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Abstract. Interactive visual exploration of large and multidimensional data still
needs more efficient ND → 2D data embedding (DE) algorithms. We claim that
the visualization of very high-dimensional data is equivalent to the problem of 2D
embedding of undirected kNN-graphs. We demonstrate that high quality embed-
dings can be produced with minimal time&memory complexity. A very efficient
GPU version of IVHD (interactive visualization of high-dimensional data) algo-
rithm is presented, and we compare it to the state-of-the-art GPU-implemented
DE methods: BH-SNE-CUDA and AtSNE-CUDA. We show that memory and
time requirements for IVHD-CUDA are radically lower than those for the base-
line codes. For example, IVHD-CUDA is almost 30 times faster in embedding
(without the procedure of kNN graph generation, which is the same for all the
methods) of the largest (M = 1.4 · 106) YAHOO dataset than AtSNE-CUDA.
We conclude that in the expense of minor deterioration of embedding quality,
compared to the baseline algorithms, IVHD well preserves the main structural
properties of ND data in 2D for radically lower computational budget. Thus, our
method can be a good candidate for a truly big data (M = 108+) visualization.

Keywords: high-dimensional data · data embedding · kNN graph visualization ·
GPU implementation

1 Introduction

In the age of data science, interactive visualization of large high-dimensional data is an
essential tool in knowledge extraction. It allows for both the insight into data structure
and its interactive exploration by direct manipulation on the whole or a fragment of a
dataset. This way, it is possible to observe the shapes and mutual location of classes, as
well as remove irrelevant data samples and identify the outliers. The multiscale struc-
ture can be explored visually by changing data embedding strategies and visualization
modes (e.g., the type of the loss function), and zooming-in and out selected fragments
of 2D (3D) data mappings. Summarizing, interactive visualization allows for: 1) instant
verification of a number of hypotheses, 2) precise matching of data mining tools to the
properties of data investigated, 3) adapting optimal parameters to machine learning al-
gorithms, and 4) selecting the best data representation. Herein, we focus on application
of data embedding (DE) methods in the interactive visualization of large (M∼105-106)
and high-dimensional N∼102+ data.

Data embedding (DE) is defined as a transformation B:Y→X of N-dimensional
(ND) dataset <N3Y = {yi}i=1,...M into its n-dimensional (nD) representation <n3X =
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{xi}i=1,...M , where N>>n and M is the number of ND feature vectors yi and correspond-
ing nD embeddings xi. The mapping B can be perceived as a lossy compression of
data. It is performed by minimizing a loss function E(‖Y − X‖), where ‖.‖ is a measure
of topological dissimilarity between Y and X. Due to the high complexity of the low-
dimensional manifold, immersed in the ND feature space and occupied by data samples
Y , perfect embedding of Y in the nD space is possible only for trivial cases.

In the context of high-dimensional data visualization, we assume that n = 2. Data
embedding to 3D can be processed in a similar way. As shown in many papers (see,
e.g., [9, 17]), DE of large data that is both sufficiently precise in reconstruction of ND
data topology, and simultaneously, computationally affordable, is the algorithmic chal-
lenge. To preserve topological properties of Y in X both the classical MDS (multidimen-
sional scaling) methods (e.g., [5]) and the state-of-the-art (SOTA) clones of the stochas-
tic neighbor embedding (SNE) concept (e.g., [11, 14, 19]) require computing and stor-
ing two O(M2) arrays: (1) the dissimilarities between data vectors Y and (2) the Eu-
clidean distances between their 2D embeddings X. That is why, the SOTA visualization
algorithms, such as t-SNE [16] and its clones, suffer from high O(M2) time&memory
complexity. The time complexity can be decreased to O(MlogM) and even O(M), by
using the approximated versions of t-SNE, such as BH-SNE [15] and other its vari-
ants and approximations [14, 19]. Meanwhile, the memory complexity remains O(M2)
which considerably limits its use for truly big data and new parallel computer architec-
tures. Summing up, for many of the SOTA embeddings: [1, 17, 22, 23]:

1. The time complexity of the DE procedure is dominated by the construction of the
kNN-graph, which is generally O(MlogM) complex (for exact kNN search algo-
rithms).

2. The computational efficiency of the DE process vastly depends on the loss function
and optimization procedure applied for its minimization.

3. Calculating gradient of the loss function is O(N·M) complex, but with large pro-
portionality coefficient, which is dominated by a relatively large value of k.

