mainly anonymity-based technologies are k-
anonymity[24], L-diversity[3] and T-closeness[18]. However anonymity-based meth-
ods have fatal weaknesses, and the anonymous data might suffer anti-anonymity.
For the data organizers, there exist security and privacy problems on data col-
lection and publishing. Among the data privacy attacks, differential attack is
a way that the attacker infers private data through statistical information over
two homogeneous datasets. For example, an attacker can infer a person’s specific
shopping goods by differential attacks via different queries. To explore whether
a person bought an object, the attacker can conduct two queries, and one query
obtains the count of persons that have bought the object, and another query
the count on the data set that excludes the person by the quasi-identifier, such
as timestamp, gender, region, age, etc. By the two query results, the attack can
infer whether the person bought the object.

To solve the differential attack, many differential privacy algorithms can be
used, such as matrix mechanism[17], DAWA algorithm[16], MWEM[13], and
RAPPOR[10], etc. The differential privacy technology can be used in many
fields[26, 6, 5, 11, 20]. Differential privacy was first defined by Dwork et al[8, 9],
and it protects the individual data by injecting noise to the results according to
the privacy budget. A number of ε-differential privacy algorithms have been pro-
posed[16, 13, 17, 2, 15], and some of them workload-aware and data-dependent[16,
13, 17, 2]. From the method of disturbing results view, ε-differential adopts three
ways: Laplace Mechanism[8], Exponential Mechanism [19], and Randomized Re-
sponse[25]. Random response mechanism is an effective way to protect the pri-
vacy of the frequency vector. The random response mechanism has been used in
privacy protection of collecting sensitive data since the 1960s. RAPPOR[10] is
ε-differential privacy technology that Google company has already used in the
browser, and it adopts the random response. MWEM[13] is classical ε-differential
privacy, and it is based on a combination of the Mechanism Exponential Mech-
anism with the Multiplicative Weights update rule. The MWEM algorithm se-
lects and poses queries using the Exponential and Laplace Mechanisms, and
it improves the approximation using the Multiplicative Weights update rule.
DAWA[16] is a data-dependent and workload-aware algorithm, and it adds noise
according to the input data and the given workload and it is a two-stage mech-
anism for answering range queries under ε-differential privacy. In 2016, Michael
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Hay et al. propose an evaluation framework for standardized evaluation of pri-
vacy, called DPBENCH[14]. In 2018, Dan Zhang et al.[27] propose a program-
ming framework and system called εktelo to implement the existing algorithms.
For the task of answering linear counting queries, εktelo allows both privacy
novices and experts to easily design algorithms, and the APEx[12]is a novel
differential privacy system that allows data analysts to pose adaptively chosen
sequences of queries along with required accuracy bounds.

Most of the algorithms are related to data distribution, especially when the
data items are sparse, i.e., there are a large number of items are empty, these
algorithms can effectively reduce the introduced errors. The same conclusion can
be reached in the paper[16, 14]. While, these algorithms are not suitable for all
data situations, as in the situation the data items are intensive and the data
has complex distribution, and the conclusion is also shown in[16, 14]. Current
ε-differential privacy algorithms will cause computation error for linear compu-
tations over the intensive data domain. Inspired by the partition of the data
domain, we propose a novel ε-differential privacy algorithm via Laplace-based
noise and optimized workload division to decrease the computation error in com-
plex data situation. We make the following contributions:

(1) We propose a novel ε-differential privacy algorithm in complex data situa-
tion. We used Laplace-based noise to disturb the query results. This disturbation
can reduce the error of the linear computation queries under intensive data items
by workload-aware noise.

(2) We propose an optimized workload division method. We divide the queries
recursively to reduce the added noise. This division can effectively reduce compu-
tation error when there exists a hot spot, i.e., some domain is frequently queried
in the workload.

(3) We conduct extensive experiments on six real-world datasets and conduct
a comparison with differential privacy algorithms (MWEM, DAWA, and Iden-
tity). The evaluation results show that the proposed algorithm can effectively
reduce the computation error and has better efficiency relatively.

