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Abstract. It is an undeniable fact that material handling systems aim at supplying 

the right materials at the right locations at the right time. This fact creates the 

need for the design of logistic-train-fleet-oriented, distributed and scalability-

robust control policies ensuring deadlock-free operations. The paper presents a 

solution to a multi-item and multi-depot vehicle routing and scheduling problem 

subject to fuzzy pick-up and delivery transportation time constraints. Since this 

type of problem can be treated as a fuzzy constraint satisfaction problem, a 

solution to it can be determined using both computer simulation and analytical 

ordered-fuzzy-numbers-driven calculations. The accuracy of both approaches is 

verified based on the results of multiple simulations. In this context, our 

contribution consists of proposing an alternative approach that allows avoiding 

time-consuming computer simulation-based calculations of logistic train fleet 

schedules. 

Keywords: vehicle routing problem, ordered fuzzy numbers  

1 Introduction 

To solve a Vehicle Routing Problem (VRP), one has to create a serving plan specifying 

how much a given fleet of vehicles should deliver and what cyclic routes the vehicles 

should travel to provide the required supplies on time. Since the VRP belongs to a class 

of NP-hard logistic train routing and scheduling problems, various heuristic methods 

that return approximate solutions are used to solve it. Due to the growing interest in 

logistic networks based on autonomous vehicles and Milk-run systems [11,14], there is 

a need to build models of these systems that take into account the uncertainty of the 

parameters describing them. In response to this need and deficiencies of the currently 
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used approaches [3, 14, 15, 16], we wanted to investigate the possibility of using 

declarative modelling methods [2] supported by the ordered fuzzy number (OFN) 

framework in solutions that provide interactive decision support for prototyping 

congestion-free vehicle traffic in in-plant distribution systems. More specifically, we 

assessed computer simulation methods and ordered-fuzzy-number-driven approaches 

to solve multi-depot vehicle cyclic routing and scheduling problems. The present study 

is a continuation of our previous work that explored methods of fast prototyping of 

solutions to problems related to routing and scheduling of tasks typically performed in 

batch flow production systems, as well as problems related to the planning and control 

of production flow in departments of automotive companies [2]. The main contributions 

of this paper are summarized as follows: 1) In contrast to the usually accepted 

assumptions, we assume that transport processes have a deterministic nature and an 

uncertain course, which requires taking into account the human factor. We take into 

consideration the related distribution of delivery moments, which allows constructing 

more realistic, i.e., more accurate, models for assessing the effectiveness of prototyped 

route variants. 2) We formulate in detail a declarative-modelling-driven approach to the 

assessment of alternative routing and scheduling variants for a fleet of vehicles. The 

obtained ordered-fuzzy-number-driven model allows searching for congestion-free 

logistic train routes in terms of the Fuzzy Constraint Satisfaction Problem. 3) The 

proposed approach enables the replacement of the usually used computer simulation 

methods for route prototyping with an analytical method employing the OFN 

formalism. It is an outperforming approach to solving in-plant Milk-run-driven delivery 

problems. 

The remainder of this paper is as follows: Section 2 presents a review of selected 

literature of the subject, including necessary information about OFNs. A motivation 

example introducing the problem under consideration is in Section 3. Section 4 

formulates a declarative model and a Fuzzy Constraint Satisfaction Problem for 

planning delivery missions of a vehicle fleet. Section 5 shows how to use the model in 

supply-cycle-prototyping tasks. Section 6 summarizes the principal conclusions and 

proposes the main directions for future research. 

2 Literature review 

2.1 Vehicle routing and scheduling  

VRPs belong to a class of combinatorial optimization problems. Because VRPs are 

problems in which a set of vehicles have to serve a set of pick-up/delivery points and 

satisfy assumed constraints, while minimizing different objectives such as cost, 

distance, or time, they are usually NP-hard problems for which, so far, no efficient 

solution algorithm has been found. Different constraints, depending on the specific 

characteristics of the problem and the objective(s) of the decision-making process, lead 

to a variety of task-specific problems. Examples of such problems [4, 7, 15, 19] include 