Interactive visual data exploration involves very strict time&memory performance
regimes while the SOTA DE algorithms are still too time&memory consuming. The
main contribution of this paper is developing a method to overcome this flaw and opti-
mize the data embedding process. To this end, for DE, we adapt the same idea we used
previously for large unweighted and undirected graphs visualization (GV) [6]. Further-
more, we clearly demonstrate that the DE of very high-dimensional data can be treated
as a subproblem of GV what has not been said explicitly before (maybe except of re-
cently published [13]). Consequently, the visualization of high-dimensional data comes
down to the visualization of the kNN graphs (kNN-graphs) where each of the nodes
represents a feature vector. However, unlike the other DE algorithms which also em-
ploy this trick (e.g., BH-SNE [15], LargeVis [22], UMAP [17]), we show that the value
of k can be much smaller, such as k∼2, 3 (compare it to BH-SNE [15] and LargeVis
[22] where k∼102). Moreover, for truly high-dimensional data (N ' 30), i.e., when
the effects of ”curse of dimensionality” on the ND space topology become evident, the
floating point dissimilarities used for kNN-graph construction can be discarded. Instead,
the integer indices to only a few nn nearest neighbors (instead of index k, we use nn to
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be consistent with the notation we use in the rest of this paper) have to be kept in the
computer memory. We show here that if for each ND feature vector we:

1. store only indices of nn < 6 nearest neighbors (nn = 2 in the most cases is suffi-
cient),

2. select very few (often just one) random neighbors rn (similar to negative sampling
procedure) during calculations,

3. define binary distances (0 and 1, respectively) to the nearest and random neighbors,

it is possible to radically simplify the loss function and, consequently, decrease the
CPU time required for its minimization. Thus, we are able to reconstruct the ND data
structure in 2(3)D space in a very efficient way both in terms of computational time and
storage.

Summarizing, in the paper, we demonstrate that the data embedding (DE) is equiv-
alent to the visualization of unweighted kNN-graphs, constructed for the source Y data.
The principal contribution of this paper is the essential improvement of the time&memory
complexity of DE at the expense of a minor deterioration of embedding quality. Con-
sequently, the proposed data mapping methodology allows for interactive visualization
of much larger data than the state-of-the-art DE algorithms. Moreover, we demonstrate
that our IVHD algorithm can be implemented in an efficient way in GPU/CUDA en-
vironment. We compare this implementation to the fastest publicly available GPU data
embeddings: BH-SNE-CUDA [4] and Anchor-t-SNE [10].

2 Methods

Despite that there are many algorithms for visualization of high-dimensional data and
that this topic has been extensively studied for years, to the best of our knowledge, there
are only a few implementations of modern data embedding algorithms in GPU/CUDA
environment [4, 10, 18]. We will focus on the publicly available ones, which generate
the best embeddings of large datasets: BH-SNE-CUDA [4] and Anchor-t-SNE [10] (At-
SNE). These algorithms base on the well known t-SNE (t-distributed Stochastic Neigh-
bor Embedding) concept [16], and consist of two stages: (1) generate of a weighed
kNN-graph; (2) run a proper embedding procedure which is based on: (2a) definition of
a loss function and (2b) its minimization.

2.1 kNN graph generation

kNN-graph approximates a nD non-Cartesian manifold immersed in �N sampled by
the feature vectors yi. We consider here the kNN-graph construction procedure shipped
by the FAISS library [12]. Its authors claim that it is currently the fastest available kNN
search algorithm implemented on GPU. The FAISS kNN-search procedure merges a
very efficient and well-parallelized exact kNN algorithm and indexing structures that
allow to perform approximate search. To achieve a high-efficiency search with a good
accuracy we employ the IVFADC [2] indexing structure. It uses two levels of quantiza-
tion combined with the vector encoding for compressing high-dimensional vectors. The
main idea behind the index usage is to split the input space and divide all input samples
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into a number of clusters represented by their centroids. To handle a query, the algo-
rithm compares it with the centroid centers. It picks the centroid that is the most similar
to the query vector and performs an exact search within the set of samples belonging to
this centroid. Apart from the efficient kNN algorithm, its CUDA implementation is ex-
tremely well optimized [12]. We use the same FAISS kNN-graph generation procedure
in both the baseline and IVHD algorithms.

