
Evolving Long Short-Term Memory Networks?

Vicente Coelho Lobo Neto[0000−0001−8593−9583], Leandro Aparecido
Passos[0000−0003−3529−3109], and João Paulo Papa[0000−0002−6494−7514]

Recogna Laboratory, School of Sciences, São Paulo State University, Bauru, Brazil
{vicente.lobo, leandro.passos, joao.papa}@unesp.br

www.recogna.tech

Abstract. Machine learning techniques have been massively employed
in the last years over a wide variety of applications, especially those
based on deep learning, which obtained state-of-the-art results in sev-
eral research fields. Despite the success, such techniques still suffer from
some shortcomings, such as the sensitivity to their hyperparameters,
whose proper selection is context-dependent, i.e., the model may perform
better over each dataset when using a specific set of hyperparameters.
Therefore, we propose an approach based on evolutionary optimization
techniques for fine-tuning Long Short-Term Memory networks. Exper-
iments were conducted over three public word-processing datasets for
part-of-speech tagging. The results showed the robustness of the pro-
posed approach for the aforementioned task.

Keywords: Long Short-Term Memory · Part-of-Speech tagging · Meta-
heuristic Optimization · Evolutionary Algorithms.

1 Introduction

Machine learning techniques achieved outstanding outcomes in the last years,
mostly due to the notable results obtained using deep learning techniques in
a wide variety of applications [1], ranging from medicine [2] to route obstruc-
tion detection [3]. In this context, a specific kind of model, the so-called Recur-
rent Neural Network (RNN), has been extensively employed to model temporal-
dependent data, such as stock market forecasting and applications that involve
text and speech processing.

Such networks are time-dependent models whose neurons receive recurrent
feedback from others, in contrast to densely connected models (e.g., Multilayer
Perceptron). In short, the model’s current output at time t depends on its input
as well as the output obtained at time t − 1. Due to this intrinsic characteris-
tic, this kind of network deals very well with data that has temporally-related
information, such as videos, audio, and texts.

? The authors are grateful to FAPESP grants #2013/07375-0, #2014/12236-
1, #2017/25908-6, #2018/10100-6, #2019/07665-4, as well as CNPq grants
#307066/2017-7 and #427968/2018-6.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

2 Lobo Neto et al.

Among a wide variety of RNNs, such as the Hopfield Neural Network [4] and
the Gated Recurrent Unit Networks [5], the Long Short-Term Memory network,
also known as LSTM [6] has drawn considerable attention in the last years.
LSTM is an RNN architecture designed to model temporal sequences and their
long-range dependencies more accurately than conventional RNNs. It obtained
impressive results over a variety of time-series problems, such as named entity
recognition [7], chunking [8], acoustic modelling [9], and Part-of-Speech (PoS)
tagging [7], to cite a few. However, the method still suffers from a well-known
problem related to neural network-based approaches: the proper selection of
their hyperparameters. A few years ago, Greff et al. [10] used a random search
to handle such a problem. Later on, Reimers e Gurevych [11] studied how these
hyperparameters affect the performance of LSTM networks, demonstrating that
their optimization is crucial for satisfactory outcomes.

Recently, many works addressed the problem of hyperparameter fine-tuning
in neural networks using nature-inspired metaheuristic optimization techniques.
Fedorovici et al. [12], for instance, employed the Gravitational Search Algo-
rithm [13] to optimize Convolutional Neural Networks (CNN) [14], while Rosa
et al. [15] proposed a similar approach using Harmonic Search [16]. Later, Rosa
et al. [17] used the Firefly algorithm [18] to fine-tune Deep Belief Networks [19],
as well as Passos et al. [20, 21] applied a similar approach in the context of Deep
Boltzmann Machines [22].