Mix Fleet VRP, Multi-depot VRP, Split-up Delivery VRP, Pick-up and Delivery VRP, 

VRP with Time Windows, and many similar ones. The VRP can be seen as a 

generalization of the Traveling Salesman Problem aimed at finding the optimal set of 
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routes for a fleet of vehicles delivering goods or services to various locations. Most of 

the research in the field of distribution logistics is devoted to the analysis of methods 

of organizing transport processes in ways that minimize the size of the fleet, the distance 

travelled (energy consumed), or the space occupied by a distribution system. In 

focusing on the search for optimal solutions, these studies implicitly assume that there 

exist admissible solutions, e.g., ones that ensure collision-free and/or deadlock-free 

(congestion-free) flow of concurrent transport processes. In practice, this kind of 

assumption requires either on-line updating (revision)  of the routing policies used or 

prior (offline) planning of congestion-free vehicle routes and schedules. Studies on 

generating dynamic routing policies are conducted sporadically [4]; even less frequent 

are investigations of robust routing and scheduling of Milk-run traffic, which are, by 

and large, limited to Automated Guided Vehicle (AGV) systems. In a Milk-run system, 

routes, time schedules, and the type and number of parts to be transported are assigned 

to different logistic trains so that they can collect orders from different suppliers [11]. 

The benefits of using a system of this type include improved efficiency of the overall 

logistics system and substantial potential savings of environmental and human 

resources along with remarkable cost reductions related to inventory and transportation 

[7, 14]. The Congestion Avoidance Problem, which conditions the existence of 

admissible solutions, is an NP-hard problem [21]. Because the necessary and sufficient 

conditions for deadlock-free execution of concurrent processes are not known, system 

analysis (i.e., analysis of the states potentially leading to system deadlocks) is most 

frequently performed using the laborious and time-consuming computer simulation 

methods [4,9]. In practical applications, congestion avoidance methods are used, in 

which the sufficient conditions for collision-free execution of processes are 

implemented. This means that the time-consuming method of analyzing distribution 

networks with a view to detecting situations that lead to deadlocks between concurrent 

transport flows can be replaced by searching for a synchronization mechanism that 

would guarantee cyclic execution of these flows. Methods that are most commonly 

employed for such purposes include those that use the formalism of max-plus algebra 

[17], simulations [8], graph theory [20], and constraint programming [2,19]. It should 

be noted that the possibility of fast implementation of the process-synchronization 

mechanism comes at the expense of omitting some of the potentially possible scenarios 

for deadlock-free execution of the processes.  

In many real situations, not all the constraints and objective functions can be valued 

in a precise way. The majority of models of the so-called Fuzzy VRP only assume 

vagueness for fuzzy demands to be collected and fuzzy service and travel times. It 

should be emphasized that the literature on these issues is very scarce [3,10].  

2.2 Ordered Fuzzy Number algebra framework 

The multi-depot vehicle routing and scheduling problems developed so far have 

limited use due to the data uncertainty observed in practice. The values describing 

parameters such as transport time, loading/unloading times, depend on the human 

factor, which means they cannot be determined precisely. Accounting for data 

uncertainty by including fuzzy variables in these models is difficult due to the 
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imperfections of the classical fuzzy numbers algebra [1]. Relations describing the 

relationships between fuzzy variables (variables with fuzzy values) by algebraic 

operations (in particular, addition and multiplication) do not meet the conditions of the 

Ring (among others if the condition 𝐴∈ℱ  𝐴 + 0 = 𝐴 is met, then condition 

𝐴∈ℱ  !𝐵∈ℱ 𝐴 + 𝐵 = 0 is not met). In addition, algebraic operations based on standard 

fuzzy numbers follow Zadeh’s extension principle. In practice, this means that no 

matter what algebraic operations are used, the support of the fuzzy number, being the 

result, expands. Consequently, it is impossible to solve algebraic equations with fuzzy 

variables. In particular, this means that for any fuzzy numbers 𝑎, 𝑏, 𝑐 does not hold the 

following implication (𝑎 +  𝑏 =  𝑐) ⇒  [(𝑐 −  𝑏 =  𝑎) ∧ (𝑐 −  𝑎 =  𝑏)]. This 

makes it impossible to solve a simple equation 𝐴 + 𝑋 =  𝐶. This fact significantly 

hinders the use of approaches based on declarative models, in which most of the 

relationships between decision variables are described as linear/nonlinear equations 

and/or algebraic inequalities. There are various approaches in the literature that work 

around the above-mentioned deficiencies [1,12], but they are quite complex. 