2.2 Loss functions

BH-SNE-CUDA The group of methods based on the SNE concept [16] defines the
similarity of two samples i and j in terms of probabilities pi j (in Y) and qi j (in X),
that i would pick j as its neighbor and vice versa. These probabilities are functions of
distances between samples in Y and their embeddings in X, respectively. Let D = [Di j]
is the distance table in Y and Di j are the distances between i and j feature vectors yi

and y j, while d = [di j] is the respective distance array in X. Then, the loss function
C=E(D,d) is defined by the Kullback–Leibler (KL) divergence:

C(.) = E(D,d) =
∑

i

KL(Pi||Qi) =
∑

i

∑
j

pi j log
pi j

qi j
, (1)

where, for t-SNE algorithm, pi j is approximated by the Gaussian N(yi, σ), while qi j is
defined by the Cauchy distribution [16]. The pi j and qi j are defined as follows:

pi j =
exp(−D2

i j/2σ
2
i )∑

k,l exp(−D2
kl/2σ

2
i )

(2) qi j =
(1 + d2

i j)
−1∑

k,l(1 + d2
kl)
−1

(3)

The BH-SNE (Barnes-Hut t-SNE [15]) is an approximation of the t-SNE method
that can reduce computational complexity of the DE from O(M2) to O(MlogM) by
using Barnes-Hut approximation but at the cost of increasing the algorithmic complex-
ity and, consequently, decrease of the parallelization efficiency [15]. Its GPU version -
the BH-SNE-CUDA algorithm - does not introduce any changes to the BH-SNE [15]
algorithm, and just matches the instructions and data flows to the GPU architecture [4].

AtSNE-CUDA Recently published AtSNE-CUDA (Anchor-t-SNE [10]) algorithm was
created to deal with the t-SNE issues such as sensitivity to initial conditions and inad-
equate reconstruction of the global data structure. The Authors of the AtSNE-CUDA
method claim that their method is 50% faster than BH-SNE-CUDA and has lower mem-
ory requirements. As shown in [10], it still generates good quality embeddings though
some kNN quality scores are better for the classic t-SNE or the LargeVis algorithms
[22].

Similar to all t-SNE clones, AtSNE minimizes the regularized KL divergence. Infor-
mation about a local structure of data can be acquired from the set of approximated kNN
neighbors of each yi. Meanwhile, to reconstruct the global structure of data, xi points re-
ceive “pulling forces” from, so called, anchor points generated from the original data.
This way the anchor points are responsible for maintaining the mutual positions and
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shape of classes in X. Consequently, the hierarchical embedding [10] optimizes both
the positions of the anchor points and regular data samples.

Let A represent the set of anchor points in the high-dimensional space, and B its
low-dimensional embedding. The probabilities P(Y) and Q(X) denote the high and low-
dimensional distributions of the anchor points, respectively. To preserve both the global
and local information, the following loss function are minimized:

E(.) =
∑

i KL(P(Y)||Q(X)) +
∑

i KL(P(A)||Q(B)) +
∑

i ||bi −

∑
yk∈Cbi

yk

|Cbi |
||, bi ∈ Cbi

(4)

where Cbi denotes the set of points whose K-means cluster center is bi. The last term is
a regularization term explained in details in [10].

IVHD Unlike t-SNE based BH-SNE-CUDA and AtSNE-CUDA, IVHD-CUDA uti-
lizes classical MDS stress function. However, the number and sort of distances IVHD
employs, are radically different than those in classical MDS and the baseline algorithms.

Fig. 1. The envelopes of histograms for MNIST dataset (after PCA transformation 784D→ 30D).
Red solid line: all D distances (a - linear, b - logarithmic scale); a) dashed lines: all d distances;
b) blue solid line: D distances only between samples and their 2-NNs, and red dashed line: D
distances only between samples and one random neighbor.