However, only a very few works employed evolutionary optimization tech-
niques to fine-tune LSTM networks to date [23, 24], but none concerning the
PoS tagging task. Therefore, the main contribution of this paper is to fill up
this gap by introducing evolutionary techniques for LSTM hyperparameter fine-
tuning in the context of Part-of-Speech tagging. For such a task, we compared
four evolutionary-based optimization approaches: Genetic Algorithm (GA) [25],
Genetic Programming (GP) [26], Geometric Semantic Genetic Programming
(GSGP) [27], and the Stack-based Genetic Programming (SGP) [28], as well
as a random search as the baseline.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the main concepts of LSTM and PoS tagging, while Section 3 describes
the approach considered for LSTM hyperparameter fine-tuning. Further, the
methodology is detailed in Section 4, while the results are presented in Section 5.
Finally, Section 6 states conclusions and future works.

2 Theoretical Background

This section briefly introduces the main concepts regarding the Part-of-Speech
tagging, as well as the Long Short-Term Memory Networks.

2.1 Part-of-Speech Tagging

Generally speaking, a sentence is a composition of words joined according to
some rules, whose intention is to express a complete idea. In such a context,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

Evolving Long Short-Term Memory Networks 3

each word in a sentence performs a specific function, e.g., a verb indicates an
action, an adjective adds some attribute to a noun, and the latter is used to
name any being.

Natural languages, such as English, Portuguese, and any other, possess a
considerable amount of words. Therefore, it is essential to note that many of
them may admit ambiguous meanings, i.e., the same word can hold two or more
different connotations. To illustrate the idea, suppose the word “seed”: it may
stand for a noun, referring to the reproductive unity of a plant, as well as denote
a verb, representing the act of sowing the soil with seeds.

To handle such ambiguous meanings, one can make use of the Part-of-Speech
tagging process. The method aims at, given a sentence, identifying each com-
pounding word’s grammatical function inside it, as depicted in Figure 1.

Reading scientific articles is fun

Verb Adjective Noun NounVerb

Fig. 1: Example of PoS tagging.

Understanding the true meaning of a word in a sentence is essential to com-
prehend the message conveyed through it thoroughly. Though it stands for a
trivial task for human beings, automatic PoS tagging presents itself as quite
challenging for computer systems. Among the various ways of solving this task,
one can cite rule-based algorithms [29], as well as Hidden Markov Models [30].

Finally, one should notice the importance of contextual information in order
to assign a tag to a word correctly. One approach that yields good results while
addressing such context employs machine learning techniques through Recurrent
Neural Networks. Therefore, the next section introduces the LSTM, the current
state-of-art approach for natural language processing.

2.2 Long Short-Term Memory Network

Although LSTMs present an architecture similar to traditional RNNs meth-
ods, they employ a different function for computing their hidden states. Such
modification is essential for avoiding problems such as the well-known vanish-
ing gradient, which can occur while relating current information to long-term
network knowledge, known as long-term dependency. LSTM addresses this prob-
lem by using structures called cells, which receive as input their previous states
as well as the current input. Internally, these cells decide what should be kept
and forwarded to the next iterations, and what should be erased from memory.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

4 Lobo Neto et al.

Therefore, they are capable of combining input information with previous states,
as well as the current memory.

A cell is composed of states, as well as three gates: (i) the input gate, which
is responsible for deciding what information is relevant and how much of it will
be updated or deleted; (ii) the forget gate, used when the network needs to
erase any previous information present in the cell’s memory in order to store
a new document; and (iii) the output gate, that is employed to compute the
cell’s state [31]. Besides, every gate is activated by a sigmoid function, and the
cell’s output is subject to a combination of the gates’ outputs, which will decide
whether information should be forgotten or kept in the cell’s memory.