We address these issues by proposing a declarative model of congestion-free vehicle 

routing and scheduling that implements the formalism of OFN algebra, which assumes 

the existence of a neutral element (zero) for operations such as addition and 

multiplication, making it possible to solve algebraic equations in the model. The 

concept of OFNs can be defined as follows [13]: 

Definition 1. An OFN is defined as a pair of continuous real functions defined by 

the interval [0, 1], i.e.: 

 𝐴̂  =  (𝑓𝐴, 𝑔𝐴), where: 𝑓𝐴, 𝑔𝐴: [0, 1]  → ℝ.   (1) 

The functions 𝑓𝐴 and 𝑔𝐴 are called the up part and the down part of an OFN 𝐴̂, 

respectively. They are also referred to as branches of the fuzzy number 𝐴̂. The values 

of these continuous functions are limited ranges, which can be defined as the following 

bounded intervals: 𝑈𝑃𝐴  = (𝑙𝐴0, 𝑙𝐴1) and 𝐷𝑂𝑊𝑁𝐴  =  (𝑝𝐴1, 𝑝𝐴0). Assuming that: 𝑓𝐴 is 

increasing and 𝑔𝐴 is decreasing as well as that 𝑓𝐴 ≤ 𝑔𝐴, the membership function 𝜇𝐴 of 

the OFN 𝐴̂ is as shown in Figs. 1a) and 1b):  

 μ
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   (2) 

 
Fig. 1. a) OFN 𝐴̂ represented as a convex fuzzy number, b) functions 𝑓𝐴 , 𝑔𝐴 determining 𝐴̂ 

(positive orientation), c) discrete representation of 𝐴̂ (𝑑𝑥 = 0.25) (based on [13]) 
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An additional property called orientation (direction) is defined for an OFN. There are 

two types of orientation: positive, when 𝐴̂  =  (𝑓𝐴, 𝑔𝐴) the direction is consistent with 

the direction of the OX axis and negative, when 𝐴̂  =  (𝑔𝐴, 𝑓𝐴) the direction is opposite 

to the direction of the OX axis. Assuming that the values of all fuzzy variables may 

have a different orientation, let us define algebraic operations that meet the listed 

conditions of the Ring. The definitions of algebraic operations used in the proposed 

model are as follows: 

Definition 2. Let 𝐴̂  =  (𝑓𝐴, 𝑔𝐴) and 𝐵̂  =  (𝑓𝐵 , 𝑔𝐵) be OFNs. 𝐴̂ is a number equal to 𝐵̂ 

(𝐴̂ = 𝐵̂), 𝐴̂ is a number greater than 𝐵̂ or equal to or greater than 𝐵̂ (𝐴̂ > 𝐵̂; 𝐴̂ ≥ 𝐵̂), 𝐴̂ 
is less than 𝐵̂ or equal to or less than 𝐵̂ (𝐴̂ < 𝐵̂ , 𝐴̂ ≤ 𝐵̂) if: 𝑥∈[0,1] 𝑓𝐴(𝑥) ∗ 𝑓𝐵(𝑥)  ∧

  𝑔𝐴(𝑥) ∗ 𝑔𝐵(𝑥), where: the symbol ∗ stands for: =, >, ≥,  <, or ≤.  
Definition 3. Let 𝐴̂  =  (𝑓𝐴, 𝑔𝐴), 𝐵̂  =  (𝑓𝐵, 𝑔𝐵), and 𝐶̂  =  (𝑓𝐶 , 𝑔𝐶) be OFNs. The 

operations of addition 𝐶̂  =  𝐴̂ + 𝐵̂, subtraction 𝐶̂  =  𝐴̂ − 𝐵̂, multiplication 𝐶̂  =  𝐴̂ ×

𝐵̂ and division 𝐶̂  =  𝐴̂/𝐵̂ are defined as follows: 𝑥∈[0,1]   𝑓𝐶(𝑥) =  𝑓𝐴(𝑥) ∗ 𝑓𝐵(𝑥)  ∧

 𝑔𝐶(𝑥) =  𝑔𝐴(𝑥) ∗ 𝑔𝐵(𝑥), where: the symbol ∗ stands for +, −, ×, or ÷; The operation 

of division is defined for 𝐵̂ such that |𝑓𝐵|  >  0 and |𝑔𝐵|  >  0 for x ∈ [0, 1]. 