In Fig.1 we display the envelopes of histograms of both D and d distances for
MNIST dataset before and after IVHD embedding. Although MNIST dataset has a
varied structure, the envelope of D histogram in linear coordinates (Fig.1a) is perfectly
bell-shaped, while that for d is more deformed but still resembles the Cauchy distri-
bution. To increase distances diversification (see Fig.1b), instead of all M(M − 1)/2
floating point distances we can consider binary distances to only a few (nn) nearest
neighbors and just one (rn) randomly selected neighbor. This is because, the most of
real distances (95%) to the nearest and the random neighbors are located in separated
and rather distant intervals (darker blue and red boxes in Fig.1b). For higher dimen-
sions, the random neighbors are getting almost equidistant from yi due to the ”curse
of dimensionality” effect. Whereas, the overlapping region (green) contains only 0.3%
of distances. So, we can assume additionally that Onn(i) ∩ Orn(i) = ∅. However, this
assumption is superfluous because the probability of picking the nearest neighbor as a
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random neighbor is negligibly small for large N. As shown in Fig.1a, for non-binarized
and binarized source distances, their histograms for respective 2D embeddings are very
similar. Thus, let Onn(i) and Orn(i) will be the sets of indices of nn nearest (connected)
neighbors and rn (unconnected) random neighbors of a feature vector yi in kNN-graph,
respectively. We define binary dissimilarity measure as follows (see Fig.1b):

∀yi ∈ Y : Di j =

{
0 if j ∈ Onn(i)
1 if j ∈ Orn(i) . (5)

Thus, unlike in the baseline algorithms, we are not interested even in an approxi-
mated ordering of kNNs for each yi ∈ Y . This is justified for small nn, because distances
to a few first NN, in general, cannot differ too much (see blue plot in Fig.1b) and the
ordering of NN can results from measurement errors. We assume, that the number of
nn neighbors has to fulfill two conditions. Firstly, the kNN-graph should be fully (or
approximately - i.e., the size of the largest component should be comparable to the size
of the full graph) connected. For example, for MNIST and FMNIST datasets (see Table
1) and k = nn = 2 the largest components consist of 99% of nodes, and respectively:
SmallNorb (nn = 5 and 82%), RCV-Reuters (nn = 3 and 95%). Secondly, the kNN-
graph augmented with approximately rn edges should be at least a minimal n-rigid
graph (in 2D: 2-rigid). The term ”rigidity” can be understood as a property of a nD
structure made of rods (distances) and joints (data vectors) that it does not bend or flex
under an applied force. The lower band of the number of connections L, required for
making the augmented kNN-graph 2-rigid, is L∼2·M. Meanwhile, the augmented kNN-
graph has approximately L∼nvi·M edges, where nvi=nn+rn > 2 [7]. As our experience
shows, the probability that the largest connected component is rigid (or approximately
rigid) is very high. Summarizing, to obtain the largest connected component approxi-
mately equal to the full kNN-graph, the number of the nearest neighbors nn can be very
low (mostly nn = 2 but for some specific datasets with very similar samples it can be
a bit larger). Assuming additionally that rn = 1, we can obtain stable and rigid 2-D
embedding of the kNN-graph.

This way, instead of the O(M2) floating point D matrix, we have as the input data
O(nn · M) integers - the list of kNN-graph edges. The indices of rn random neigh-
bors can be generated ad hoc during embedding process. Thus the embedding of high-
dimensional data reduces to the embedding of the corresponding sparse kNN-graph. To
this end, we minimize the following stress function:

E(‖D − d‖) =
∑

i

∑
j∈Onn(i)∪Orn(i)

{
d2

i j if j ∈ Onn(i)
c · (1 − di j)2 if j ∈ Orn(i)

, (6)

which represents the error between dissimilarities Di j ∈ {0, 1} and corresponding Eu-
clidean distances di j, where: i, j = 1, . . . ,M, and c ∈ (0, 1) is the scaling factor for
random neighbors. Thus, IVHD uses the stress function, which is much easier to opti-
mize than a KL-based loss function employed in the baseline algorithms.

2.3 Optimization
BH-SNE-CUDA To minimize KL divergence, t-SNE and its clones employ the opti-
mal, matched by the Authors, modern gradient descent optimization schemes [21]. The
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gradient of the loss function C(.) (Eq. 1) is as follows:

δC
δyi

= 4
∑

j

(pi j − qi j)qi j(yi − y j). (7)

AtSNE-CUDA The AtSNE-CUDA algorithm preserves the global information by min-
imizing the term KL(P(A)||Q(B)) in Eq.4, while the first term of the loss function is
responsible for preserving the local structure of data. Because, the gradient of the loss
function is more complicated than this defined by Eq. 7, AtSNE-CUDA uses the Hi-
erarchical Optimization Algorithm [10]. This algorithm consists of two optimization
layers: the global and the local ones. Optimization proceeds in a top-down manner. The
main idea is to optimize the two-layer layout alternately: 1) fix the layout of the ordi-
nary points and optimize the layout of the anchor points; 2) fix the anchor point layout
and optimize the layout of ordinary points.