2 Approach Overview

We propose a ε-differential privacy algorithm for the linear computation queries.
The algorithm aims to reduce the results error in the case that the sensitivity of
workload is high and there exists frequency queried dom(B) item due to the hot
issue or statistical attack queries and the frequency count x is complex. In the
algorithm, we adopt Laplace Mechanism to disturb the query results. To reduce
the random added noise, we propose a novel perspective that the added noise
might be reduced by dividing the queries into several clusters and add Laplace-
base noise respectively. Furthermore, based on the Laplace division, we propose
a simple and effective recursion division for the query workloads and the privacy
budget. The method recursively divides the queries workload and privacy budget
into two parts when the expected noise is less than that before dividing. To
sum up, the algorithm can solve three problems:(1)The current ε-algorithms can
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reduce the error limitly, meanwhile, those algorithms will cost much computation
resources. (2)When the sensitivity of a query workload is large, the current
algorithms can’t reduce the noise obviously. This can be shown in[16]. (3)In the
situation that the data distribution is intensive, the current algorithms cannot
fit it and will cause much error for the answer to query workload.

The method we propose satisfies ε-differential privacy rigorously, and ε-
differential privacy is the privacy protection mechanism proposed by Dwork
in 2006 and regulates privacy protection. We will define ε-differential privacy
formally.

Definition 1 (ε-differential privacy). An algorithm M is a ε-differential pri-
vacy algorithm if for any neighboring database I and I ′ (|I − I ′| ≤ 1), and any
subset of output S satisfies the following formula:

Pr[M(I) ∈ S] ≤ exp (ε)× Pr[M(I ′) ∈ S]

The ε-differential privacy algorithm protects privacy data by disturbing the
answer and the attackers cannot distinguish the results over the neighboring
database I and I ′, and the parameter ε is the privacy budget and it determines
the privacy-preserving capacity. If the privacy budget is lower, the differential
algorithm will protect privacy more effectively. For the random algorithm M , if
the results over the two adjacent datasets I and I ′ are close to each other, and it
is difficult to infer whether a data item exists by M(X) and M(Y ). ε-differential
privacy has the following three primary properties.

Property 1. For the random algorithm εi-difference privacy M1, and function
M(X) is an arbitrary deterministic function: R → R′. Then M1(M(X)) still
satisfies ε differential privacy.

Property 2. For the random algorithm Mi and it satisfies εi-difference privacy.
Defining a random function M that it is a process of a random sequence of Mi.
The random function M satisfies

∑k
i=1 εi-difference privacy.

Property 3. The data setX make up of k data sets {X1, ...Xi, ...Xk}, andMi(Xi)
satisfies ε-differential privacy, respectively. M(X) = {M1(X1), ..., Xk(Mk)} sat-
isfies max

εi
εi-differential privacy.

Our algorithm reduces the results error when answering the linear computation
query under the ε-differential privacy, and we will define the linear computa-
tion query. For a database instance I whose relational schema attributes A =
{A1, A2, ..., Al}. In A, each attribute data can be discrete or continuous. For the
continuous data, the data can be treated as discrete in the data domain as well.
The workloadmeans a set of queries over the attributes B = {B1, B2, ..., Bk},B ∈
A. For example, if the workload queries in a subset of three-dimensional range
query over attributes A1, A2, and A3, B = {A1, A2, A3}. We then present a fre-
quency vector x, and xi ∈ dom(B). For example, dom(B) = {(1, 1, 1), (1, 1, 2), ...}
and for each dom(B)i, xi is the frequency of tuples values dom(B)i. A linear com-
putation query computes a linear combination of the frequency in x, as described
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W =



1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 1


, xt =


2
3
4
1
0
9

 , S = W · xt =



5
10
7
3
4
1
0
9


(1)

Fig. 1: A sample of linear computation query workload, frequency vector, and
answer to the workload.

the following SQL query and we define the linear computation query as follows
definition formally.

Select count(∗) from R Where dom(B) = dom(B)i or... dom(B) = dom(B)k

Definition 2 (Linear computation query). A linear computation query is a
length-n vector q = [q1, q2, ..., qn] , each qi ∈ {0,1}. The answer to a linear query
q on x is the vector product q · x =q1x1 + q2x2 + ...,+qnxn

The linear computation can be called range count query, linear count query, and
point count query when the query q can be marked as range, length-n vector, or
a position in x.

In the data collection situation, calculating the frequency in x can be done
by the data organizers. And the data organizers has the capability to answer the
linear computation query over the frequency vector x. The workload W makes
up of a set of linear computation queries. If W is an m × n matrix, it means
m length-n linear computation queries and the query results can be computed
as the matrix product W · x. The linear computation query is one of the most
important and common queries in data mining and data analysis. The linear
computation can help the analyst understand the distribution information of
data and to make intelligent decisions and data prediction. Figure 1 shows a
workload W , frequency vector x, and the answer to W over x.