Let f t, it, ot ∈ <m×1 be the outputs of the forget, input, and output gates
at time step t, respectively, which can be computed as follows:

f t = σ(W t
fx

t + U t
fh

t−1 + btf), (1)

it = σ(W t
i x

t + U t
ih

t−1 + bti), (2)

and
ot = σ(W t

ox
t + U t

oh
t−1 + bto), (3)

where xt ∈ Rn×1 denotes the input vector at time step t, ht−1 ∈ Rm×1 stands
for the output of the previous cell, and W t

f ,W
t
i , W

t
o ∈ Rm×n and U t

f ,U
t
i ,U

t
o ∈

Rm×m denote the weight matrices at time step t. Finally, btf , b
t
i, b

t
o ∈ Rm×1

correspond to the biases of each gate at time step t.
Further, one can compute the cell’s state ct ∈ Rm×1 at time step t considering

the forget and input gates’ output as follows:

ct = f t ⊗ ct−1 + it ⊗ tanh(W t
cx

t + U t
ch

t−1 + btc), (4)

where ⊗ stands for the Hadamard product, and Wc ∈ Rm×n and Uc ∈ Rm×m

are the weight matrices, and bc ∈ Rm×1 corresponds to the bias of the cell’s
state. Therefore, one can compute the output of a cell at time step t as follows:

ht = ot ⊗ tanh(ct). (5)

Finally, the weights of an LSTM network are updated using a gradient-based
backward pass as follows:

zW t+1
f = zW t

f − α(zδtf ⊗ ht), (6)

zW t+1
i = zW t

i − α(zδti ⊗ ht), (7)

and
zW t+1

o = zW t
o − α(zδto ⊗ ht), (8)

where α ∈ R is the learning rate and zW t
f , zW t

i , and zW t
o stand for the zth

column of matrices W t
f , W t

i , and W t
o , respectively. Notice that δtf , δ

t
i , δ

t
o ∈ Rm×n

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

Evolving Long Short-Term Memory Networks 5

denote the partial derivatives at time step t, and zδtf , zδti , and zδto correspond

to the zth column of matrices zδtf , zδti , and zδto, respectively. Further, the bias
of each gate is also updated in a similar fashion, and the gradient is propagated
to the former layers using the backpropagation chain’s rule. Finally, the weight
matrices U t

f , U t
i , and U t

o are updated similarly to their respective counterparts,
i.e., Equations 6, 7, and 8.

3 LSTM fine-tuning as an optimization problem

In the context of parameterized machine learning techniques, we must refer to
two different denominations: (i) parameters and (ii) hyperparameters. Typically,
the first term represents low-level parameters that are not controlled by the user,
such as connection weights in neural networks, for example. The other term refers
to high-level parameters that can be adjusted and chosen by the user, such as
the learning rate and the number of layers, among others. Both terms are of
crucial importance for improving the performance of neural models.

Regarding LSTM parameter optimization, the well known back-propagated
using gradient descent present itself as a suitable method for the task. However,
a proper selection of its hyperparameters poses a more challenging task since
it requires the user a previous knowledge of the problem. Hence, an automatic
method to select the model most relevant hyperparameters is strongly desirable,
i.e., the learning rate, which denotes the step-size towards the gradient direction,
the embedding layer size, which is responsible for the representation of words and
their relative meanings, and the LSTM size itself, which denotes the number of
LSTM’s cells composing the model.

Therefore, this work proposes employing evolutionary algorithms to fine-tune
such hyperparameters. These methods are capable of automatically selecting a
good set of hyperparameters by randomly initializing a set of candidate solutions
that evolve over time. In this context, the candidate solutions are represented
by a vector, where each position denotes a hyperparameter to be fine-tuned. In
this work, for instance, it is considered a 3-dimensional representation, denoting
the learning rate, the embedding layer size, and the LSTM size.

Further, every solution is evaluated after each evolution cycle. This evaluation
consists of training the LSTM network using both the candidate solution set of
hyperparameters together with the training set. Afterward, the trained model is
employed to classify the evaluation set, and the loss function obtained over this
procedure, denoted fitness function, is used to evaluate and update the solutions
towards a minimum (ideally, the global minimum). At the end of the process,
it is expected that the model learns a reasonably good set of hyperparameters.
Figure 2 depicts the model adopted in the work.

