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Abstract. As video dominates internet traffic, researchers tend to pay
attention to video-related fields, such as video shaping, differentiated ser-
vice, multimedia protocol tunneling detection. Some video-related fields,
e.g., traffic measurement and the metrics for Quality of Experience,
are based on video flow identification. However, video flow identifica-
tion faces challenges. Firstly, the increasing adoption of Transport Layer
Security makes payload-based methods no longer applicable. Secondly,
traffic features differ when generated by different streaming protocols.
This paper proposes a video flow identification method, called ITP-KNN,
which utilizes the intermittent traffic pattern-related features (ITP) and
the K-nearest neighbors (KNN) algorithm. The intermittent traffic pat-
tern is caused by fragmented transmission, which is common among video
streamings generated by different streaming protocols. Therefore, the in-
termittent traffic pattern is useful for overcoming the above challenges
and then differentiating video traffic from not-video traffic. We develop
a set of features to describe the intermittent traffic pattern. Preliminary
results show the promise of ITP-KNN, yielding high identification recall
and precision over a range of video content and encoding qualities.

Keywords: Video streaming · Encrypted traffic · Traffic identification
· Traffic pattern · Explainable machine learning · Feature selection.

1 Introduction

Video dominates the Internet: streaming video occupies 65% of traffic globally
[28]. The increasing popularity of video has attracted the interest of different
research groups. As a result, several video-related research directions have be-
come hot topics, such as video traffic model [34, 24], the metrics for Quality of
⋆ Supported by the Strategic Priority Research Program of the Chinese Academy of

Sciences (Grant No. XDC02030600), Youth Innovation Promotion Association CAS
and CAS Key Technology Talent Program.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_21

https://dx.doi.org/10.1007/978-3-030-50417-5_21


2 Y. Liu et al.

Switch

Router

Switch

Switch

Firewall

Internet server

Downstream
Upstream

Traffic identification
Traffic policing
Traffic shaping

Congestion management & avoidance

WAN

Intranet

(a) An example of Quality of Service (QoS)
technology implementations .

Network 
traffic

more granular

Overall-level

Encrypted Anomaly

Non-encrypted Application Protocol

Application Type

Application Software e.g.,

Application Software

e.g., e.g.,
 Chat

Streaming

File transfer

Email

 P2P

VoIP
Content Type

Content Parameters (e.g., QoS specifications)

Video

Script

Web pages

User authentication

Thumbnail images

Application-level Content-level

(b) Multilevel categorization of traffic identification methods. We aim to solve
a content-level traffic identification problem.

Fig. 1. What is video flow identification? QoS measures the ability of a network to pro-
vide differentiated service guarantees for diverse traffic following changing and complex
network conditions [15]. Furthermore, traffic identification is a basic QoS technique,
and ISPs can provide differentiated services based on traffic identification. Video flow
identification is a content-level identification.

Experience (QoE) [10], video title identification [9, 29, 13], multimedia protocol
tunneling [2].

Video flow identification (described in Figure 1) is needed. There is an as-
sumption in much research [9, 29, 13, 32]: the flow is labeled as a video flow or
not-video flow precisely. In other words, video flow identification is essential for
practical applications of some video-related research, e.g., the metrics for in-
ternet video QoE. Besides, limiting or blocking video transmission also requires
video flow identification. When streaming video transmission is limited, the reso-
lution of the streaming video will switch to a lower one, in order not to interrupt
the video playback. Thus, it is possible to limit video transmission to mitigate
network congestion without significantly affected the Quality of Service. As an
example, streaming-video services such as Netflix and YouTube began switching
to standard definition to manage internet congestion during COVID-19 [26].

Two challenges of video flow identification are protocol diversity and traffic
encryption.

Protocol diversity challenges video flow identification as it makes traffic fea-
tures differ. Protocol diversity results from the application of kinds of streaming
protocols. Streaming protocols are designed to provide online video playback
without completely downloading it first. There are various popular streaming
protocols, e.g., Dynamic Adaptive Streaming over HTTP (DASH), HTTP Live
Streaming (HLS), or even private protocol. Protocol diversity makes traffic fea-
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tures differ. For example, packet size is different when different streaming pro-
tocols generate flows. The advanced method presented by Li et al. [18] requires
detecting the upstream request, which depends on the packet size, so it is not
universal enough to deal with other streaming protocols.