3 Laplace-based Disturbation

Our algorithm adopts Laplace Mechanism to add noise, and we transform the
Laplace Machainsim[8] to fit the query workload and data distribution. To ensure
our algorithm satisfy ε-differential privacy, the algorithm adds random noise
rigorously conform to the Laplace distribution.

3.1 Laplace Mechanism

The Laplace mechanism [8] is proposed by Dwork, and the key method of Laplace
Mechanism is to add noise that randomly generated through the Laplace dis-
tribution to the query results. The probability density function of the Laplace
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distribution is described as following:

Lab (x; a, b) =
1

2b
exp

(
|x− a|
b

)
(2)

The variance of a random variable that satisfies the Laplace distribution is
σ2 = 2b2. To make the algorithm satisfy ε-differential privacy, we can add ran-
dom noise from the Lap(x; a, 0), and we denote the Laplace distribution random
variable as Lap(a) in the following section. For different query or query workload,
the Laplace Mechanism adds noise differs against the sensitivity of the query or
workload.

Definition 3 (Sensitivity). Given a query q and the frequency vector x and
x′, the sensitivity of the query q is:

∆q = max ||q (x)− q (x′)||1 (||x− x′||1 ≤ 1)

It can be seen that the sensitivity of a query is the maximum change of the
answer to a query on the neighboring frequency vectors. When the sensitivity
of a query is high, the privacy data has a high probability to be attacked, and
the reason is that the presence or absence of certain data can greatly change the
result of the query, and it is more calculable to infer the certain sensitive data.
For a query workload W , we use an m × n matrix to represent W , as shown
in Figure 2. According to the sensitivity of a query, the sensitivity of the query
workload W can be defined as the following:

∆W = max ‖Wxt −Wx′t ‖= max
j
‖

i=m∑
i=1

|Wij | , (‖ x− x′ ‖1≤ 1)

Given the definition of Laplace distribution and sensitivity, we can define the
Laplace mechanism as following formally.

Definition 4 (Laplace Mechanism). Given a workload W and a frequency
vector x, ML(x,W, ε) is ε-differential privacy, if it satisfies the following condi-
tion:

ML(x,W, ε) = W · xt + (Y1, . . . , Yk))

The random variable Yi is generated by Lap
(
∆W · 1ε

)
. The proof is presented

as the following, where database I and I differ at most one record, PI(s) is the
probability that the output for the query database I is s.
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pI (s)

pI′ (s)
=

k∏
i=1

exp

(
− ε |q(I)i−si|

∇q

)
exp

(
− ε|q(I′)i−zi|

∇q

)


=

k∏
i=1

 exp

(
− ε |q(I)i−si|

∇q

)
exp

(
− ε |q(I′)i−si|

∇q

)


=

k∏
i=1

(
exp

(
ε (|q (I ′)i − si| − |f (I)i − si|)

∇q

))

≤
k∏
i=1

(
exp

(
ε (|q (I ′)i − q (i)i|)

∇q

))
≤ exp (ε )

(3)

3.2 Workload-aware Noise

To reduce the noise, we will divide the queries in workload into several work-
loads. Meanwhile, the privacy budget ε will be divided into the same number of
privacy budgets. After dividing, different workloads will add corresponding noise
according to the divided privacy budget. Formally, for the workload W , we di-
vide it as {W1,W2, ...,Wm}, For each divided workload Wi, the privacy budget is
also divided into ε = {ε1, ε2, ..., εm},and add random noise from the distribution
Lap(∆Wi

1/εi). That is, the answer to the workload is S = [W1,W2, ...,Wm] ·xt+
[Lap(∆W11/ε1), Lap(∆W21/ε2), ... Lap(∆Wm1/εm)]. It can be proved that the
algorithm satisfies ε-differential privacy as the property2, and we can also prove
it by the following process. For the neighboring database I and I ′, that is,
‖ I− I ′ ‖1≤ 1. Let pI(s) represent the distribution probability of query x on W ,
and s ∈ Rk:

pI (s)

pI′ (s)
=

k∏
i=1

 exp

(
− εi|q(I)i−si|

∇qi

)
exp

(
− εi|q(I′)i−zi|

∇qi

)