IVHD A few state-of-the-art optimization schemes such as: Nesterov, Adagrad, Adadelta,
RMSprop, NAG, Adam, [21] and force-directed (F-D) method [7] have been imple-
mented to calculate minimum of the loss function (Eq. 6). As shown in Table 1, where
the best GPU implementations of the optimization methods are collected, the force-
directed (F-D) approach and synchronized Nestorov scheme appear to be the best in
terms of accuracy (i.e., a better minimum of the loss function reached).

Table 1. Results of c f5 and c f10 accuracies (see Eq.8) achieved by IVHD-CUDA implementation
for various optimizers and baseline datasets.

MNIST Fashion-MNIST Small NORB RCV YAHOO
1s 3s 5s 1s 3s 5s 1s 3s 5s 15s 25s 15s 25s

c f5 0.501 0.852 0.89 0.472 0.671 0.68 0.87 0.946 0.954 0.666 0.672 0.562 0.618F-D
c f10 0.499 0.851 0.889 0.469 0.667 0.676 0.846 0.933 0.945 0.666 0.671 0.562 0.618
c f5 0.522 0.846 0.888 0.473 0.671 0.688 0.86 0.942 0.957 0.432 0.471 0.102 0.252Nest.
c f10 0.52 0.844 0.887 0.47 0.667 0.684 0.835 0.929 0.948 0.432 0.47 0.102 0.252
c f5 0.87 0.868 0.866 0.687 0.679 0.672 0.936 0.925 0.914 0.581 0.626 0.261 0.57Adad.
c f10 0.869 0.867 0.866 0.685 0.676 0.67 0.927 0.916 0.904 0.58 0.625 0.261 0.57
c f5 0.64 0.872 0.867 0.551 0.687 0.686 0.835 0.958 0.951 0.37 0.437 0.102 0.145Adam
c f10 0.638 0.871 0.866 0.548 0.684 0.682 0.807 0.947 0.941 0.369 0.436 0.102 0.145

3 GPU implementation

The advantage of using GPU accelerator is a huge number of computational units that
can perform calculations in parallel. In a typical GPU, there are a few thousands of
cores. GPUs boards are Single Instruction, Multiple Data (SIMD) computers. It means
that multiple threads are executed using the same instruction set on various data. In the
case of the Nvidia CUDA framework, it means that all threads inside a warp will be
calculated by using the same instruction set. In the case of instructions branching, the
execution of two alternatives will be carried out separately and one of the two will be
selected after evaluation of the i f condition. This process is inefficient and if it occurs
frequently (branch divergence), it might lead to a poor utilization of GPU. That is why
the optimization of the code needs to develop special GPU-dedicated algorithms.
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Optimization schemes on GPU On a CPU unit, subsequent iterations for the classical
stochastic gradient descent (SGD) based optimization schemes are executed sequen-
tially and asynchronously. Meanwhile, to achieve the best GPU performance, we had to
execute the iterations synchronously, such as in the force-directed approach [7], i.e., all
the updated variables of the loss function are calculated using values from the previous
iteration what helps to avoid race conditions between CUDA threads. It appears that
(see Table 1) synchronous version of the Nesterov method produces almost identical
results as the F-D scheme.

IVHD-CUDA In IVHD-CUDA we employ the force directed optimization scheme,
similar in spirit to the synchronous momentum and Nesterov methods, described in de-
tail in [7]. Let connection mean two ”particles” xi and x j (the nearest or random neigh-
bors) in 2D embedded X space joined by an edge. The main IVHD-CUDA implemen-
tation loop consists of the following steps: 1) calculating ”forces” for each connection
where the ”force” is proportional to the gradient dependent on the two ”particles’” po-
sitions and their velocities; 2) summing up the forces and 3) updating positions and
velocities for all the particles simultaneously. The simplified pseudo-code is presented
below as Algorithm 1.

