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Żo lnierska 52, 71-210, Szczecin, Poland
{kgosciewska,dfrejlichowski}@wi.zut.edu.pl

Abstract. This paper presents an approach for human action recogni-
tion based on shape analysis. The purpose of the approach is to clas-
sify simple actions by applying shape descriptors to sequences of bi-
nary silhouettes. The recognition process consists of several main stages:
shape representation, action sequence representation and action sequence
classification. Firstly, each shape is represented using a selected shape
descriptor. Secondly, shape descriptors of each sequence are matched,
matching values are put into a vector and transformed into final action
representation—we employ Fourier transform-based methods to obtain
action representations equal in size. A classification into eight classes is
performed using leave-one-out cross-validation and template matching
approaches. We present results of the experiments on classification accu-
racy using moment-based shape descriptors (Zernike Moments, Moment
Invariants and Contour Sequence Moments) and three matching mea-
sures (Euclidean distance, correlation coefficient and C1 correlation). Dif-
ferent combinations of the above-mentioned algorithms are examined in
order to indicate the most effective one. The experiments show that sat-
isfactory results are obtained when low-order Zernike Moments are used
for shape representation and absolute values of Fourier transform are ap-
plied to represent action sequences. Moreover, the selection of matching
technique strongly influences final classification results.

Keywords: Action recognition · Silhouette sequences · Shape descrip-
tors

1 Introduction

An automatic recognition of human movements has gained popularity in recent
years due to its wide range of applications, especially related to surveillance sys-
tems and human-computer interaction. Other applications include quality-of-life
improvement for elderly care, sports analytics, and video retrieval and annota-
tion. This implies a diversity of data and a need for different solutions. Human
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action can be defined as a sequence of elementary movements that is clearly
identifiable by the observer. Combinations of elementary movements can create
single (e.g. bending) or periodic (e.g. running) motion patterns [5]. An action
is also defined as an activity composed of multiple gestures organized in time,
and a gesture is an elementary movement of the body part [20]. To perform ac-
tion recognition it is common to apply low-level features such as shape which is
considered as a distinctive feature supporting accurate classification. Addition-
ally, the order and repeatability of individual silhouettes can help distinguish
between actions. Despite a few characteristic elements the recognition process is
still a challenging task because of the variations in motion performance, personal
differences, speed or duration of individual actions [17].

In this paper we propose an original combination of well-known methods
and algorithms aimed to recognize actions based on information contained in
a binary foreground masks that were extracted from consecutive video frames
representing people performing simple actions. The novelty is accomplished by
creating a synthesis of some already approved methods and by testing existing
knowledge in a different manner. The proposed approach is applied on coarsely
classified sequences. Then the recognition is performed in each subgroup sep-
arately using the same procedure composed of three main steps: single shape
representation, single action representation and action classification.

The rest of the paper is organized as follows: Section 2 presents several related
works on action classification based on shape features. The proposed approach
is explained in detail in Section 3 and some methods are presented in Section 4.
Section 5 defines experimental conditions and presents the results of the ex-
periments carried out with the use of three moment-based shape descriptors,
namely Zernike Moments, Moment Invariants and Contour Sequence Moments.
Section 6 summarizes the paper.

2 Related Works

This section describes several methods that are similar to our approach due to
the use of shape features and similar input data. We focus on a shape-based
action recognition that is classified in [20] as a non-hierarchical approach. This
category covers the recognition of short and primitive actions. To recognize such
actions, we can use solutions based on space-time volume, like this presented
in [4]. The proposed approach generates motion energy images (MEI) to show
where the movement is, and motion history images (MHI) to show how the
object is moving. Then Hu moments are extracted from MEI and MHI, and
the resultant action descriptors are matched using Mahalanobis distance. Hu
moments are statistical descriptors which are scale and translation invariant,
and allow for good shape discrimination. Another popular space-time volume
technique is proposed in [10]. It accumulates silhouettes into space-time cubes
(3D representation) and employs a Poisson equation to extract features of hu-
man actions, among which are local space-time saliency, action dynamics, shape
structure and orientation. Space-time volume is also a global approach—the lo-
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calized foreground region of interest is encoded as a whole and much of the
information is carried. Popular holistic representations are based on silhouettes,
edges or optical flow [17]. Among these a silhouette is our most interest. In [12,
14] shape features are calculated for each object separately and objects are not
accumulated. The authors of [12] introduced new feature extraction techniques
based on Trace transform, namely History Trace Templates and History Triple
Features. In the first method, Trace transform is applied to binary silhouettes.
The resultant transforms are composed into final history template that rep-
resents the whole action sequence and contains much of the spatial-temporal
features. In the second method, Trace transform is used to construct a set of
features that are invariant to translation, rotation and scaling, as well as robust
to noise. Features are calculated for every video frame separately. Ultimately,
LDA is applied to reduce dimensionality of final representations. In turn, in [14]
every silhouette is transformed into time series and each of these is converted
into the symbolic vector—a SAX representation. A set of all vectors represents
an action and is called a SAX-Shape.

