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Abstract. Automatic personality recognition from source code is a scar-
cely explored problem. We propose personality recognition with hand-
crafted features, based on lexical, syntactic and semantic properties of
source code. Out of 35 proposed features, 22 features are completely no-
vel. We also show that n-gram features are simple but surprisingly good
predictors of personality and present results arising from joint usage of
both handcrafted and baseline features. Additionally we compare com-
pare our results with scores obtained within the Personality Recognition
in SOurce COde track during Forum for Information Retrieval Evalu-
ation 2016 and set up state-of-the-art results for conscientiousness and
neuroticism traits.
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1 Introduction

Personality influences many aspects of human behaviour, e.g. made decisions,
propensity for communication with other people, way of writing or listened music
[22]. In the context of computer science, personality may influence organization
of created source code, or a choice of a software project a person takes part in.

While automatic personality recognition from text attained remarkable at-
tention [37], personality recognition from source code is still a scarcely explored
problem.

Automatic personality recognition can be useful to customize learning process
or to assess cultural fit in a company. Each company has a different culture [26]
– there are places where programmers are supposed to often contact clients and
conversely where they talk only to their supervisors. Firms may also differ in
workplace organization – is it an open plan office, a small room, or remote work.
Cultural fit is whether an employee is satisfied with these and some other mat-
ters in his workplace. If a person fits in his company, he is more involved in what
he is doing, more satisfied with things he has accomplished during his work time
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and more productive, which is beneficial both for him and his employer. Cultu-
ral fit depends on one’s personality, thus an automatic personality recognition
system that detects whether a person fits into the company’s environment based
on programming assessment completed during a recruitment phase could save
both employee’s and employer’s time and stress. Both in academia and industry,
psychological and sociological predispositions of programmers could be examined
to better recognize their soft skills and choose job.

This paper proposes personality recognition from source code with random
tree forest on the basis of 35 handcrafted features based on lexical, syntactic
and semantic properties of source code. Out of these 35 features, 22 features are
novel and have not been used earlier in personality recognition from source code.
We compare above features with n-gram features serving as baseline features
and present results arising from joint usage of both handcrafted and baseline
features. Finally, we compare our results with scores obtained within Personality
Recognition in SOurce COde (PR-SOCO) track during Forum for Information
Retrieval Evaluation (PAN@FIRE 2016).

As a model of personality, we adopt Big Five – a five-factor model of persona-
lity [27, 28]. The Big Five is a widely accepted model, being a result of long-time
research, and there is a consensus that its five traits concisely describe indepen-
dent personality dimensions [5]. The Big Five model assumes that personality
can be described by the following five personality traits:

– Conscientiousness (C) - consistency, persistence, good organizational skills.
– Agreeableness (A) - attitude towards others (whether a person is suspicious

or trustful, modest, willing to compromise).
– Neuroticism (N) - impulsiveness, susceptibility to stress and anxiety.
– Openness to experience (O) - intellectual curiosity, willingness to explore,

rich imagination of examined person, searching original solutions rather than
following in someone’s footsteps.

– Extroversion (E) - assertiveness, building relationship at ease.

Each personality trait can be divided further into six facets, but facets are out
of scope of our work.

2 Related Work

Deep learning personality predictors require no feature engineering, no prepro-
cessing, scanning, nor parsing of source codes. An example of such an approach
is an LSTM neural network which reads source code byte by byte [12]. Low
amount of learning data is, however, especially problematic for this approach, as
not only the correct predictor (a classifier or a regressor), but also the relevant
features should be learned from data.