Algorithm 1: Simplified IVHD-CUDA scheme.
Input: kNN-graph precalculated with FAISS library.

initialization;
while running do

allocate subsets of force components to threads;
for thread in threads do

calculate force components for each connection;
end
join threads;
allocate subsets of samples to threads;
for thread in threads do

sum force/gradient components;
calculate new velocities;
update particle positions;

end
end

Because the steps are executed sequentially, it allows to avoid the race condition
between CUDA threads. Each connection receives two different memory addresses
where calculated values can be stored - one positive and one negative. If a particle
i attracts particle j (positive value), then at the same time particle j attracts particle i
(negative value). In the first step, each thread calculates some subset of the inter-particle
force/gradient components. Simultaneously, they execute exactly the same instructions
and thus, any branching is not required. However, this approach has a minor bottleneck.
To save the result for each connection, a given thread has to execute write instructions
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to completely different memory addresses representing two samples. Meanwhile, min-
imizing the number of read/write operations is always beneficial as they are very time
consuming.

In the second step. each thread is assigned with a set of particles to process. As a
precaution against processing the particles that interact with different number of parti-
cles (what might cause branch divergence) we sort the particles before the first iteration
by considering the number of force components to calculate. After sorting it is guar-
anteed that all the threads in a warp will process samples with the same number of
connections. The percentage share of each component of DE procedure (without kNN
graph generation), e.g., for 70.000 feature vectors with approximately three neighbors
each (nn=2 and rn=1), is as follows: (1) force components calculation (78.97%), (2)
positions update (20.6%), initialization (3) (0.43%). In IVHD-CUDA implementation
the global, register and constant memory are used. In the constant memory, the algo-
rithm parameters are stored. While, the connections, force components and positions
are stored in the global memory. A register memory is used for auxiliary and temporary
calculations.

4 Computational environment

Herein, we present: the baseline datasets used in experiments, evaluation metrics and
computational environment.
Datasets The main properties of each baseline dataset are: the number of samples
M, dimensionality N, and the number of classes K. Here, we consider datasets with
(1) a huge number of samples and relatively low dimensionality, (2) a smaller number
of samples but larger number of features, (3) highly imbalanced data (RCV-Reuters),
and (4) skewed data (Small NORB). Datasets used in the experiments are described in
Table2.

Table 2. The list of baseline datasets.

Dataset N M K Short description
MNIST 784 70 000 10 Well balanced set of grayscale images of handwritten dig-

its.
Fashion-MNIST 784 70 000 10 More difficult MNIST version. Instead of handwritten

digits it consists of apparel images.
Small NORB 2048 48 600 5 It contains stereo image pairs of 50 uniform-colored toys

under 18 azimuths, 9 elevations, and 6 lighting conditions.
RCV-Reuters 30 804 409 8 Corpus of press articles preprocessed to 30D by PCA.
YAHOO 100 1.4 million 10 Questions and answers from YAHOO. The answers ser-

vice preprocessed with FastText [20].

Evaluation of embedding quality Because of the high computational load required for
computing precision/recall coefficients, to compare data separability and class purity,
we define the following simple metrics:

c fnn =

∑M
i=1 nn(i)
nn·M

and c f =

∑nnmax
nn=1 c fnn

nnmax
, (8)
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where nn(i) is the number of the nearest neighbors of xi in X space, which belong
to the same class as yi. The value of c f is computed for arbitrarily defined value of
nnmax dependent on the number of feature vectors in classes. To reflect a wide range
of embedding properties, we use nnmax=100. The value of c f∼1 for well separated and
pure classes, while c f∼1/K for random points from K classes. These simple metrics
allow for evaluating the quality of the embeddings by calculating several c fnn values
for small, medium, and greater number of nn. The differences in this criterion for con-
fronted methods allow for inferring their embedding qualities for very local (nn=2),
local (nn=10) and medium (nn=100) reconstruction depth. The stability of c fnn for in-
creasing nn means more compact and circular shape of classes. For elongated and mixed
classes, the values of c fnn decrease faster with nn.

Hardware All GPU/CUDA implementations of the baseline embedding methods were
executed on the separated remote server with: CPU Intel Xeon E5-2620 v3, GPU Nvidia
GeForce GTX 1070 (1920 CUDA cores, 8GB GDDR5), 252 GB RAM, OS: Ubuntu
18.04.3, architecture x86, 64. The codes were compiled using GCC-7.4 and CUDA
Toolkit 10.0. IVHD-CUDA code was tested on the GPU device with capability 2.7 and
CUDA toolkit V8.0, and no issues were observed. The source code used in this paper
can be found at https://github.com/mtsznowak/ivhd-cuda.

