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Abstract. Providing the real-time working system able to localize the
dangerous contaminant source is one of the main challenges of the cities
emergency response groups. Unfortunately, all proposed up to now frame-
works capable of estimating the contamination source localization based
on recorded by the sensors network the substance concentrations are not
able to work in real-time. The reason is the significant computational
time required by the applied dispersion models. In such reconstruction
systems, the parameters of the given dispersion model are sampled to
fit the model output to the registrations; thus, the dispersion model is
run tens of thousands of times. In this paper, we test the possibility of
training an artificial neural network (ANN) to effectively simulate the
atmospheric toxin transport in the highly urbanized area. The use of a
fast neural network in place of computationally costly dispersion models
in systems localizing the source of contamination can enable its fast re-
sponse time. As a training domain, we have chosen the center of London,
as it was used in the DAPPLE field experiment. The training dataset is
generated by the Quick Urban & Industrial Complex (QUIC) Dispersion
Modeling System. To achieve the ANN capable of estimating the con-
taminant concentration, we tested various ANN structures, i.e., numbers
of ANN layers, neurons, and activation functions. The performed tests
confirm that trained ANN has the potential to replace the dispersion
model in the contaminant source localization systems.

Keywords: machine learning - neural networks - airborne contaminant
transport computation.

1 Work motivation

The main task of the emergency response groups existing in all cities is a quick
reaction to any threats to people and the environment. The primary factor de-
termining the success or failure of a given action is the response time. Nowadays,
the chemicals are used in most areas of the industry, making the transport and
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storage of the toxic materials pose a constant risk of releasing it into the atmo-
sphere. In the cases when the source of the failure resulting in releasing the toxin
into the atmosphere is known, the emergency responders can quickly undertake
all necessary actions to minimize the consequences of such release. The more
challenging are situations when the sensors, distributed over a city, report the
non-zero concentration of the dangerous substance, which source is not known.
In such cases, important is to have a system able to, in a real-time estimate the
most probable location of the contamination source based solely on the concen-
tration data reported from the sensors network. The algorithms that can cope
with the task can be divided into two categories. First are based on the back-
ward approach, but those are dedicated to the open areas or a continental-scale
problem. Second, are based on the forward approach. In this case, the appropri-
ate dispersion model parameters are sampled (among them source location) to
chose the one giving the smallest distance measure between the model outputs
and sensors measurement in considered spatial domain.

Such an inverse problem has no unique analytical solution but might be
analyzed with probabilistic frameworks, as the Bayesian approach, where all
searched quantities are modeled as random variables. Bayesian approach trans-
forms the inverse mentioned above problem into searching for a posterior dis-
tribution based on the sampling of an ensemble of simulations using a priori
knowledge and observed data. Stochastic reconstruction of the contamination
source consists of two principal mechanisms. One is the dispersion model suitable
for modeling of the airborne contaminant in considered terrain, and the second
is the sampling algorithm able to find the optimal dispersion model parame-
ters based on the model output comparison and the contaminant registrations.
Regarding the efficiency of the applied parameter scanning algorithm, each re-
construction requires multiple runs of the dispersion model. The reconstruction
in urban terrain, which is of interest in this paper, requires advanced dispersion
models taking into account the turbulence of the wind field around the build-
ings. The most reliable and exact are the computational fluid dynamics models
(CFD), but those are very computationally demanding. We must be aware of the
fact that to find the most probable contamination source, the dispersion model
has to be run tens of thousands of times. So, the applied dispersion model has
to be fast to be applied in a real-time working emergency system.

The first reconstructions in urban scales using building models was reported
in [1] and [2]. In [1], authors used an adjoint representation of the source-receptor
relationship and applied a Bayesian inference methodology in conjunction with
Markov Chain Monte Carlo sampling procedures. In [2] authors applied the
methodology presented in [3] to the reconstruction of the flow around an iso-
lated building and the flow during IOP3 and IOP9 of the Joint Urban 2003
Oklahoma City experiment. In this reconstruction, the FEM3MP [4] model was
applied to predict the atmospheric dispersion of the released substance.

In [5] authors applied the approximate Bayesian computation algorithm (ABC)
to localize the source of contamination in the highly urbanized terrain of the
center of London utilizing the real field experiment data from DAPPLE experi-
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ment [6]. As the forward dispersion model, the Quick Urban Industrial Complex
(QUIC) Dispersion Modeling System was applied [7]. The successful estimation
of the release source required over 10000 runs of the dispersion model. Even
though the QUIC model is able to simulate the airborne contaminant transport
in the city relatively quickly, a single simulation over the 800m x 800m domain
takes as minimum 2 minutes. Thus, reconstruction on a single computer re-
quires over 330 hours. Computation time can be shortened by using a distributed
system, but it is still impossible to apply it in the real-time working localization
system when the answer time is crucial. Moreover, the required simulation time
will increase with the enlargement of the considered terrain, e.g., for the whole
city.