3.1 Evolutionary Optimization Algorithms

This section briefly describes the four metaheuristic optimization techniques
employed in this work concerning the task of LSTM hyperparameter fine-tuning.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

6 Lobo Neto et al.

Start

Possible
hyperparameters

Random
generation of
combinations

LSTM training
with the

training set

Model
evaluation
using the

validation set

Have
hyperparameters

been learned?
Use of genetic

operators
Generation of

new
combinations

End

YesNo LSTM training
with the

training set

Model
evaluation
using the

test set

Fig. 2: Pipeline employed in the work.

3.1.1 Genetic Algorithm: GA is a specific case of evolutionary algorithms
that employ concepts and expressions from natural genetics that models each
possible solution as a chromosome. Among a variety of implementations of the
model, this work represents each individual as an array composed of the hy-
perparameter to be optimized, letting aside the binary version. Moreover, the
following evolution operators were employed:

1. Elitism: it retains the individuals with the best fitness values of the current
population using elitism to accelerate the convergence;

2. Random selection: it adds some random elements of the current popula-
tion to the new one to promote greater genetic diversity;

3. Mutation: it modifies a random position of individuals of the new popula-
tion generating values within the allowed limits; and

4. Crossover: it randomly selects two individuals from the population and
creates two new individuals through the single-point crossover.

3.1.2 Genetic Programming: GP employs the very same idea behind the
GA, except for data structure, which is represented by an expression tree. In this
model, each tree’s leaf node contains an array, similar to the ones applied in GA,
representing the hyperparameters to be optimized. Further, inner-nodes stand for
mathematical operators, such as addition, multiplication, and logarithm, among
others.

3.1.3 Geometric Semantic Genetic Programming: Despite the advan-
tages of GP, since it uses purely syntactic operators, instead of the values of

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

Evolving Long Short-Term Memory Networks 7

the individuals’ decision variables while applying the operators, it may perform
some very abrupt changes in the values of the variables as the evolution process
occurs, which may adversely affect the convergence.

Therefore, GSGP considers the evolution of individuals by selecting seman-
tically close solutions [27]. The procedure is performed by introducing some
restrictions in the mutation and crossover operators.

3.1.4 Stack-based Genetic Programming: The SGP is a variation of GP
that, instead of using a tree data structure, it employs two stacks: one for data
input and one for the output. Thus, the SGP input stack is composed of a set
of operations and operands responsible for describing a mathematical expres-
sion, similar to GP, while the output stack contains the expression evaluation
result [28].

Since there are no syntactic constraints in this technique, individuals can be
represented as vectors. Besides, it is possible to use the same genetic operators
as the standard Genetic Algorithm for mutation and crossover. Thence, the
technique combines the great individuals’ variability of GP with the simplicity
of GA’s genetic operators, thus providing better results than GP, in general,
depending on the implementation and the problem addressed.

4 Methodology

This section presents the methodology employed in the experiments, i.e., the
datasets, experimental setup, and network modeling concerning the PoS tagging
problem.

4.1 Datasets

This work employs three well-known public datasets for the task of Part-Of-
Speech tagging. Such datasets are composed of natural language text fragments,
and they are available at the Natural Language Toolkit (NLTK) library [32]:

– Brown Corpus of Standard American English (Brown): approximately one
million English text sentences divided into 15 different categories, including
newspapers, scientific articles, and other sources.

– Floresta Sintá(c)tica (Floresta): sentences in Brazilian Portuguese extracted
from interviews’ transcriptions, parliamentary discussions, literary texts, and
articles from the Brazilian newspaper Folha de São Paulo compose this cor-
pus.