5 Results and comparisons

In this section we compare our IVHD-CUDA implementation to the most efficient and
robust publicly available GPU-implemented data embedding codes: BH-SNE-CUDA
and AtSNE-CUDA. The most important parameters of the methods are collected in
Table 3. For the baseline methods we use default parameters (appx. 15 parameters)
proposed in [10, 15] and submitted to the GitHub repositories with respective GPU
codes [3, 4]. IVHD parameters are also selected by default, e.g., rn = 1 while nn is fitted
automatically as a minimal value producing the largest connected component which
approximates (with a given high accuracy) kNN-graph. The value of c ∈ [0.01, 0.1]
from Eq. 6 is the only parameter, which can be adjusted interactively.

Table 3. The glossary of parameters of DE algorithms used in experiments. All IVHD param-
eters are displayed. The baseline algorithms require matching a considerably higher amount of
parameters (about 10) [4, 3]), so due to the brevity only the most important ones, i.e., perplexity
and nn are given.

Method Dataset Perplexity nn rn c Metric
IVHD-CUDA MNIST - 2 1 0.01 Euclidean
IVHD-CUDA Fashion-MNIST - 2 1 0.01 Cosine
IVHD-CUDA Small Norb - 5 1 0.01 Cosine
IVHD-CUDA RCV-Reuters - 3 1 0.1 Cosine
IVHD-CUDA YAHOO - 2 1 0.1 Cosine
BH-SNE-CUDA All 50 32 - - Euclidean
AtSNE-CUDA All 50 100 - - Euclidean
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Based on visualizations presented in Figs. 2, 3 one can make the following obser-
vations:

1. In Fig. 2a, IVHD clearly reflects the global structure of the MNIST classes and
their separation. However, due to the ”crowding effect”, the classes become very
dense in the centers, and sparse between them. On the other hand, the results of
graph visualization presented in [6], demonstrate that the ”crowding effect” can be
controlled by tuning IVHD-CUDA parameters. Consequently, even the fine-grained
neighborhood can be preserved with an amazingly high accuracy (see [8]).

2. For the Small NORB dataset (see Fig.2b), IVHD-CUDA was able to visualize
clearly separable three big clusters with fine-grained data structure. For BH-SNE-
CUDA and AtSNE-CUDA the quality of embeddings is much worse and more frag-
mented. The changes of the parameter values of the baseline algorithms (perplexity)
do not improve the visualization quality.

3. IVHD applied to the Fashion-MNIST (see Fig.2c) creates separate clusters of var-
ious, mainly elongated shapes. Moreover, the generated mapping is fuzzy. It is
clearly reflected by decreasing values of c fnn particularly for nn=100. On the other
hand, both AtSNE-CUDA and BH-SNE-CUDA are much better creating oblate and
clearly separated clusters. As shown in Table 4, the values c fnn are more stable than
those for the IVHD method. Nevertheless, unlike the IVHD result, some classes
reproduced by the baseline methods are mixed and fragmented.

4. Similar conclusions can be drawn by visualizing RCV and YAHOO 2D embed-
dings (see Fig.3a,3b, respectively). IVHD-CUDA generates more fuzzy output than
AtSNE-CUDA but the samples from the same class are closer together than those
generated by the baseline method. Meanwhile, AtSNE-CUDA is able to separate
clearly visible but fragmented clusters. BH-SNE-CUDA was too slow to visualize
these big datasets in a reasonable time budget.

(a) MNIST. (b) Small NORB. (c) Fashion MNIST.

Fig. 2. Visualization of datasets using: I) IVHD-CUDA, II) BH-SNE-CUDA, III) AtSNE.

As shown in Table 4, IVHD-CUDA is the fastest method for all the baseline datasets.
Unfortunately, we were not able to control the run-times of AtSNE-CUDA and BH-
SNE-CUDA implementations, thus the comparisons for various time budgets are not
possible. As shown above, the quality and fidelity of embeddings strongly depends on
the structure of a specific dataset, user expectations, and their data visualization require-
ments. In general, the local structure of the source data is better reconstructed by the
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two baseline SNE algorithms. This is not a surprise because the IVHD algorithm does
not use the correct ordering of kNN neighbors and original distances between a sample
yi and its kNN neighbors. Moreover, the value of k (nn in this paper) is extremely small
compared to AtSNE-CUDA and BH-SNE. Nevertheless, despite of this drastic approx-
imation, IVHD properly preserves the class structure and its relative locations. For fine-
grained structures of classes (such as in the Small NORB dataset), IVHD outperforms
its competitors in both the efficiency and - slightly - in the c f accuracy. Moreover, un-
like AtSNE-CUDA and BH-SNE-CUDA, IVHD is able to visualize the separated and
not fragmented classes. The same can be observed for highly imbalanced dataset RCV.
For MNIST and Fashion MNIST datasets, the dominance of t-SNE based methods in
reproducing the local - ”microscopic” - data structure is visible, mainly due to the strong
”crowding effect” seen for IVHD embeddings. However, the ”macroscopic” view of the
classes is more convincing for IVHD visualization, though due to the high perplexity
parameter (perplexity = 50), the baseline algorithms are tuned also for better coarse-
grained visualization.