Action recognition can be performed using only some silhouettes extracted
from selected video frames, so called key poses, e.g. [2, 16, 7]. The authors of [2]
introduce a shape representation and matching technique that represents each
key pose as a collection of line-pairs and can estimate similarity between two
frames. A k-medoids clustering algorithm and learning algorithm are used to
extract candidate key poses. During the classification process every frame is
compared with all key poses in order to assign a label. Then majority voting is
used to classify action sequences. Another solution using key poses is presented
in [16]. The authors proposed extensive pyramidal features (EPFs) to describe
poses. EPFs include Gabor, Gaussian and wavelet pyramids. AdaBoost algo-
rithm is used to learn a subset of discriminative poses. Actions are classified
with a new classifier—weighted local naive Bayes nearest neighbour. In [7] the
proposed method uses the distance between all contour points and silhouette’s
centre of gravity to represent a pose. Then, K-means clustering with Euclidean
distance is applied to learn key poses and Dynamic Time Warping is used to
classify sequences of key poses.

Another solution for action recognition is a fusion of multiple features. The
authors of [1] proposed a new algorithm based on Aligned Motion Images (AMIs),
where each AMI is a single image that represents the motion of all frames of a
single video. Two features are combined—Derivatives of Chord-Distance Signa-
ture based on contour and Histogram of Oriented Gradients which capture vi-
sual components of a silhouette’s region. Action classification is performed using
K-Nearest Neighbour and Support Vector Machine (SVM). Another approach
based on contour and shape features is presented in [21]. It combines informa-
tion obtained from the R-transform and averaged energy silhouette images which
are used to generate feature vectors based on edge distribution of gradients and
directional pixels. Classification is carried out with the use of multi-class SVM.
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3 The Proposed Approach

The proposed approach is composed of selected methods and algorithms, among
which are: shape description algorithms based on moments, signal processing
algorithms based on Fourier transform as well as distance and correlation-based
matching measures. The selection of methods results from the continuation of
the works presented in [11], where we have also tested moment-based descriptors
using following procedure: each silhouette was represented using selected shape
descriptor, shape representations were matched using Euclidean distance and
normalized matching values were put into a vector called distance vector. To
obtain final sequence representations all distance vectors were transformed using
Fast Fourier Transform and periodogram. Classification process was performed
iteratively using template matching approach and k-fold cross-validation. In each
iteration the database was divided into templates (class representatives) and test
objects. Each test object was matched with all templates to indicate the most
probable class. Final classification accuracy was an average of all iterations.

In this paper the results of new experiments are given. When compared with
previous work there are some significant differences. Firstly, the experimental
database consists of eight instead of five classes, four classes for each subgroup.
Matching process is performed using three various measures instead of one. This
applies to both comparison of shape descriptors and classification of final ac-
tion representations. Our previous experiments have shown that the accuracy
depends on applied matching measure. Secondly, final action representations
are prepared using three various methods instead of one. In case of classifica-
tion process, the leave-one-out cross-validation with template matching approach
is applied instead of k-fold cross-validation technique. This is done to avoid a
situation in which a set of class representatives affects classification accuracy.
Moreover, a coarse classification step has been added.