– Penn Treebank (Treebank): covering a variety of subjects, the sentences of
this corpus are in English and were extracted from three years of The Wall
Street Journal.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

8 Lobo Neto et al.

4.2 Modeling the PoS tagging problem with LSTM

Since LSTM networks require a vector composed of real numbers as input, the
datasets were pre-processed such that the words were encoded into a numerical
dictionary, where each word corresponds to a non-zero number. Besides, the
input is composed of an n-dimensional vector whose features should fit in, i.e.,
all sentences should have the same size. Therefore, n was selected based on the
longest sentence’s size. Finally, a padding approach was employed to fulfill all
the non-occupied spaces with zeros.

Further, each sentence is represented by an array of tuples using the pattern
(word, PoS tag). Later, these tuples are split, and the tags are converted into
their categorical (one-hot) representation to match the LSTM output format.

Therefore, the sequential architecture of the LSTM employed in this work
for the task of PoS tagging is composed of the following layers:

1. Input: Receives input data. It outputs data with (n, d) shape, where d
and n stand for the number of inputs and the number of input features,
respectively;

2. Embedding: It provides a dense representation of words and their relative
meanings, converting the indices into dense vectors. Output data has (n, d,
E) shape, where E stands for the embedding layer size;

3. Bidirectional LSTM layer: is the core of the network, comprising the
LSTM units. The bidirectional version was selected instead of the unidirec-
tional due to the superior results obtained by the model. Output shape is (n,
d, 2L), where L represents the number of LSTM units. As the bidirectional
version was used, 2L units must be employed;

4. Time-distributed Dense: A standard densely connected layer with a wrap-
per to handle the input data temporal distribution. Considering that the
tags were converted to the categorical representation, the output shape of
this layer is (n, d, j), with j standing for the number of available tags.

Figure 3 depicts the model mentioned above.

(n, d, j)(n, d, 2L)Input Embedding Bidirectional
LSTM

Timedistributed
Dense

(n, d) (n, d, E)Sentences Tagged
Sentences

Fig. 3: Model representation with output shapes.

Further, the Softmax is then employed as the activation function. Concerning
the loss function, the model aims to minimize the categorical cross-entropy, which
is the most commonly applied approach for text classification tasks.

4.3 Experimental Setup

This work compares the performance of four well-known evolutionary optimiza-
tion algorithms, i.e., GA, GP, GSGP, and SGP, as well as a random search, to

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

Evolving Long Short-Term Memory Networks 9

the task of LSTM network hyperparameter fine-tuning in the context of PoS
tagging. The experiments were performed over 400 randomly selected sentences
from three public datasets commonly employed for the task: Brown, Floresta,
and Treebank. Further, these sentences were partitioned into three sets: training,
validation, and testing using the percentages of 60%, 20% and 20%, respectively.

This work focuses on finding the set of hyperparameters that minimizes the
categorical cross-entropy loss function, thus maximizing the LSTM performance
for the task of PoS tagging using metaheuristic evolutive algorithms. Therefore,
the problem was designed to search for three hyperparameters: (i) the layer size
L and (ii) the embedding layer size E, both selected from a closed set of powers
of 2 ranging from 21 to 210, i.e., {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}, and
(iii) the learning rate α ∈ [0.001, 0.1]. Since the metaheuristic techniques work
with real numbers only, one should convert them to the nearest power of 2 when
dealing with L and E.

Concerning the optimization procedure, each technique employed 10 indi-
viduals evolving during 20 iterations and considered a retention rate of 20%,
a random selection rate of 5%, and 1% of mutation rate. Moreover, GP and
GSGP employed expression trees with a maximum tree height of 5, while the
SGP employed arrays with 10 elements. Also, they implemented the addition,
subtraction, multiplication, division, modulo, negation, logarithm, and square
root operators. Notice the latter two were not employed in the GP since they
adversely affected convergence1. Finally, these techniques were compared against
a random search, which stands for the experiments’ baseline.

Afterward, the best hyperparameters obtained during the optimization pro-
cess are employed to train the network for 200 iterations for further classification.
Besides, each experiment was performed during 20 runs for statistical analysis
through the Wilcoxon signed-rank test [33] with a significance of 5%. Finally,
the experiments were conducted using both the Keras open-source library [34]
and Tensorflow [35].