Even though in [5] the fast convergence of the ABC algorithm was proven,
the whole framework cannot be implemented in the real-time emergency system
due to the long computational time required by the dispersion model in urban-
ized terrain. This conclusion was an inspiration for the study presented in this
paper. The idea is to train the artificial neural network (ANN) to be efficient in
the simulation of the airborne contaminant transport in the urbanized terrain. If
it succeeds, the ANN might work as the forward model in the system localizing
the contamination source in real-time. Of course, the ANN has to be trained
on the fixed city topology using the real wind conditions. This process requires
lots of simulations serving as the training data-sets for the ANN. The process
of training the ANN is computationally expensive, but ones trained, the ANN
would be a high-speed tool for estimation the point-concentrations for a given
contamination source.

2 ANN training city domain

Training ANN requires a large representative, reliable set of data. In this case, it
should be measurements of the contaminant being a result of various release rates
under different meteorological conditions. In this paper, we decided to check the
possibility to train the ANN to simulate the airborne toxin transport in the area
of central London where the DAPPLE experiment [6] was conducted (the main
crossroad is of Marylebone Road and Gloucester Place, 51.5218N 0.1597W). The
ideal situation would be if we could train the ANN on the real data. Unfortu-
nately, it is not possible to obtain a set of data from real gas releases in urban
areas that will be large enough to be a reliable set to train the ANN. Even though
the city domain considered in this paper was the place of carrying out the large
real field experiment DAPPLE the data available from its Trials are very limited.
From four Trials, we have concentrations at 15 receptor positions for 30 minutes
with 3-minutes intervals. This gives us, in sum, about 600 point-concentrations
for four various source positions and release rates. This number of data is not
enough to properly train the ANN. The only solution is to use the verified and
well-recognized dispersion model to generate the data-set utilized to train, test,
and validate the ANN. For that reason, we have used the QUIC Dispersion
Modeling System. QUIC is intended for applications where the dispersion of air
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Fig. 1. The domain representing the area of central London assumed during the prepa-
ration of the ANN testing data-set (the main crossroad is of Marylebone Road and
Gloucester Place, 51.5218N 0.1597W).
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Fig. 2. The sample streamlines of the wind in the area of central London assumed
during the preparation of the ANN testing data-set.

pollutants released near buildings must be computed relatively quickly [7]. The
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effectiveness of the QUIC model as the forward model in the reconstruction of
the contaminant source based on the field experiment DAPPLE data was proven
in [5].

The QUIC system comprises of a wind model QUIC-URB, a dispersion model
QUIC-PLUME, and a graphical user interface. The modeling strategy adopted in
QUIC-URB was originally developed by Rockle [8] and uses a 3D mass-consistent
wind model to combine properly resolved time-averaged wind fields around build-
ings [9]. The code has been tested for both idealized and real-world cases (e.g.,[7,
10]).

To test the possibility of applying the ANN to simulate the airborne contam-
inant dispersion in the urbanized terrain, we have prepared the domain of size
752 m x 652 m x 80 m in which we have placed representations of the original
buildings. The average building height in the area is 21.6m (range 10 to 64m).
The whole considered domain and the estimated by the QUIC-URB sample wind
field around the buildings are presented in Figs. 1 and 2.

In this domain, we have set the simulations of an ideal gas continuous release
and registered its concentration for thirty minutes. To reflect the real measure-
ment conditions we have randomly drawn the 600 contamination source loca-
tions, release rate within the interval Q €< 10Mg;500Mg > and its duration
within interval < 2min, 30min > and 100 registration points (representing the
sensor locations) per single release. The registered concentrations were normal-
ized and logarithmized with an added background Gaussian noise at the level
of 107%g/m3. The sample simulated by the QUIC model propagation of the re-
leased 250 Mg of gas during the first 30 minutes within the domain is presented
in Fig. 3.

3 The selected ANN topology

Artificial neural networks (ANN) are computational models that consist of in-
terconnected elements called neurons. They are modeled on the construction of
natural neurons and synapses connecting them [11]. ANN is capable of learning
from training samples without knowing any laws or equations. There are sev-
eral types of neural networks. In this paper, we used one of the simplest and
widely used ANNSs, the feed-forward neural network, e.g., [12]. This network has
a one-way structure, i.e., the signal flows only in one direction from input nodes
to output nodes. Feedforward neural networks were successfully used to predict
the transport of pollutants in open areas, e.g., [13-15].