(a) YAHOO (b) RCV-Reuters

Fig. 3. Visualization of datasets using: I) IVHD-CUDA, II) AtSNE-CUDA.

Table 4. The values of c fnn accuracy for various datasets and embedding methods. The timings
show: the overall embedding time (time), kNN-graph generation time (timegg), net embedding
time (timeemb). The results are the averages over 10 simulations.

Dataset Algorithm time [s] timegg [s] timeemb [s] c f2 c f10 c f100

MNIST
BH-SNE-CUDA
AtSNE
IVHD-CUDA

32.588
15.980
7.326

5.813
26.775
10.167
1.261

0.94
0.944
0.946

0.938
0.943
0.936

0.933
0.938
0.924

FMNIST
BH-SNE-CUDA
AtSNE
IVHD-CUDA

32.913
17.453
8.177

6.734
26.179
10.719
1.443

0.757
0.76
0.767

0.755
0.757
0.726

0.738
0.737
0.670

Small NORB
BH-SNE-CUDA
AtSNE
IVHD-CUDA

38.673
20.521
16.151

15.517
23.161
5.009
0.634

0.944
0.97
0.936

0.919
0.94
0.921

0.745
0.73
0.828

RCV-Reuters
BH-SNE-CUDA
AtSNE
IVHD-CUDA

-
220.39
60.72

45.302
-
175.088
15.418

-
0.82
0.835

-
0.82
0.828

-
0.818
0.803

YAHOO
BH-SNE-CUDA
AtSNE
IVHD-CUDA

-
628.63
70.12

52.930
-
575.7
18.930

-
0.686
0.668

-
0.686
0.662

-
0.686
0.653
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The main advantage of IVHD is that after storing the kNN-graph in the disc cache,
and neglecting the computational time required for its generation, IVHD embedding
can be more than one order of magnitude faster than the baseline methods. This allows
for a very detailed interactive exploration of multi-scale data structure by employing
broad spectrum of parameter values and various versions of the stress function without
a need for the kNN-graph recalculation.

6 Conclusions

In this paper, we have compared GPU/CUDA implementations of data embedding al-
gorithms in the context of interactive visualization of large and high-dimensional data.
We demonstrate that in comparison to the baseline algorithms and their GPU imple-
mentations, IVHD-CUDA data embedding is the fastest and the most storage saving
GPU-implemented DE algorithm. We can demonstrate that it allows for immediate re-
sponse on interactive requests during exploration of large datasets.

Surprisingly, despite radical simplifications, IVHD still properly reconstructs the
main structural properties of large ND datasets at the cost of rather minor, and incom-
parable to the scale of these radical approximations deterioration of embedding quality.
In our opinion, it is the most important result of this research, which shows how robust
is the ”backbone” of high-dimensional data represented by its very sparse (k is small)
kNN-graph.

It is interesting, how robustness of this ”backbone” is correlated to the complexity
of a low-dimensional manifold occupied by data samples and embedded in a very high-
dimensional feature space. The algorithms based on t-SNE still assume that Euclidean
distances are responsible for the structure of data. But this is not true at all for very
complex manifolds resulting from strong feature interdependence. As a result, they too
often produce very fragmented visualizations. Just the sparse kNN-graph (small k) is the
most appropriate structure, which is able to approximate such manifolds [17]. There-
fore, in the future work, we would like to concentrate on the robustness of the IVHD
algorithm depending on data complexity and also on the noise and errors in data (e.g.
erroneous labels). The method is planned to be tested on really big datasets M = 107+,
too demanding computationally for the SOTA DE algorithms. To this end, the most
powerful multi-GPU boards will be used what involves substantial revision of GPU-
code. Summarizing, we believe that our method would be very helpful for visualization
of truly big and complex data, where low storage and high computational speed of DE
algorithm are the crucial issues.
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