Video flow identification faces the other challenge, traffic encryption. Sand-
vine’s report states that more than 50% of global traffic is encrypted [27]. When
traffic is encrypted, conventional payload-based methods, such as deep packet
inspection, are no longer applicable. Fortunately, traffic analysis (TA) still work
even when traffic is encrypted [23]. However, for encrypted traffic, fine-grained
classification is a tough task[4], and video flow identification is a kind of fine-
grained identification.

Server

Client

Video segment i

IP packetIP packetIP packet

IP 
packet

IP 
packet

IP 
packet

IP packetIP packetIP packet

Video segment i+1

IP 
packet

IP 
packet

IP 
packet

Packet arrive time

OFF period
lp1

sp1 sp2 sp3 sp4

Fig. 2. Transmitting video in segments leads to the traffic showing an intermittent
pattern — continuously arrive of packets during ON periods, and a suspend for trans-
mission during OFF periods. The intermittent traffic pattern consists of lots of ON pe-
riods and OFF periods one-to-one. Furthermore, continuously arrive of packets means
a set of small PAIs (e.g., spi), smaller than the PAI (e.g., lpj) that reflects the suspend
for transmission (OFF period). Therefore, the probability distribution image of PAIs
will contain two peaks. One peak is influenced by ON periods, consisting of spi, and i
value range is from 1 to n in increments of 1 while n is the number of small PAIs (spi).
The other peak reflects OFF periods, consisting of lpj , and j value range is from 1 to
z in increments of 1 while z is the number of larger PAIs (lpj).

In this paper, we propose a video flow identification method: ITP-KNN. ITP-
KNN is a kind of machine learning-based traffic analysis, using intermittent traf-
fic pattern-related features (ITP) as input and the K-nearest neighbors (KNN)
algorithm as classifier. Regularly and fragmentarily transmission of video, which
is caused by the application of streaming protocols, makes the traffic traces show-
ing the intermittent pattern [21] (as shown in Figure 2). Thus, the intermittent
traffic pattern helps differentiate video traffic from not-video traffic.

We summarize our key contributions as follows:

– We develop a set of features to depict video transmission patterns: the in-
termittent traffic pattern.

– We interpret why the features we developed can help to identify video flows.
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– We implement and evaluate ML-based TA in video flow identification: we
propose a video flow identification framework, and evaluate it on five public
datasets.

2 RELATED WORK

2.1 Meachine Learning (ML)-based Traffic Analysis (TA)

TA has been proved applicable in encrypted traffic identification [22, 4]. McGre-
gor et al. [20] first apply ML algorithms to identify traffic. After that, researchers
began to pay attention to the application of ML algorithms in traffic identifica-
tion [7].

Manual feature selection is required when using conventional ML algorithms
[35]. Encrypted traffic identification lacks public datasets to evaluate different
methods. Draper-Gil et al. [8, 17] released their datasets, and they used time-
related features to realize VPN or Tor traffic identification. However, they did
not explain why the time-related features can help identify traffic. Shi et al. [30]
developed a set of network path-related features to identify the traffic source;
the disadvantage is that models that use network path-related features need to
retrain regularly.

In recent years, deep learning (DL) has been implemented in traffic identifica-
tion with different aims [25]. Wang [37] showed that compared with conventional
ML algorithms, DL had improved the result of traffic identification. However,
their model is not explainable.

DL obviates the requirement of manually feature selection since the feature
selection runs automatically through training [25]. It is a high cost for domain
experts to select features for identifying various types of traffic. Therefore, the
DL-based TA is more suitable for multiclass identification than conventional
ML-based TA. Conventional ML-based TA is not inferior to the DL-based one;
the problems that prevent the application of DL are that DL requires a large
and representative dataset, and the result of DL lacks interpretability.

2.2 Video Streaming

Li et al. [18] presented Silhouette to identify YouTube video flows. Silhouette
depends on the packet size of the upstream request, so it is not universal enough
to deal with other streaming protocols. Shi et al. [32] proposed a method that can
identify the video source. However, the features adopted by them are strongly
related to the network condition, so regular training is needed. Casas et al.
[5] achieved an application-level identification; some features used by them are
computational complex. They concluded that the flows’ label in the ground-
truth dataset should carry what content (e.g., video, Web pages or YouTube
thumbnail images) the flow carries. Garcia et al. [11] improved Ground Truth
techniques by applying unsupervised clustering methods on DPI-labeled traffic.
However, the method is designed for offline analysis only.
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Video title identification enjoys the most attention. Advanced researches
choose to establish the video fingerprints database [9, 29, 13]. Video fingerprint
is a type of information leakage caused by DASH and Variable Bit Rate. The
common flaw is that building video fingerprint is hard to cope with the growing
number of video titles. Besides, the fingerprint-based method can only identify
the known video, and the best result for video outside the training set is to mark
as unknown.