The ANN contaminant dispersion model is considered as a system that
receives information from n distinct sets of inputs X;(¢ = 1,...,n), namely con-
taminant source parameters and sensor location, and produces a specific output,
in our case the concentration of the gas in the passed as the input location. No
prior knowledge about the relationship between input and output variables is
assumed. The input variables should be independent of each other, and each one
is represented by its own input neuron ¢ = 1,...,n. Each neuron calculates a
linear combination of the weighted inputs w;;, including a bias term b;, from the
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Fig. 3. The normalized concentration of the gas during thirty minutes after the 15
minute release of 250 Mg of gas from the source located at z = 300m, y = 240m,
z = Tm within the considered domain as simulated by the QUIC model.

links feeding into it and the corresponding summed value C; = >, w;; X; + b;
is transformed using a function f , either linear or non-linear for example log-
sigmoid or hyperbolic tangent. The bias term is included in order to allow the
activation functions to be offset from zero, and it can be set randomly or to the
desired value. The output obtained is then passed as a new input X; = f(C;) to
other nodes in the following layer, usually named hidden layer. Though one is
allowed to use several neurons in this hidden layer, it is generally advantageous
to somehow minimize the number of hidden neurons, in order to improve the
generalization capabilities of the model and also to avoid over-fitting. Having
such a framework of input variables and sets of functions, the ANN has to be
trained in order to obtain the best estimate for each weight w. The weight values
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Fig. 4. The topology of the seven-layered feed-forward applied ANN with listed char-
acteristics of input and output neurons.

are determined by an optimization procedure, the so-called learning algorithm
[16]. The result of the neural network is compared with the target in order to
calculate a predefined value of the error function. The error is sent over the net-
work, and the algorithm adjusts the weights of each connection, respectively, to
reduce the value of the error function. This repeated process corresponds to the
number of training iterations that causes the network result to coincide with a
state where the error between the output and the target is minimal.

During the ANN setup phase, numerous tests were performed with different
combinations of the hidden layers, neuron number, learning rates, and activation
functions. Fig. 4 illustrates the selected topology. In the input layer, we intro-
duce eight neurons representing the coordinates of the contamination source,
release rate, and its duration and the coordinates of the registration point (sen-
sor) within the domain and registration time after the initiation of the release.
In the output layer, the tracer concentration at a given point and time will
be given. It appeared that the ANN performed the best when the five hidden
layers were introduced, with 32, 25, 18, 10, and 4 neurons in subsequent lay-
ers. The Levenberg-Marquardt learning method was used, which minimizes an
error function in ”damped” procedures, i.e., select steps proportional to the gra-
dient of the error function. We have tested various activation functions, and
the best results were achieved using the hyperbolic tangent tanh function in
all hidden layers, and linear function in the output layer. The crucial for ANN
better performance occurred scaling of all input parameters to be in the interval
(0,1). Scaling allowed escaping from the problem of different scales and model
instability. Additionally, the output concentrations were logarithmized. Loga-
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rithmization improved the ANN learning process because it allowed narrowing
the range of concentration values. In consequence, to escape from the logarithm
of the zero, the scaling was set to the interval (0,1), while hyperbolic tangent
gives outputs in the range (-1,1). The input data set described in Section 2
was divided to training data set - 70%, validation and testing data-sets 15%
each. The objective function describing the mean squared error between the real
concentration and network output was set to reach le — 04 value.
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Fig. 5. The scatter plots representing results of training, testing, and validation process
of the ANN. The dashed line represents the ideal fit.

4 Results

The results of the ANN training are presented in Fig. 5. Each point represents
the single-point concentration as predicted by the trained ANN versus the input
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Fig.6. The scatter plots representing results of training ANN versus the QUIC
training-set data broken down by time. The line represents the linear fit.

concentration from the QUIC model included in the training, validation, and
test datasets. The ANN was trained under the Deep Learning Toolbox of the
Matlab software. Taking into account the complexity of the transport of the
airborne contaminant in the turbulent wind around the buildings, the quality of
the trained ANN is quite good. The R-value for training is 0.87, and together
with test and validation data equals 0.86. These values indicate a significant re-
lationship between the outputs and targets. The regression lines show that ANN
slightly underestimates the higher concentrations. A more detailed analysis of
the ANN performance is shown in Fig. 6. Fig. 6 presents the comparison of the
concentrations predicted by the trained ANN versus the concentrations from the
QUIC model, taking into account the time dependence of concentration at the
given registration point. The concentrations were sampled every three-minutes.
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Fig. 7. The dispersion of the contaminant simulated by the ANN during consecutive
thirty minutes after the 15 minute release of 250 Mg of gas from the source located at
r = 300m, y = 240m, z = 7m within the considered domain.