Features designed for personality recognition from source code were based
mainly on source code, but also on structure of the project, content of comments,
or code complexity. In the PR-SOCO task, the following features were taken into
account [33]:
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– number of files submitted by each programmer,

– mean number of lines in programs,

– mean length of variables,

– mean number of classes,

– mean length of classes (computed on the basis of the number of lines of
code),

– mean number of attributes, methods in a class,

– number of programs implementing the same class,

– number of errors,

– Halstead complexity measures (e.g. difficulty and time needed for implemen-
tation and understanding),

– duplicated fragments of source code,

– cyclomatic complexity,

– frequency of occurrence of comments and their length,

– occurrence of comments written exclusively in capital letters,

– number of comments in classes,

– number of words inside comments,

– usage of punctuation marks inside comments,

– number of lines with missing white characters inside arithmetic expressions,

– number of import declarations, which import the whole content of module
(usage of * instead of concrete classes),

– used white characters,

– ways of indentation and formatting used by the programmer,

– number of empty lines between methods, blocks of code and number of white
characters between parentheses,

– occurrence of digits, capital and small letters and symbol in names, as well
as length of names.

In [3], frequency distribution of different types of nodes in an abstract syntax tree
was examined, yielding however low results, little above baseline approaches.

Another type of features are character n-grams – versatile, easy to implement
features, which are language independent and have a wide range of applications
in classification tasks, including authorship attribution [14, 35], author profi-
ling [2], authorship verification [9, 20] and plagiarism detection [23]. They may
also provide convenient features for a baseline solution of PR-SOCO. In the con-
text of personality recognition from source code, character n-grams were used in
[17, 32].

The choice of a predictor (a regressor or a classifier) is a more standard proce-
dure and includes mainly: linear regression [16, 25, 32], support vector regression
[7, 11], decision trees [11], nearest neighbours [25, 36] and neural networks [12,
36].

The research concerning personality recognition from source code is scarce
and extraction of novel features will likely extend possiblities of distinguishing
traits.
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3 Proposed Features

Table 1 shows proposed handcrafted lexical, syntactic and semantic features for
automatic personality recognition from source code. Consistecy in using curly
brackets around one-line branches of code is implemented in two variants so it
gives rise to two features. Number of consecutive lines with aligned characters re-
presents four features, as it is computed separately for four groups of characters.
Thus, in total there are 35 proposed features.

Table 1: Features of source code used as predictors of personality
traits. Novel features are marked with *

Feature Range Type Extraction
length of lines R+ lexical average,

80th percentile
length of variables R+ lexical average,

80th percentile
length of methods (in lines) R+ lexical average,

maximum,
80th percentile

* length of comments (in characters, not ta-
king into account code which was commen-
ted out)

R+ lexical average,
maximum,
80th percentile

length of comments (in lines) in ratio to
length of code (in lines)

[0; 1] lexical normalization

* length of code (in lines) which was com-
mented out

[0; 1] lexical normalization

* number of lines with more than one in-
struction

[0; 1] lexical normalization

* number of consecutive lines with aligned
characters, e.g. ( or =
(4 features)

[0; 1] lexical normalization

number of white characters [0; 1] lexical normalization
* number of occurrences of −1 (special va-

lue)
[0; 1] lexical normalization

* ratio of the number of words in English to
the number of words in languages other
than English in names of variables, met-
hods and classes

[0; 1] lexical

* preserving naming convention (e.g. Pascal-
Case or snake case)

[0; 1] lexical

* consistency in using curly brackets in the
next line or at the end of a line containing
a method or class declaration
(2 features)

[0; 1] lexical
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Table 1: Features of source code used as predictors of personality
traits (continued)

Feature Range Type Extraction
* consistent application of curly brackets

around one-line branches of code
[0; 1] lexical

* level of indentation - whether it increases
with the beginning of a new block of code
(and only then)

[0; 1] lexical normalization

* degree of exploitation of language syntax
(e.g. using various syntax of for loop,
using lambdas)

N syntactic

* depth of references to fields and methods of
fields or results of methods of objects (e.g.
Cubiculos.get(i).Casilleros.get(j))

R+ syntactic maximum,
80th percentile

number of methods in a class R+ semantic average,
maximum,
80th percentile

* number of used switch instructions [0; 1] semantic normalization
number of separated logic blocks of code
within methods

[0; 1] semantic normalization

* number of code duplications [0; 1] semantic normalization
* maximum nesting depth of instructions N semantic

Proposed features are grounded in the extension of lexical hypothesis to
programming languages. Lexical hypothesis [1] says that the most important
differences in personality are reflected in used natural language, vocabulary.
According to [21], the more important the difference, the more likely it will be
reflected in a single word. We suppose that in the domain of programming code a
conscientious person will likely apply consistent indentation throught the code; a
person high in openness might use richer vocabulary while an extrovert might use
longer names for variables, methods and classes. Additionaly, corellation between
personality traits and programming style has been found in [10], according to
which persons high in openness prefer breadth-first programming style, while
persons low in openness prefer depth-first programming style.