Here we focus on testing various combinations of several algorithms in or-
der to select relevant features for action description. Therefore, the proposed
approach has a form of a general procedure composed of consecutive data pro-
cessing steps which are:

Step 1. Data preparation
The proposed approach bases on binary silhouettes. We use the Weizmann [3]
database which is composed of action sequences—one action sequence is repre-
sented by a set of frames from which foreground binary masks are extracted. Each
foreground mask contains one silhouette. The dataset is divided into two sub-
groups based on the centroid trajectory—actions performed in place (a trajectory
is very short) and actions with changing location of a silhouette (longer trajec-
tory). Then the approach is applied in each subgroup separately. Let us denote
each input action sequence as a set of binary masks BMi = {bm1, bm2, ..., bmn},
where n is the number of frames in a particular sequence.

Step 2. Single shape representation
In the next step, we take each bmi and represent it using selected shape descrip-
tion algorithm. Various methods can be applied and here we examine Zernike
Moments, Moments Invariants and Contour Sequence Moments (see Section 4.1).
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In result, we obtain a set of shape descriptors for each action sequence which can
be denoted as SDi = {sd1, sd2, ..., sdn}. The number of descriptors equals the
number of frames. A sdi can be a matrix or a vector, depending on the applied
shape descriptor.

Step 3. Single action representation
Action representation is based on the calculation of similarity or dissimilarity
measures for each SDi separately. We can use various solutions, such as Eu-
clidean distance, correlation coefficient and C1 correlation (see Section 4.2). The
shape descriptor of a first frame sd1 is matched with the rest of descriptors and
matching values are put into a vector MDi = {md1,md2, ...,mdn−1}. A sd1 is
not matched with itself therefore we obtain one element less. Here, for instance,
md1 is a matching value calculated using sd1 and sd2. All MD vectors are
normalized and transformed into frequency domain using periodogram or Fast
Fourier Transform algorithm (a magnitude is taken). Each transformed vector
creates one-dimensional descriptor of a sequence—a final action representation
AR. The transformation into frequency domain makes all representations equal
in size—we use a predefined number of elements which exceeds the number of
frames in the longest video sequences. Moreover, the resultant transforms reveal
some hidden periodicities in the data.

Step 4. Classification
AR vectors are classified based on the leave-one-out cross-validation process and
template matching technique. Here template matching is understood as a process
that compares each test object with all templates and indicates the most similar
one, which corresponds to the probable class of a test object, e.g. we take AR1

and match it with the rest of AR vectors using methods explained in Section 4.2.
The percentage of correctly classified actions gives classification accuracy.

4 Shape Description and Matching

4.1 Shape Description Algorithms Based on Moments

The Zernike Moments are derived using Zernike orthogonal polynomials and the
formula below [22]:

Vnm (x, y) = Vnm (r cos θ, sin θ) = Rnm(r) exp (jmθ) , (1)

where Rnm(r) is the orthogonal radial polynomial [22]:

Rnm(r) =

(n−|m|)/2)∑
s=0

(−1)
s (n− s)!

s!×
(
n−2s+|m|

2

)
!
(
n−2s−|m|

2

)
!
rn−2s, (2)

where n = 0, 1, 2, . . .; 0 ≤ |m| ≤ n; n− |m| is even.
The Zernike Moments of order n and repetition m of a region shape f(x, y)

are calculated by means of this formula [22]:

Znm =
n+ 1

π

∑
r

∑
θ

f(r cos θ, r sin θ) ·Rnm(r) · exp(jmθ), r ≤ 1. (3)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_28

https://dx.doi.org/10.1007/978-3-030-50417-5_28
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According to [18, 13, 8], to obtain Moment Invariants, the general geometrical
moments are firstly calculated using the following formula:

mpq =
∑
x

∑
y

xpyqf(x, y). (4)

The f(x, y) function value is equal to 1 for pixels belonging to an object and 0
for background pixels. The representation is invariant to translation thanks to
the use of centroid, which is calculated as follows:

xc =
m10

m00
, yc =

m01

m00
. (5)

Then, Central Moments are calculated using the centroid:

µpq =
∑
x

∑
y

(x− xc)p(y − yc)qf(x, y). (6)

In turn, the invariance to scaling is obtained by central normalized moments:

ηpq =
µpq

µ
p+q+2

2
00

. (7)

Finally, Moment Invariants are derived (seven first values):