5 Experimental Results

This section presents the experimental results. Table 1 provides the mean ac-
curacy and the standard deviation concerning the Brown Corpus of Standard
American English, Floresta Sintá(c)tica, and the Penn Treebank datasets. Notice
that the best results, according to the Wilcoxon signed-rank test, are presented
in bold.

From these results, it is possible to extract two main conclusions: (i) meta-
heuristic optimization techniques performed better than a random search con-
cerning the three datasets, which validates the employment of such methods for
the task; (ii) the tree-based algorithms, i.e., GP, GSGP, and SGP, performed bet-
ter than GA in two out of three datasets. Such behavior is expected since these
techniques employ more robust approaches to solve the optimization problem.

1 Notice that all these parameters and configurations were set up empirically

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

10 Lobo Neto et al.

Table 1: Mean accuracy results over Brown, Floresta and Treebank datasets.
GA GP GSGP SGP Random

Brown 0.734± 0.043 0.740± 0.092 0.726± 0.100 0.673± 0.115 0.566± 0.229

Floresta 0.656± 0.121 0.706± 0.025 0.676± 0.038 0.603± 0.207 0.470± 0.271

Treebank 0.748± 0.052 0.685± 0.202 0.782± 0.024 0.751± 0.098 0.658± 0.206

5.1 Training evaluation

Considering the evaluation of the learned models, Figure 4 depicts the mean
loss obtained by each model considering the three test sets. One can observe
that minimum values do not necessarily reflect in the best accuracy, as depicted
in Brown, where GA obtained the minimum loss, and GP obtained the higher
accuracy; and the Treebank dataset, where SGP obtained the minimum loss and
GSGP obtained the higher accuracies. Nevertheless, all techniques still present
mean loss values considerably lower than the random search.

Brown Floresta Treebank
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
Lo

ss

0.587

1.116

0.630.629

0.865

1.223

0.766
0.875

0.6510.676

1.02

0.594

1.198

1.601

1.352

GA GP GSGP SGP Random

Fig. 4: Mean loss per data set using evolutionary optimization and random se-
lection for LSTM training purposes.

5.2 Optimization Progress

Figure 5 depicts each model’s convergence, considering the loss over the val-
idation set, during the training procedure. The figure clearly shows that GA
obtained the best values regarding the first iterations considering both Brown
and Floresta datasets, depicted in Figures 5(a) and (b), respectively. Addition-
ally, concerning the Treebank dataset, although GSGP obtained the best values

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

Evolving Long Short-Term Memory Networks 11

in the initial iterations, it is outperformed by GA in the third iteration, whose
convergence keeps improving until reaching the stop criteria of 20 iterations.
Moreover, it can be observed that GSGP and SGP do not present significant
progress during the iterations, getting stuck on local optima and even get worst
results than the ones obtained in previous iterations. Finally, considering the
GP algorithm, despite the slightly positive convergence, it was not capable of
outperforming GA in any of the three datasets.

4 8 12 16 20
of iterations

1.1

1.2

1.3

1.4

1.5

M
ea

n
Lo

ss

GA GP GSGP SGP

(a)

4 8 12 16 20
of iterations

0.7

0.8

0.9

1.0

1.1

1.2

1.3

M
ea

n
Lo

ss

GA GP GSGP SGP

(b)

4 8 12 16 20
of iterations

1.0

1.1

1.2

1.3

1.4

1.5

M
ea

n
Lo

ss

GA GP GSGP SGP

(c)

Fig. 5: Validation set loss convergence over the training steps considering: (a)
Brown, (b) Floresta, and (c) Treebank datasets.