As early as 2016, Dubin et al. [9] first identified YouTube video titles, assum-
ing that adversaries can directly observe encrypted video flows at the network
layer, yet their detectors are susceptible to noise. Schuster et al. [29] extended
the attack scenario to one where direct eavesdropping was not feasible. They
used a neural network to identify video titles, and there were no false positives
for video outside the training set. Recently, Gu et al. [13] presented a method
to build video fingerprint by using differentiated bit rate, which eliminated the
impact of the switching of video resolution.

3 Preliminaries

3.1 Streaming Protocols

As the popularity of Internet video streaming services has increased, streaming
protocols have developed several generations to make the utmost of advanced
networking techniques. Nowadays, HTTP-based adaptive streaming protocols
become the most popular because of the advantages of easy to deploy and fire-
wall penetration [21, 3, 18]. Video-related companies or institutions (e.g., Netflix,
Adobe, Apple, and Microsoft) have all proposed HTTP-based adaptive stream-
ing protocols[19].

HTTP-based adaptive streaming protocols are designed to provide smooth
video playback [21]. With the adoption of HTTP-based adaptive streaming pro-
tocols, the video resolution can be dynamically adjusted according to the net-
work condition. Moreover, HTTP-based adaptive streaming protocol can avoid
the waste of bandwidth resources and reduce network congestion. For exam-
ple, the customer may not watch the entire video. In this case, the video with
such protocols is periodically delivered in segments if the customer continues
watching.

Streaming protocols have the above-mentioned advantages due to the seg-
mented transmission of video. As shown in Figure 2, video is divided into several
video segments, and each video segment usually contains content that lasts for
a few seconds. The client request one video segment at a time, and then the
server will send the video segment. Therefore, the video resolution can be ad-
justed as soon as the network condition changes. Moreover, video transmission
can be suspended immediately when the customer does not continue watching
the video.
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Fig. 3. Packet arrival times of different traffic. We ignore the packet size, and all packets
appear as points on the horizontal line. Compared with not-video traffic, video traffic
shows an intermittent pattern (Downstream). Besides, intervals of upstream requests
of video traffic are related to the duration of video segments, consistent with the traffic
model proposed by Waldmann et al. [34].

3.2 The intermittent traffic pattern

As described in Section 3.1 and Figure 2, video traffic exhibits the intermittent
pattern because of the segmented transmission. To be transmitted over the net-
work, one video segment will be divided into several IP packets. Consisting of
many ON periods and OFF periods, the intermittent traffic pattern seem like
a faucet: when the faucet is turned on (ON periods), the water flooding, and
when the faucet is turned off (OFF periods), transmission suspend. During the
ON period, a video segment is transmitted, resulting in the continuous arrival
of packets; during the OFF period, video transmission will not be performed.
Through Packet Arrival Interval (PAI), we can observe the intermittent traffic
pattern of video more intuitive, as shown in Figure 2. Moerover, the intermit-
tent traffic pattern can be observed in most HTTP video streaming [21], such
as video streaming generated by different video service providers, e.g., Youtube
[30] and Netflix [1].

We use PAI to describe the intermittent traffic pattern, as shown in Figure
3. There is a gap between two video segments because one video segment is
transmitted after the sever received a request from the client. As a result, the
arrival interval of two successive packets that belong to the same video segment
is smaller than the interval between two successive video segment transmission.
Therefore, PAI obtained in ON periods is generally smaller than PAI obtained
in OFF periods. As a consequence, the distribution of the PAI of video traffic
is characteristic. The probability distribution image of PAIs will contain two
peaks. The highest peak consist of smaller PAIs (ON period-related), and the
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other one consist of PAIs that are related to the interval between two successive
video segment transmission.