φ1 = η20 + η02

φ2 = (η20 + η02)2 + 4η211

φ3 = (η30 − 3η12)2 + (3η21 − η03)2

φ4 = (η30 + η12)2 + (η21 + η03)2

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η03 + η21)2]
+(3η21 − η03)(η03 + η21)[3(η30 + η12)2 − (η03 + η21)2]

φ6 = (η20 − η02)[(η30 + η12)2 − (η21 + η203]
+4η11(η30 + η12)(η03 + η21)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η03 + η21)2]
−(η30 − 3η12)(η03 + η21)[3(η30 + η12)2 − (η03 + η21)2]

(8)

Based on [19], the calculation of Contour Sequence Moments starts from rep-
resenting a contour as ordered sequence z(i) which elements are the Euclidean
distances from the centroid to N contour points. Then, one-dimensional normal-
ized contour sequence moments are derived as follows:

mr =
1

N

N∑
i=1

[z(i)]r, µr =
1

N

N∑
i=1

[z(i)−m1]r. (9)
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The r-th normalized contour sequence moment and normalized central se-
quence moment are calculated using the following formulas:

m̄r =
mr

(µ2)r/2
, µ̄r =

µr
(µ2)r/2

. (10)

The final shape description consists of four values:

F1 =
(µ2)1/2

m1
, F2 =

µ3

(µ2)3/2
, F3 =

µ4

(µ2)2
, F4 = µ̄5. (11)

4.2 Similarity and Dissimilarity Measures

For matching we have selected standard Euclidean distance as a dissimilarity
measure and two correlations measuring similarity—correlation coefficient based
on Pearson’s correlation and C1 correlation based on L1-norm (introduced in [6]).

Let us take two exemplary vectors VA(a1, a2, . . . , AN ) and VB(b1, b2, . . . , BN )
which represent object A and object B in a N -dimensional feature space. The
Euclidean distance dE between these two vectors is defined by means of the
following formula [15]:

dE(VA, VB) =

√√√√ N∑
i=1

(ai − bi)2. (12)

The correlation coefficient may be calculated both for the matrix and vector
representations of a shape. The correlation between two matrices can be derived
using the formula [9]:

cc =

∑
m

∑
n

(Anm − Ā)(Bnm − B̄)√(∑
m

∑
n

(Anm − Ā)2
)(∑

m

∑
n

(Bnm − B̄)2
) , (13)

where:
Amn, Bmn—pixel value with coordinates (m,n), respectively in image A and B,
Ā, B̄—average value of all pixels, respectively in image A and B.

The C1 correlation is also a similarity measure based on shape correlation.
It is obtained by means of the following formula [6]:

c1(A,B) = 1−

H∑
i=1

W∑
j=1

|aij − bij |

H∑
i=1

W∑
j=1

(|aij | − |bij |)
, (14)

where:
A, B—matched shape representations,
H, W—height and width of the representation.
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5 Experiments and Results

5.1 Data and Conditions

The experiments were carried out with the use of the Weizmann dataset [3].
The original database consists of 90 video sequences (144×180 px) recorded at
50 fps. The video sequences are very short, each lasting up to several seconds and
differing in the number of frames. We have selected eight action types: ’bend’,
’jumping jack’, ’jump forward on two legs’, ’jump in place on two legs’, ’run’,
’skip’, ’walk’ and ’wave one hand’. Exemplary frames from selected video se-
quences representing actions performed in place are depicted in Fig. 1. Fig. 2
shows exemplary frames representing actions with changing location of a sil-
houette. Binary masks corresponding to all video sequences in the database are
available and were used as input data (see Fig. 3 for examples).

Fig. 1. Exemplary video frames representing actions performed in place (in rows):
’bend’, ’jump in place’, ’jumping jack’ and ’wave one hand’ respectively (based on [3]).