The scatter plots display that the best agreement is achieved after eighteen
minutes from starting of the release. With time the ANN starts to underpre-
dicts the concentrations. After nine minutes, the correlation coefficient increases
from 0.54 up to 0.86 in the 21st minute. Moreover, it is visible that ANN has a
tendency to underpredicts the smaller concentrations, while for higher concen-
trations level of agreement increases. A possible reason is that in the training
dataset, more scenarios are leading to smaller concentrations and fewer favor-
able to increased concentrations. Nevertheless, the crucial question is, does the
ANN learned the physics standing behind the gas dispersion over the highly
urbanized area? Figs. 7 and 8 presents the simulated by the ANN contaminant
transport for thirty minutes after two release scenarios. In the simulation of the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50417-5_30 |



https://dx.doi.org/10.1007/978-3-030-50417-5_30

0 200 400

X [m]
t=21min

600

Computation of contaminant transport by ANN

0 200 400
X [m]

0 200 400
X[m]
t=24min

200 l
LEIIEs
mui

0 200

400
X [m]

iIm::il'_:r

600

[ B4 RE R B

| 1 11

0 200 400
X[m]

600

600

" aizhin,
<

200 “IIII:II

ll'i

600

0 200 400 600

X[m]

t=18min

0 200 400 600
X [m]

t=27min

20 “Iﬁ Eil'.J
LEIIEE
HEIl

0 200 400 600
X [m]

11

t=30min

d=hy
=T

0 200

Y [m]

=)

400 600
X [m]

Fig. 8. The dispersion of the contaminant simulated by the ANN during consecutive
thirty minutes after the 15 minute release of 400 Mg of gas from the source located at
r = 300m, y = 240m, z = 7m within the considered domain.

gas by the trained ANN we have assumed the source location at the position
with coordinates x = 300m, y = 240m, z = 7m within the considered domain.
The concentrations predicted by the ANN were sampled homogenously every
4 meters within the domain with 3 minutes time span. One can see that the
simulated by the ANN dispersion of the contaminant gas agrees with the QUIC
simulation presented in Fig. 3. The gas is spread in the wind direction set to
225°. As a result, the concentration of gas slowly decreases. Comparison of Fig. 7
where the released mass equals 250 Mg and Fig. 8 for released mass equal to
400 M g confirms the correct estimation of gas concentrations by ANN. The con-
centrations predicted by ANN for release of 400 Mg of gas are greater than in
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the case of 250 Mg release. The regions of higher concentrations stay longer in
the vicinity of buildings. We can conclude that simulated by the trained ANN
transport of contaminants in the vicinity of the center of London agrees with
the simulations performed by the QUIC model (Fig. 3).

5 Summary and future work

Presented results confirm that trained ANN can sufficiently simulate the turbu-
lent transport of airborne toxins in the highly urbanized area. Such a result has
not been published before. Even though we do not obtain the one-to-one agree-
ment between the QUIC and ANN model concentrations, the trajectory of gas
particles and gradient of concentrations predicted by ANN agree with the expec-
tations. Obtained results suggest that the trained ANN can be successfully used
in the contaminant source localization system as the forward dispersion model.
In such systems, the contaminant source is estimated based on sampling the dis-
persion model set guided by minimizing the distance measure between the real
concentrations from the sensors network and concentrations expected from the
forward dispersion model. Therefore, more crucial is that ANN should correctly
estimate the concentration gradients than its exact values. The main aim of the
application of the trained ANN in such a localization system was to enable its
operation in real-time. The time required by the presented in this paper ANN to
estimate thirty-minute gas concentrations in a 196 000 sensor-points, as required
by the simulations presented in Fig. 7 was equal to 3 s, while for the QUIC
model it is estimated as at least 300 s, this gives us 100 times speed up. Taking
this into account the reconstruction time in the real accidental situation can be
short, resulting in the fast localization of the contaminant source.

The continuation of the presented research results will be the use of a trained
neural network in place of the dispersion model for reconstruction based on real
data from the DAPPLE field experiment, as it was presented in [5].
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