3.3 State-of-the-art method

Silhouette Silhouette, presented by Li et al., is a method to detect YouTube
videos from network traffic dataflow. The method has several steps. First, two
traffic features (i.e., average downstream payload size, data rate) are extracted.
Second, Application Data Units (ADUs) are detected based on two thresholds
(i.e., segment length threshold for video ADU, packet length threshold for up-
stream request). Third, three thresholds are used to determine a flow as a
YouTube video. Thresholds are tuned from observing hundreds of YouTube video
sessions.

Within encrypted traffic classification, Silhouette is a rare exception, which
achieves high recall and none false positives without machine learning algorithms.
Therefore, we choose it as one of the state-of-the-art methods.

Machine Learning-based methods

Candidate methods Since it was applied for traffic classification in 2004 [20],
Machine Learning (ML)-based traffic analysis has been attracting much interest
[22, 4]. Different researchers use different methodological datasets to evaluate
their methods [33]. As a result, their methods are not directly comparable [33],
increasing the difficulty of selecting a method as the state-of-the-art method.
Below, we describe three types of traffic features that are often used in traffic
classification.

– Time-related features. Time-related features are a set of time-related
features (e.g., packets per second, bytes per second, flow duration) that first
proposed by draper et al. [8].

– Network path-related features. Network path-related features refer to
the distribution of Packet Arrival Intervals (PAIs). The distribution of PAIs
is proved related to the network path [30].

– Raw traffic. The first few packets of the flow are observed enough for traffic
identification [25]. Besides, wang et al. use the first 784 bytes of the flow with
Convolutional Neural Network (CNN) algorithms, and finally get a better
result than conventional ML algorithms in encrypted traffic identification
[36, 35]. Therefore, we use the first 784 bytes of the flow as a type of traffic
features, marked as raw traffic.

We choose KNN and CNN as two candidate algorithms, the reasons list as
follows:

– KNN. KNN, representatives for conventional machine learning algorithms,
has been proved effective in encrypted traffic classification [22, 30, 9]. More-
over, it behaves better than other algorithms (e.g., SVM, J48) in some tasks
[30, 8] (e.g., video source identification).
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– CNN. CNN, a typical algorithm of deep learning, is good at classifying
sequential data (network traffic can be seen as sequential data) [14, 12].
Besides, wang et al. find CNN better than conventional ML algorithms in
application-level traffic identification [36, 35]. Moreover, CNN was proved to
have an excellent result in video title identification [29].

Table 1. Candidate methods vs. our method (ITP-KNN).

Mark Feature Algorithm
Draper-Gil et al.’s method Time-related features KNN

Shi et al.’s method Network path-related features KNN
Wang et al.’s method Raw traffic CNN

ITP-KNN (our method) Intermittent traffic pattern Pattern-realted features KNN

Finally, we get three Candidate methods, list in Table. 1 .

Table 2. The F1 score of candidate methods (%).

K=1 K=3 K=5 K=7 K=9
Draper-Gil et al.’s method 96.47 96.96 96.95 97.05 97.00

Shi et al.’s method 97.62 97.95 98.24 98.39 98.49
Wang et al.’s method 4.27 (recall=43.8%,precision=2.24%)

Final battle We select 94500 flows randomly from five public datasets [10, 9,
18, 8, 17]. We use these flows as a dataset to evaluate candidate methods. 10-
fold cross-validation was used when tested the performance, and all the features
are extracted at the end of the flow. Results are listed in Table 2. Shi et al.’s
method performs best; therefore, we choose Shi et al.’s method as one of the
state-of-the-art methods to judge our methods.

4 Methods

4.1 Overview

We compare our method with two state-of-the-art methods. Therefore, we imple-
mented three methods, as shown in Figure 4. The three methods are described
as following. First, our method, we develop a set of intermittent traffic pattern-
related (ITP) features and use the K-nearest neighbors (KNN) algorithm. Thus,
our method is called ITP-KNN. Second, we choose Silhouette as one of the state-
of-the-art methods, since Silhouette is a training-free method with high recall
and none false alarm[18]. Third, we evaluated three kinds of encrypted traffic
identification methods. According to the evaluation results, we choose Shi et
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Fig. 4. Overview: our method vs. state-of-the-art methods. We develop a set of inter-
mittent traffic pattern-related (ITP) features. We compare our method (ITP-KNN),
with two state-of-the-art methods (Silhouette, and Shi et al.’s method). Firstly, our
method ITP-KNN uses K-nearest neighbors (KNN) algorithm and ITP features to iden-
tify video flows in encrypted traffic. Secondly, Silhouette is a training-free method that
identifies YouTube video flows based on some thresholds and heuristics [18]. Thirdly,
Shi et al.’s method uses machine learning algorithms and a set of network path-related
(NPR) features. As a result, it needs to retrain regularly [30].

al.’s method (marked as Shi et al.’s method) as the other of the state-of-the-art
methods. Shi et al.’s method achieves an application-level traffic identification
with extremely high recall [30].