The aim of the experiments was to indicate the best result by means of the
highest classification accuracy. Action sequences are coarsely classified into two
subgroups: actions performed in place (’bend’, ’jumping jack’, ’jump in place on
two legs’, ’wave one hand’) and actions with changing location of a silhouette
(’jump forward on two legs’, ’run’, ’skip’, ’walk’). The following procedure is per-
formed in each subgroup separately. As a single experiment we assume the use of
our approach for one shape description algorithm within several tests employing
various action representations as well as different matching measures. Thanks to
this we can indicate which methods should be used for a specific shape descrip-
tor. Here shapes are represented using Zernike Moments, Moment Invariants or
Contour Sequence Moments. Vectors with matching values are transformed into
sequence representations using periodogram or Fast Fourier Transform. Both
shape descriptors and sequence representations are matched using Euclidean dis-
tance, correlation coefficient or C1 correlation. The classification step is based on
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Fig. 2. Exemplary video frames representing actions with changing location of a sil-
houette (in rows): ’jump’, ’run’, ’skip’ and ’walk’ respectively (based on [3]).

Fig. 3. Exemplary binary masks from the database—left column corresponds to actions
presented in Fig. 1 (in rows): ’bend’, ’jump in place’, ’jumping jack’ and ’wave one
hand’ respectively, and right column corresponds to actions presented in Fig. 2 (in
rows): ’jump’, ’run’, ’skip’ and ’walk’ respectively (based on [3]).
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the leave-one-out cross-validation and template matching. We take each action
representation and match it with the rest of representations. Then we select the
most similar one which indicates the probable action class. The percentage of
correct classifications, averaged for both subgroups, gives final accuracy.

Additionally, for some shape description algorithms it is possible to calculate
shape representations of different size, e.g. Zernike Moments of orders from 1st
to 12th with representation size varying from 2 to 49 values. We have performed
a set of experiments to select the order of Zernike Moments that gives the highest
averaged accuracy. The results for orders from 1st to 12th are as follows: 71%,
71%, 73.04%, 63.31%, 64.97%, 62.59%, 64.06%, 60.03%, 66.25%, 62.22%, 70.10%
and 61.84% respectively. The highest averaged accuracy can be obtained using
moments of 3rd order. Moreover, Zernike Moments of 1st and 2nd order also give
good results. Therefore, only these orders are considered for shape representation
during experiments.

5.2 Results

The experimental results were grouped according to the applied shape descrip-
tion algorithm. Therefore, we can indicate which combination of techniques is
the most effective when a specific shape representation is employed. Table 1
presents the averaged results for the experiment using Zernike Moments of 3rd
order. The highest accuracy is 73.04% and is obtained when silhouette descrip-
tors are matched using Euclidean distance, sequence representation is prepared
using Fast Fourier Transform and final representations are matched using C1
correlation.

Table 1. Averaged classification accuracy for Zernike Moments of the 3rd order.

Silhouettes matched by:
Zernike Moments Euclidean Correlation C1

distance Coefficient correlation

Sequences matched by:
FFT magnitude + Correlation Coefficient 46.42% 44.76% 61.84%
and periodogram + C1 correlation 48.83% 37.97% 44.23%

+ Euclidean distance 44.80% 35.60% 45.51%

periodogram + Correlation Coefficient 36.16% 46.04% 49.36%
only + C1 correlation 58.18% 23.45% 59.28%

+ Euclidean distance 44.42% 25.11% 53.39%

FFT magnitude + Correlation Coefficient 53.96% 43.67% 47.89%
only + C1 correlation 73.04% 37.41% 50.64%

+ Euclidean distance 63.88% 36.12% 52.11%

In case of Moment Invariants (see Table 2) the averaged accuracy reached
65.35% in the experiment using Euclidean distance for shape matching, FFT for
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action representation and correlation coefficient for action matching. The use of
Contour Sequence Moments (see Table 3) did not exceed 52%.

Table 2. Averaged classification accuracy for Moment Invariants.

Silhouettes matched by:
Moment Invariants Euclidean Correlation C1

distance Coefficient correlation

Sequences matched by:
FFT magnitude + Correlation Coefficient 65.52% 53.96% 55.43%
and periodogram + C1 correlation 48.45% 35.97% 51.92%

+ Euclidean distance 45.70% 44.61% 56.33%

periodogram + Correlation Coefficient 50.11% 49.36% 50.83%
only + C1 correlation 46.98% 44.42% 41.48%

+ Euclidean distance 36.35% 40.57% 40.20%

FFT magnitude + Correlation Coefficient 65.35% 51.40% 52.49%
only + C1 correlation 61.31% 51.40% 53.77%

+ Euclidean distance 59.84% 52.68% 49.74%

Table 3. Averaged classification accuracy for Contour Sequence Moments.