It is interesting to notice that, although GA outperformed the tree-based
methods concerning the validation set over a training composed of 20 iterations
when considering the same hyperparameters over the testing set considering 200
iterations for training, the tree-based methods obtained the best results. Such a
phenomenon may suggest the model becomes overfitted when trained considering
the GA set of hyperparameters.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

12 Lobo Neto et al.

6 Conclusions and Future Works

In this paper, we addressed the problem of LSTM hyperparameter fine-tuning
through evolutionary metaheuristic optimization algorithms in the context of
PoS tagging. For this task, four techniques were compared, i.e., the Genetic Al-
gorithm, the Genetic Programming, the Geometric Semantic Genetic Program-
ming, and the Stack-based Genetic Programming, as well as a random search,
employed as the baseline. Experiments conducted over three well-known pub-
lic datasets confirmed the effectiveness of the proposed approach since all four
metaheuristic algorithms outperformed the random search. Further, although
GA presented a smoother convergence during the optimization steps, the tree-
based evolutionary techniques obtained the best loss and accuracy results when
considering a more extended training period over the testing sets. Such results
highlight that those complex mathematical operations, like the ones performed
by GP, GSGP, and SGP, contribute to the convergence of the model in this
context.

Regarding future works, we intend to validate the proposed approach con-
cerning other contexts than PoS tagging, whether textual or not, as well as using
different artificial neural networks.

References

1. Y. LeCun, Y.Bengio, G. E. Hinton, Deep learning, Nature 521 (7553) (2015) 436–
444.

2. L. A. Passos, C. Santos, C. R. Pereira, L. C. S. Afonso, J. P. Papa, A hybrid
approach for breast mass categorization, in: ECCOMAS Thematic Conference on
Computational Vision and Medical Image Processing, Springer, 2019, pp. 159–168.

3. M. C. Santana, L. A. Passos, T. Moreira, D. Colombo, V. H. C. De Albuquerque,
J. P. Papa, A novel siamese-based approach for scene change detection with appli-
cations to obstructed routes in hazardous environments, IEEE Intelligent Systems.

4. J. J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities, Proceedings of the national academy of sciences 79 (8)
(1982) 2554–2558.

5. L. C. Ribeiro, L. C. Afonso, J. P. Papa, Bag of samplings for computer-assisted
parkinson’s disease diagnosis based on recurrent neural networks, Computers in
biology and medicine 115 (2019) 103477.

6. S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (8)
(1997) 1735–1780.

7. X. Ma, E. H. Hovy, End-to-end sequence labeling via bi-directional lstm-cnns-crf,
CoRR abs/1603.01354.

8. A. Komninos, S. Manandhar, Dependency based embeddings for sentence classifi-
cation tasks, in: Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
2016, pp. 1490–1500.

9. H. Sak, A. Senior, F. Beaufays, Long short-term memory recurrent neural network
architectures for large scale acoustic modeling, in: Fifteenth annual conference of
the international speech communication association, 2014, pp. 338–342.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

Evolving Long Short-Term Memory Networks 13

10. K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, J. Schmidhuber, LSTM:
A search space odyssey, CoRR abs/1503.04069.

11. N. Reimers, I. Gurevych, Optimal hyperparameters for deep lstm-networks for
sequence labeling tasks, CoRR abs/1707.06799.

12. L. Fedorovici, R. Precup, F. Dragan, R. David, C. Purcaru, Embedding gravita-
tional search algorithms in convolutional neural networks for OCR applications,
in: 7th IEEE International Symposium on Applied Computational Intelligence and
Informatics, SACI ’12, 2012, pp. 125–130. doi:10.1109/SACI.2012.6249989.

13. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A gravitational search algo-
rithm, Information Sciences 179 (13) (2009) 2232–2248.

14. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86 (11) (1998) 2278–2324.

15. G. H. Rosa, J. P. Papa, A. N. Marana, W. Scheirer, D. D. Cox, Fine-tuning con-
volutional neural networks using harmony search, in: A. Pardo, J. Kittler (Eds.),
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Appli-
cations, Vol. 9423 of Lecture Notes in Computer Science, Springer International
Publishing, 2015, pp. 683–690, 20th Iberoamerican Congress on Pattern Recogni-
tion.