– ITP-KNN. The core of this part is feature extraction. We develop a set of
features to highlight the intermittent traffic pattern and identify video flows
based on these features. ITP-KNN is described in Section 4.2.

– Silhouette (detailed in Section 3.3). Silhouette is a training-free light-weight
method. The experiment results show that Silhouette can identify YouTube
video flows in encrypted traffic with high recall (QUIC-based streaming:
99%) and a zero false-positive rate [18].

– Shi et al.’s method (detailed in Section 3.3). Shi et al. [30] proposed a
method that can identify video traffic sources (in other words, application
software) at a client-side firewall. Furthermore, their method achieves the
best average true positive rate at 94% while using the Nearest Neighbor
algorithm [6]. For the sake of fairness, we modify the algorithm used in this
method: we change the Nearest Neighbor algorithm to the KNN algorithm.

4.2 Our framework: KNN that uses ITP features as input

Feature Set: ITP features As described in Section 3.2, PAI can be used to
describe the intermittent pattern of video traffic. There is a series of small PAIs
(continuous packets arrival, ON period) followed by a large PAI (the duration
of OFF period). Therefore, we can observe differences between video class and
non-video class in the distribution of PAI. We randomly selected 50 video in-
stances and 50 non-video instances and drawn their probability density function
in Figure 5.
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Fig. 5. Distribution of log(PAI). Non-video instances include file transfer. There are
two peaks in video class (downstream), which conform to our inference that video traffic
shows intermittent pattern. Moreover, the log(PAI) corresponding to the highest peak
in video class (upstream) is between 0 and 1, which is related to the duration of a video
segment (1 to 10 seconds).

Moerover, video traffic is asymmetric, especially for the amount of the trans-
mitted data. Downstream (client-to-server direction) of the video traffic and up-
stream (server-to-client direction) of the video traffic both show an intermittent
pattern, but, they have differences, compared as follows:

– Downstream. During the ON period (the duration of ON period is recorded
as Ton), a video segment is transmitted; thus, packets transmission bursts.
The OFF periods are essentially the pauses between the two segments being
transmitted.

– Upstream. A request contains few packets, and the interval between two
upstream requests (recorded as Treq) is related to Ton; therefore, the data
amount and transmission rate of upstream are smaller than those of down-
stream. (Waldmann et al. [34] found that the distribution of Treq is centered
precisely around the duration of a video segment (Tseg), and Ton is close to
but slightly less than Tseg, which can be observed in Figure 3 and 5 as well).

Table 3. Description of intermittent traffic pattern-related (ITP) features.

Feature category Direction Description

Quantized PAIs Upstream 23 bin, the first one covering 0 to 5µs, and each subsequent bin
has an upper limit two times larger than the previous one

Downstream 23 bin, the first one covering 0 to 5µs, and each subsequent bin
has an upper limit two times larger than the previous one

Summary
statistics

Simple
descriptive
statistics

Upstream maximum, minimum, and mean over the PAI time series;
the two largest values and their bin number of the Quantized PAIs

Downstream maximum, minimum, and mean over the PAI time series;
the two largest values and their bin number of the Quantized PAIs

Higher-order
statistics

Upstream the skew, kurtosis, and coefficient of variation of the PAI time series
Downstream the skew, kurtosis, and coefficient of variation of the PAI time series

Rates Upstream bytes per seconds and packets per second
Downstream bytes per seconds and packets per second
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We use 70-dimensional features, listed in Table 3. We extract ITP features
from each 15 seconds network trace and divide these features into two categories,
as follows:

– Quantized PAIs. We use 23 bin with the first one covering 0 to 5µs, and
each subsequent bin has an upper limit two times larger than the previ-
ous one. The last bin covers 10 seconds to 20 seconds. ITP-KNN processes
upstream packets and downstream packets separately and concatenates the
resulting features together. Therefore, Quantized PAIs are 46 dimensions.