=

m∏
j=1

∏
i∈Wj

 exp

(
− εi|q(I)i−si|

∇qi

)
exp

(
− εi|q(I′)i−si|

∇qi

)


≤
m∏
j=1

exp (εj)

= exp (ε)

(4)
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We discuss the error change by the dividing for workloadW = {W1,W2, ...,Wm},
and privacy budget ε = {ε1, ε2, ..., εm}. We calculate the average L1 error for
the answer to the workload. The excepted L1 error of the answer before dividing
and after dividing the workload is as follows:

E (| Lap(∆W · 1/ε) |) = ∆Wi ·
1

εi

E

(
1

k

m∑
i=1

| Lap(∆Wi
· 1/εi) | · |Wi |

)
=

1

k

m∑
i=1

∆Wi
· 1

εi
· |Wi |

4 Optimized Workload Division

Taking the above workload in Figure 2 for example, the original workload and
divided workloads as following. When the workload W adopts 1-differential pri-
vacy by the Laplace Mechanism. The excepted L1 error is ∆W /ε = 4, and after

W =



1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 1


,W1 =

 1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0

 ,W2 =


0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 1

 (5)

Fig. 2: A sample of dividing for workload.

dividing the workload into W1 and W2, the privacy budget into ε1 = 0.58 and
ε2 = 0.42, the L1 error will be 3.4275.

Basing on the dividing for workload and privacy budget, we propose a specific
division in the data situation that the data is relatively large and the distribution
of data is complex. We take the mean square error of the frequency vector x to
discriminate the data distribution complexity. And in query workload, there
exist data domain queried with high frequency. To reduce the added Laplace-
based noise, we divide the privacy budget into two equal parts iteratively, and
the workload is divided according to the sensitivity, and the process can be
described in Algorithm 1.

The dividing in the algorithm will continue until the recursion finished. We
will discuss the rationality of the division. The dichotomy is used as the reason
that the query workload and privacy budget are divided into two parts W1, W2,

ε1, ε2, and for E (L1 ) =
∇W1

ε1
∗ |W1| +

∇W2

ε2
∗ |W2| , ε1 = ε2 is the minimum

extreme point of the function. As described in Algorithm 1, at first, we set the
data domain queried by high frequency as high-frequency items. For workload
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Algorithm 1 Workload dividing

1: procedure divideWorkload(W, ε)
2: ε1 = ε2 = ε/2.0
3: get the most frequent item in x as xi,
4: |W1| = (|W |+∇W + g)/4
5: select randomly |W1| queries as W1 from W where xi is queried and the rest

queries as W2

6: noise = |W | ∗ ∇W , noise divided = |W1| ∗ ∇W1 + (|W | − |W1|) · ∇W2

7: if noise ≥ noise divided then . Stop dividing while noise doesn’t reduce
8: return (DIV IDEWORKLOAD(W1, ε/2),divideWorkload(W1, ε/2))

9: return W . return W while it is unnecessary to divide

W , its division is W1 and W2 and supposing that the sensitivity of W is the sum
of W1 and W2. The total expected noise under the ε-differential privacy is

E(noise(ε1, ε2,W1,W2)) =
∆W1

ε1
∗ |W1|+

∆W −∆W1

ε2
∗ (|W | − |W1|) (6)

We can infer that (ε/2, ε/2,W1,W2) is a point of minimum, so we adopt ε1 =
ε2 = 2/ε. To get min E(noise(ε1, ε2,W1,W2)), we set ∆W1 = |W1|, and we can
compute that when |W1| = (W +∆W ) /4, the E(noiseε1, ε2,W1,W2) will be
a minimal value. The parameter g can optimize the result as a consequence of
that for a workload W and its divisions W1,W2, ∆W > (∆W1

+∆W2
), which is

not in accordance with our assumption. Therefore, we introduce the parameter
to regulate the result and the g can be estimation by the specific workload.

5 Experimental Evaluation

We now evaluate the performance of our approach on multiple datasets and
workloads and compare our algorithm with state-of-the-art differential privacy
algorithms. The main metric is average error, and we evaluate the metric on
differential datasets and workloads.