We describe in detail three features, most complicated due to their invol-
ved implementation: the number of code duplications, length of comments in
characters and the level of indentation.

Detection of code duplication is quite a complex task, which could be even
cast as another machine learning problem, provided suitable learning data would
be available or generated [24]. We adopted a simpler solution consuming less
computing resources – syntax tree rewriting [30]. Two pieces of code, one being a
duplicate of another, exhibit the same structure but differ in names of constants,
variables or methods.
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The syntax tree generated with the javalang parser is transformed to a topo-
logically equivalent syntax tree, where tree nodes are simplified, to only reflect
the structure of the code and discard irrelevant data. For instance, a name of
declared method has been discarded, but structure of its body, type of formal
parameters and returned type have been retained. For blocks of instructions,
information about entrance conditions has been discarded. Detection of code
duplication in one block is performed on the basis of such a simplified tree. A
list of all subtrees in the block is created and subtrees which serialize to the same
expression are treated as duplications.

Computing length of comment, otherwise simple, requires detection whether
a comment contains parts of source code. Parsing a comment with a parser of
Java would end up with a failure, as programmers usually comment a few lines
of code or methods rather than entire programs. To solve this problem, besides
the main parser of the whole program, parsers of smaller grammatical units of
a program are used.

As white characters are discarded during lexical analysis and even less infor-
mation is passed to the parser, the level of indentation feature was implemented
as a state machine (separate from the used parser), which reads tokens, one
by one, and tracks the level of indentation. One difficulty in implementing this
feature lies in distinguishing between a correct and wrong indentation after a
sequence of empty lines of code. Although based only on finite automata forma-
lism, the state machine has to roughly understand the syntax of Java – it tracks
the number of opening parentheses or curly brackets, closing an open block at
the correct indentation level, reopening a block of code at a wrong indentation
level. The state machine also knows which instructions require indentation. Ad-
ditional difficulty arises from one-line bodies of if and for instructions, where
curly brackets are not required. This seemingly simple task becomes a com-
plex programming problem due to the great number of cases which should be
considered.

Due to above difficulties, the implementation of the discussed feature ignores
checking the level of indentation in conditional instructions and loops whose
bodies contain only one line of code; and in switch instructions. For the switch
instruction, it is even impossible to determine which notation is correct, as the
flat form was used by programmers mainly in the past, while switch instruction
in the indented form is predominant currently.

3.1 Choice of a parser

As many proposed features were based on the syntactic structure of source code,
choice of a parser of Java was an important part of the feature engineering. Three
parsers were considered due to their established popularity: ANTLR1 generated
parser, JavaParser2 and javalang3. Table 2 presents measured time of parsing

1 https://www.antlr.org
2 http://javaparser.org
3 https://pypi.org/project/javalang
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class Hello {

public static void main(String args []) {

System.out.println("Hello world!");

}

}

Listing 1.1. Program Hello world

source code with above parsers for the Hello world program (Listing 1.1) and
the PR-SOCO corpus. The parser generated by ANTLR was incorrect as it was
not able to parse all source code from the training corpus. It was also very slow.
Although JavaParser turned out faster than javalang on the PR-SOCO corpus,
we chose the latter, as it was implemented in Python, which was the language
of the whole project.