– Summary statistics. Encrypted traffic provides two main sources of data:
a time series of PAIs, and a time series of packet lengths [2]. This kind
of feature comprises a sequence of summary statistics computed over the
network traces of encrypted traffic, which is a set of features that prevalent
for the problem of traffic identification [22, 8, 16]. As for the selection of
summary statistics, we compute multiple descriptive statistics for upstream/
downstream traffic individually. This feature set includes simple descriptive
statistics over the PAI time series - such as maximum, minimum, and mean
- as well as higher-order statistics like the skew or kurtosis of the time series.

Selected Classifiers We describe the K-nearest neighbors (KNN) algorithm
we have chosen for conducting our experiments as follows:

KNN is a supervised learning algorithm. Many researchers have utilized KNN
to realize an application-level traffic classification and proved its better perfor-
mance [22, 30, 9]. KNN performs even better than a deep learning algorithm,
deep neural network, in video source identification [30, 31].

5 Evaluation and Discussion

In the experiments, we use five public datasets [10, 9, 18, 8, 17], together with
some traffic captured by ourselves using Wireshark. In totally, we collected more
than 450 thousand flows (about 350G). All the traffic was encrypted (HTTPS,
QUIC, VPN, Tor, Shadowsocks).

From the above traffic traces, we randomly select 20010 video flows and
282650 not-video flows as our dataset. We use these 302660 flows to evaluate our
method, i.e., ML-based TA that uses PR features (marked as ITP-KNN). We
compare our method, ITP-KNN, with two state-of-the-art methods, Silhouette
(training-free method) and Shi et al.’s method (performed best among ML-based
methods in our evaluation).

Video flow identification requires high timely ability, which means the re-
sponse time of the identification method should be as short as possible. For
example, ISPs need to identify video flows in time in order to provide differenti-
ated service. The response time of the identification method, affected mainly by
the feature extraction time [8], shows how timely the method is. Therefore, we
set the feature extraction time (flow duration) at 15 seconds (shorter than Shi
et al.’s method).
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Table 4. Our method (ITP-KNN) vs. two state-of-the-art methods (%).

Silhouette Shi et al.’s method ITP-KNN
R P F1 R P F1 R P F1

K=1

84.65 99.63 91.53

92.25 92.07 92.16 97.46 97.32 97.39
K=3 93.95 94.00 93.97 97.36 97.76 97.56
K=5 94.60 94.13 94.36 97.36 97.90 97.63
K=7 94.75 94.00 94.37 97.55 97.95 97.75
K=9 95.00 94.06 94.53 97.82 98.18 98.00

We used 10-fold cross-validation in the evaluation. Table 4 depicts the recall
(R), precision (P), and F1 score (F1) obtained by using our method (ITP-KNN),
and two state-of-the-art methods. Next, we present our main findings.

1. The heuristic method that does not use machine learning algorithms (Sil-
houette) possesses a limited capability for identifying video flows. This finding is
supported by the fact that Silhouette attains a recall of 84.65% (far lower than
ML-based methods). We regard recall as the most important metric for the rea-
son that high recall means that a method identified most of the video flows. For
example, ISPs need to provide differentiated service guarantees, which require
the ability to identify video flows as much as possible.

2. The application-level traffic identification method shows promising results
for the identification of video flows (content-level). Results in Table 4 show that
Shi et al.’s method performs well in this task. To sum up, these results were very
encouraging, which means the present traffic identification methods can be ap-
plied to a more fine-grained identification task. However, when the identification
task requires high recall and precision, the present traffic identification methods
need to be improved.

3. Fine-grained traffic identification task demand for in-depth analysis of traf-
fic. The results in Table 4 suggest this finding: our method (ITP-KNN) behaves
best overall in the specific fine-grained traffic identification task (identification
of video flows). Our method is based on an in-depth analysis of video traffic: we
develop a set of features to stress out the unique transport pattern of video, the
intermittent traffic pattern.

6 Conclusion

Experimental evaluations prove the advantages of our method; compared with
baseline, our method is better overrall. The results show that our method can
identify video flows from encrypted traffic.

Our framework is based on one assume: most online video traffic shows the
intermittent pattern. Though theoretically universal, it has a flaw that it is only
applicable to identify video traffic that generated by present streaming protocols.
Though better than the baseline in universality, our method still has a margin of
improvement. In future work, we will apply our method to the actual engineering
to realize video flows identification in high-speed and large-scale network traffic.
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