In follow evaluation, we test our algorithm with the metric average L1 er-
ror per query result of the given workload. The workloads we use are generated
randomly and the data set is from the real public database. To make the result
more convincing,we run 5 trials for each evaluation. Furthermore, we test the
time efficiency of our algorithm.The synthetic workload also is used by all the
comparison algorithms. In the experiment, we set the privacy budget varies in
{10.0,5.0,1.0,0.5,0.1}.In the following sections, we describe the datasets, work-
load, and the parameters in the experiment. In the above section, we have de-
scribed the properties of liner count query. When there are multiple attributes
in datasets, we can still use one-dimensional frequency vector x to represent the
datasets. In the experiment, we use one-dimensional data sets. We use six real
data sets. Adult comes from American statistical data[4]. The frequency vector x
is built on the attribute ”capital loss”, which is also used in the experiment[13].
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Fig. 3: Average error on the workload that the frequency count item is queried
with probability as p=0.9

Table 1: Overview of the datasets in the experiments.
Datasets name Scale % Zero Count Mean value Variance

Adult 17665 97.998 4.31274 263.04404
Patents 27948226 6.20118 6823.29736 3532.42422
Income 20787122 44.971 5074.98095 47859.49063

Nw 32287151 0.268 7882.60522 60262.21603
Fidata 3519442 58.178 859.23880 18942.96715
Nw2 32678757 0.0 7978.21216 84866.75896

The Adult is sparse, and many frequency counts in x are zero. Income is from
IPUMS American community survey data from 2001-2011, and frequency vector
x is the count of personal Income[22], and Income is also used in DAWA[16].
Patent is a citation network among a subset of US patents[16]. Fidaeta is from
census of fatal occupational injuries in the United States of American labor
statistics[1], and both Nw and Nw2 are from a survey of compensation in the
United States of American labor statistics[1], and they are the frequency vector
by setting unit as 1 and 2 in the continuous value attribute. We take the length
of x of the five datasets as 4096. The overview of datasets is described in Table
1.

For the query workload, we conduct the experiment on eight synthetic query
workloads W . For the frequently queried item in frequency vector x, we set prob-
ability of being queried p = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. A workload has
2000 queries, and each query q ∈W randomly selected a center cluster, and the
frequency counts in x are randomly generated via the normal distribution with c
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Fig. 4: Average error on the workload that the frequency count item is queried
with probability as p=0.6

as the center and 10 as the variance. Furthermore, we compare three algorithms
with our algorithm. The Identity[8] algorithm adopts Laplace Mechanism that
the answer results are directly added Laplace distribution noise for disturbance.
MWEM[13] achieves differential privacy technology by obtaining an estimate
of x through Laplace Mechanism and Exponential Mechanism. DAWA [16] al-
gorithm adopts the partitioning method to achieve the differential privacy for
range count workload and linear count workload.

Among the experimental datasets, Adult is a ”sparse” data set. The data
distribution is relatively even-distributed as shown in Table 1, and zero accounts
for more than 97% in the frequency vector x. The other four experimental data
sets are ”complex” data sets with a large scale and complex data distribution.
Figure 4, 5, and 6 show the L1 average error for the parameter p as 0,9, 0.6 and
0.2. It can be seen that MWEM[13] and DAWA[16] will add more noise than
the Identity [8] algorithms, meanwhile, our algorithm always adds less noise than
the Identity. The results figures show that MWEM[13] and DAWA[16] algorithm
are datasets-aware and when facing different datasets, both algorithms perform
differently over the same workload. The MWEM is most erratic, and when the
data sets are simple or approximately even-distributed, the algorithm can add
less noise than the other algorithms, but not for the complex data. In Figure 7,
we compare the discount of L1 average error by comparing it with the Identity[8].
In the experiment, we compare the different perforation with different parameter
p, which represents frequency of a certain dom(B)i in x. Figure 5 shows that in
the experiment sets, when p = 0.2, the algorithm can reduce more than 40% the
L1 error than the Identity.
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Fig. 5: Average error on the workload that the frequency count item is queried
with probability as p=0.2
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Fig. 6: The decrement of the average error by comparing our method with Iden-
tity.
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6 Conclusions

The ε-differential privacy is an effect privacy-preserving technology for linear
computation. It can prompt data organizers to provide a secure third-party
interface for statistical query. In this paper, we propose a novel ε-differential
privacy algorithm, which uses Laplace-based noise and optimized workload di-
vision to decrease the computation error in complex data distribution for linear
computations. The evaluation results show that our approach can reduce nearly
40% computation error when compared with the start-of-the-art differential pri-
vacy algorithms MWEM, DAWA, and Identity. As further work, we plan to
extend our approach by optimizing the proposed work load division to reduce
the introduced error.
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