Table 2. Parsing time (wall time) with ANTLR, JavaParser and javalang parsers,
(secs). Results has been rounded up to the nearest integer

Parser Hello World PR-SOCO corpus

ANTLR 10 ×
JavaParser 1 16
javalang 1 54

4 Data

As a learning and evaluation data we used the corpus of source codes, released for
the PR-SOCO track [33], which accompanied PAN@FIRE 2016. The track was
aimed at automatic personality recognition of programmers on the basis of Java
source codes they authored. In the PR-SOCO corpus, personality was modelled
with Big Five, and each trait was given a value from [20, 80]. The corpus contains
2492 source code programs written in Java by 70 students of computer science
along with values of their personality traits. Values of personality traits were
found on the basis of 25-item BFI questionnaire called Big Five locator which
was completed by students. The students made their code submission through
a web-based online judge for grading. The judge system does not have tools for
style correction. However, it is not known whether students used an IDE before
the submission or not. The training and test set contain source codes of 49 and
21 programmers, respectively. During the PR-SOCO contest, personalities of 21
persons from the test set were concealed from participating teams. Each team
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was allowed to submit 6 trial solutions (shots). A single solution predicted five
traits for each of 21 persons from the test set.

Figure 1 presents distribution of values taken by each of five traits. Values
from range [0, 20) and [80, 100] are never taken by any trait.

Fig. 1. Distribution of values taken by each of five traits in the PR-SOCO corpus

We followed the PR-SOCO track and used two measures to assess our solu-
tion and compare with existing personality predictors: Root Mean Square Error
(RMSE ) and Pearson Product-Moment Correlation coefficient (PCC ).

RMSE measures the effectiveness of a regressor. For each personality trait t,
root mean square error is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − xi)2 , (1)

where xi denotes true value of trait t for i-th instance (programmer), yi is a
value of trait t predicted by a personality predictor, and N is the number of
instances (programmers). The lower RMSE the better.

Pearson Product-Moment Correlation is defined as:

r =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
, (2)

with x̄, ȳ denoting mean values of samples (xi)
N
i=1 and (yi)

N
i=1, respectively. PCC

indicates whether obtained RMSE is a random artifact or there is a correlation
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between actual and guessed values of traits. The larger the absolute value of
PCC the better.

5 Experiments and Results

In the experiments we took the profile-based approach, i.e., all source codes of
a programmer were treated as one learning instance. Since personality traits
take continuous values, personality recognition was cast as a regression problem
with random forest regression [4] from scikit-learn package [31] as the prediction
module. Random forest regressors were trained on 85% of the original training
set, remaining 15% of the training set was reserved for the model selection pro-
cedure. We examined the random forest regression with the number of decision
trees varying from 64 to 128 and their depth varying from 2 to 6. Optimal va-
lues of the above hyperparameters were selected separately for each personality
trait with grid search [8]. Mean Square Error (MSE ) was used as the function
measuring the quality of a split.

Beside regression with 35 handcrafted features, we used N = 1500 n-gram
features as our baseline: N1 = 1000 most frequent character trigrams (n-grams
with n = 3) and N2 = 500 most frequent token trigrams. By tokens we mean lex-
ical units returned by the Java scanner. Finally, we tried personality recognition
with 1535 features, both handcrafted and n-gram features.

5.1 Results

Table 3 presents results of personality recognition we obtained with 3 sets of fea-
tures: proposed handcrafted features, n-grams and handcrafted features together
with n-grams. For comparison, best results, medians and mean results of FIRE
competitors are given in Table 4 (summary of FIRE competition [33] shows also
first, second and third quantiles, all extreme values, and detailed results of all
participating teams). Additionally we computed confidence intervals with the
pairs bootstrap method [13] .

For conscientiousness personality trait, the model with handcrafted features
obtained RMSE equal 8.17 (with 95% confidence interval [6.00, 9.98]) which
is lower than the minimum error achieved in the competition. Obtained value
of PCC is 0.33 (with 95% confidence interval [−0.02, 0.65]) and equals to the
corresponding maximum PCC value of PR-SOCO competitors.

Additionally, for openness we obtained RMSE lower than the median and
close to the best score of PR-SOCO. For all personality traits absolute values of
obtained PCC s were higher than the median values of PR-SOCO.