16. Z. W. Geem, Music-Inspired Harmony Search Algorithm: Theory and Applications,
1st Edition, Springer Publishing Company, Incorporated, 2009.

17. G. H. Rosa, J. P. Papa, K. A. P. Costa, L. A. Passos, C. R. Pereira, X.-S. Yang,
Learning parameters in deep belief networks through firefly algorithm, in: Artifi-
cial Neural Networks in Pattern Recognition: 7th IAPR TC3 Workshop, ANNPR,
Springer International Publishing, Cham, 2016, pp. 138–149.

18. X.-S. Yang, Firefly algorithm, stochastic test functions and design optimisation,
International Journal Bio-Inspired Computing 2 (2) (2010) 78–84.

19. G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief
nets, Neural computation 18 (7) (2006) 1527–1554.

20. L. A. Passos, D. R. Rodrigues, J. P. Papa, Fine tuning deep boltzmann machines
through meta-heuristic approaches, in: 2018 IEEE 12th International Symposium
on Applied Computational Intelligence and Informatics (SACI), IEEE, 2018, pp.
000419–000424.

21. L. A. Passos, J. P. Papa, Temperature-based deep boltzmann machines, Neural
Processing Letters 48 (1) (2018) 95–107.

22. R. Salakhutdinov, G. E. Hinton, An efficient learning procedure for deep boltzmann
machines, Neural Computation 24 (8) (2012) 1967–2006.

23. H. Chung, K.-S. Shin, Genetic algorithm-optimized long short-term memory net-
work for stock market prediction, Sustainability 10 (10) (2018) 3765.

24. T. Kim, S. Cho, Particle swarm optimization-based cnn-lstm networks for forecast-
ing energy consumption, in: 2019 IEEE Congress on Evolutionary Computation,
2019, pp. 1510–1516.

25. D. E. Goldberg, J. H. Holland, Genetic algorithms and machine learning, Machine
Learning 3.

26. J. R. Koza, J. R. Koza, Genetic programming: on the programming of computers
by means of natural selection, Vol. 1, MIT press, 1992.

27. A. Moraglio, K. Krawiec, C. G. Johnson, Geometric semantic genetic programming,
in: PPSN, 2012, pp. 21–31.

28. T. Perkis, Stack-based genetic programming, in: Proceedings of the First IEEE
Conference on Evolutionary Computation. IEEE World Congress on Computa-
tional Intelligence, 1994, pp. 148–153 vol.1. doi:10.1109/ICEC.1994.350025.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

14 Lobo Neto et al.

29. E. Brill, A simple rule-based part of speech tagger, in: Proceedings of the third
conference on Applied natural language processing, Association for Computational
Linguistics, 1992, pp. 152–155.

30. J. Kupiec, Robust part-of-speech tagging using a hidden markov model, Computer
Speech & Language 6 (3) (1992) 225–242.

31. A. Gers F., J. Schmidhuber, F. Cummins, Learning to forget: Continual prediction
with lstm, in: 9th International Conference on Artificial Neural Networks: ICANN
’99, Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 1999, pp. 850–855.

32. E. Loper, S. Bird, Nltk: The natural language toolkit, in: Proceedings of the ACL-
02 Workshop on Effective Tools and Methodologies for Teaching Natural Lan-
guage Processing and Computational Linguistics - Volume 1, ETMTNLP ’02, As-
sociation for Computational Linguistics, Stroudsburg, PA, USA, 2002, pp. 63–70.
doi:10.3115/1118108.1118117.
URL https://doi.org/10.3115/1118108.1118117

33. F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin 1 (6)
(1945) 80–83.

34. P. Charles, Project title, https://github.com/charlespwd/project-title (2013).
35. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
Large-scale machine learning on heterogeneous systems, software available from
tensorflow.org (2015).
URL http://tensorflow.org/

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_25

https://dx.doi.org/10.1007/978-3-030-50417-5_25