Silhouettes matched by:
Contour Sequence Moments Euclidean Correlation C1

distance Coefficient correlation

Sequences matched by:
FFT magnitude + Correlation Coefficient 44.04% 39.48% 45.32%
and periodogram + C1 correlation 45.51% 33.41% 41.86%

+ Euclidean distance 34.88% 36.16% 34.50%

periodogram + Correlation Coefficient 41.67% 44.04% 42.95%
only + C1 correlation 45.51% 42.38% 47.17%

+ Euclidean distance 45.70% 38.35% 49.92%

FFT magnitude + Correlation Coefficient 51.58% 42.57% 45.70%
only + C1 correlation 40.01% 42.38% 48.64%

+ Euclidean distance 47.17% 38.35% 47.36%

We should take a closer look at the results in subgroups separately. It turned
out that it is advised to apply different algorithms in each subgroup. Table 4
contains results for several experiments in which classification accuracy exceeds
70%. Considering as small shape representation as possible we can indicate the
use of Zernike Moments of 3rd order for actions performed in place and Zernike
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Moments of 1st order for the other subgroup. In addition, we present classifi-
cation quality measures for these two best experiments (see Table 5), including
standard precision and recall for each class.

Table 4. Results for the experiments with accuracy exceeding 70%.

Shape Shape Action Action Averaged Actions with Actions
descriptor matching representation matching accuracy changing performed

location in place

Moment Euclidean FFT Correlation 65.35% 51.28% 79.41%
invariants distance magnitude Coefficient

only

Zernike Euclidean FFT C1 73.04% 66.67% 79.41%
Moments distance magnitude Correlation

(3rd order) only

Zernike Euclidean FFT C1 71.00% 74.36% 67.65%
Moments distance magnitude Correlation

(1st order) only

Table 5. Classification quality measures for the best experiments.

Shape descriptor Subgroup Class Precision Recall

’jump forward’ 0.71 0.56
Zernike Moments Actions with ’run’ 0.50 0.70

(1st order) changing location ’skip’ 0.67 0.60
’walk’ 1.00 0.90

’bend’ 0.90 1.00
Zernike Moments Actions performed ’jumping jack’ 0.67 0.75

(3rd order) in place ’jump in place’ 0.64 0.78
’wave one hand’ 1.00 0.5

In Section 3 we have listed several changes introduced in our approach, and
based on the experimental results we can conclude that the selection of match-
ing measure strongly affects the accuracy. Secondly, an additional coarse classi-
fication step increased overall classification quality despite more action classes.
Thirdly, the application of a new experimental procedure helped to avoid a situ-
ation in which the results depend on the set of templates (class representatives).
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However, there are some classes which are not classified precisely. For instance,
running is often confused with jumping or skipping. To improve the results, us-
ing a different shape descriptor can be considered or adding another feature that
will distinguish between problematic actions.

6 Conclusions

The paper covered the topic of action recognition based on shape features. The
presented approach uses binary silhouettes, shape description algorithms and
matching techniques to classify action sequences. We represent each silhouette
using selected shape descriptor, match all descriptors of a single sequence and
put matching values into a vector. Then we transform each vector into frequency
domain and classify. We use additional step of coarse classification based on cen-
troid location and perform experiments in each subgroup separately. We have
experimentally tested various combinations of the following: shape description
algorithms (Zernike Moments, Moment Invariants and Contour Sequence Mo-
ments), matching measures (Euclidean distance, correlation coefficient and C1
correlation) and frequency domain techniques (Fast Fourier Transform and pe-
riodogram).

The best results are obtained when we use a combination of Zernike Moments
for shape representation, Euclidean distance for shape matching, Fast Fourier
Transform for action representation and C1 correlation for action classification.
The highest averaged accuracy was 73.04% for Zernike Moments of 3rd order—
79.41% for actions performed in place and 66.67% for actions with changing
location. Moreover, for the second subgroup better results can be obtained by
using the Zernike Moments of 1st order instead of 3rd order. Then accuracy
equals 74.36% and shape representation is smaller.
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