N-gram features turned out surprisingly good predictors of personality. For
all traits, achieved RMSE and PCC values were better or equal than median
values of PR-SOCO competitors. For neuroticism trait, n-gram features set up a
new state-of-the-art result both for RMSE and PCC : RMSE was 9.65 with 95%
confidence interval [6.03, 12.97] and PCC was 0.40 with 95% confidence interval
[0.03, 0.73].
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Table 3. Performance measures (RMSE and PCC ) of automatic personality recogni-
tion with different sets of features

Trait handcrafted features n-gram features all features
RMSE PCC RMSE PCC RMSE PCC

neuroticism 11.79 −0.13 9.65 0.40 9.68 0.37
extroversion 10.16 −0.19 9.45 −0.12 9.32 −0.07
openness 7.25 0.38 7.86 −0.08 7.78 −0.05
agreeableness 10.09 0.04 9.50 −0.03 9.20 0.12
conscientiousness 8.17 0.33 8.33 0.23 8.45 0.15

Table 4. Summary of personality recognition results obtained during PR-SOCO track
of FIRE 2016 competition

Trait Best Median Mean
RMSE PCC RMSE PCC RMSE PCC

neuroticism 9.78 0.36 10.77 0.05 12.75 0.04
extroversion 8.60 0.47 9.55 0.08 12.27 0.06
openness 6.95 0.62 8.14 0.07 10.49 0.09
agreeableness 8.79 0.38 9.71 −0.03 12.07 −0.01
conscientiousness 8.38 0.33 8.99 −0.01 10.74 −0.01

For the state-of-the-art results, we inspected the random forest regressors
and found the features with the highest importance. For the model predicting
conscientiousness with handcrafted features, the following features were the most
important (more important features come first):

– using conventional indentation
– average length of method
– average length of comments
– number of methods in a class (80th percentile)
– length of method (80th percentile)
– average length of names
– ratio of words in English to words in other languages
– length of names (80th percentile)
– number of white characters
– maximum length of comments.

The model predicting neuroticism with n-gram features benefitted the most
from the following character or token trigrams (token trigrams are denoted as
〈·, ·, ·〉, space characters in character trigrans are denoted as  ):

// 〈), ;, int〉 ) + cur se 

Com .ne { /  fa ; t

〈0, ], =〉  ")  el er. nar

 ma 1]) 〈., length, ;〉 〈array, ., length〉 par
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The effect of joint usage of handcrafted features and n-grams is the reduced
error (in comparison to usage of only one type of features) for extroversion and
agreeableness, although it does not set up new state-of-the-art results.

Finally, we examined statistical significance of obtained trait predictions
(RMSE s). Statistical tests, conducted on the STAC platform [34], were com-
puted for 14 algorithms (11 solutions from the PR-SOCO task and our three
solutions: with handcrafted features, n-grams and all features) and five datasets
(predictions for each of five traits were counted as a separate dataset). For solu-
tion from the PR-SOCO task we always chose the best shot. As the omnibus test
we used Friedman F-test [15] for testing hypothesis H0 that the means of the
results of two or more algorithms are the same, followed by Nemenyi test [29] as
the post-hoc test for pairwise comparison of predictors. At the significance level
α = 0.05, hypothesis H0 should be rejected but pairwise comparison revealed no
pair of algorithms with a statistical difference in results.

6 Conclusions

In this work we proposed new features for automatic personality recognition
from source code. Handcrafted features turned out to be most useful for pre-
dicting openness and conscientiousness, traits (together with extroversion) con-
nected with programming aptitude [19]. These features, despite their low num-
ber, achieved the state-of-the-art-results for conscientiousness. The lowest error
in conscientiousness prediction is in line with the fact, that conscientiousness
(and extroversion) are easily inferred from even slices of behaviour [6, 18].

N-gram features are surprisingly good predictors of personality, at the same
time they are easy to implement and language independent.

While the programmers’ personalities may be connected with the code they
write, we could not capture the relation between them. The results we achieved in
neuroticism and conscientiousness recognition are state-of-the-art in personality
recognition from source code, yet still insufficient to state that such a correlation
exists.

Large confidence intervals of RMSE s and PCC s, and conducted statistical
tests prove that larger datasets are needed to increase statistical strength of our
results as well as other methods proposed so far. New datasets should take into
account more programming languages and programmers, including professional
programmers.
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