In recent years, the concept of OFNs has continuously been developed and used in 

various practical applications. Many publications have been devoted to the analysis of 

the OFN model in relation to convex fuzzy sets [5,6]. The concept of defining imprecise 

values as OFNs has also been used in critical path analysis. A practical implementation 

of OFN arithmetic in the monitoring of a crisis control centre was described in [6]. 

Another recently popular area of OFN’s applications is multi-criteria decision making 

(MCDM) methods [18]. In MCDM methods, the orientation of OFNs differentiates the 

type of criterion used (cost vs profit). Finally, to the best of our knowledge, the 

approach proposed in this paper is the first attempt to use OFNs for Milk-run-like traffic 

routing and scheduling. 

3 Illustrative example 

Let us consider graph 𝐺 = (𝑁, 𝐸) modelling a distribution network composed of 

|𝑁| = 𝜔 = 11 pick-up/delivery points (i.e., workstations and warehouses), as shown 

in Fig. 2. The pick-up/delivery points (hereinafter referred to as nodes) include 2 nodes 

representing warehouses 𝑁1and 𝑁5 and 9 nodes representing workstations 𝑁2-𝑁4, 𝑁6-
𝑁11. Each node is labelled with an index which indicates the beginning moments of 

node occupation 𝑥𝜆 and node release 𝑥𝑠𝜆, as well as the time spent at the node, i.e. pick-

up/delivery operation time 𝑡𝜆. Nodes are cyclically supplied with goods in time win-

dows repeated (with size 𝑇 = 2970s). The goods are supplemented in intervals deter-

mined by the delivery deadline 𝑑𝑥𝜆 and delivery margin 𝜏𝜆, i.e. 𝑥𝜆 + 𝑡𝜆 = 𝑦𝜆 ∈
[ 𝑑𝑥𝜆 − 𝜏𝜆, 𝑑𝑥𝜆] (see intervals identified by grey bars in Fig. 4). In turn, each edge 

(𝑁𝛽 , 𝑁𝜆) ∈ 𝐸 linking nodes 𝑁𝛽 and  𝑁𝜆 is labelled with an index representing travelling 

time 𝑑𝛽,𝜆 between nodes 𝑁𝛽 and  𝑁𝜆 and a set of indexes 𝐾𝛽,𝜆 indicating the transport 

zones located along the edge. It is assumed that the set of edges 𝐸 model the routes 

travelled by logistic trains between nodes 𝑁𝛽 and 𝑁𝜆. It is also assumed that each edge 
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(𝑁𝛽 , 𝑁𝜆) is composed of a set of transport zones labelled by a set of indexes 𝐾𝛽,𝜆. Given 

is a fleet of logistic trains 𝐿𝑇 which handle deliveries in the distribution network under 

consideration. The routes travelled by the logistic trains 𝐿𝑇𝑣 are denoted by sequences 

of nodes: 𝜋𝑣 = (𝑁𝑣1 , … , 𝑁𝑣𝑖 , 𝑁𝑣𝑖+1 , … , 𝑁𝑣𝜇), where: 𝑣𝑖 ∈ {1, . . , 𝑙𝑛}, 𝑣𝑖≠𝑣𝑗  𝑁𝑣𝑖 ≠ 𝑁𝑣𝑗, 

(𝑁𝑣𝑖 , 𝑁𝑣𝑖+1) ∈ 𝐸. To each edge (𝑁𝑣𝑖 , 𝑁𝑣𝑖+1) ∈ 𝐸 of the route 𝜋𝑣 , a time period is as-

signed in which the edge is occupied by the logistic train: 𝐼𝑁𝑣𝑖,𝑣𝑖+1 = [𝑥𝑠𝑣𝑖 , 𝑥𝑣𝑖+1]. The 

set of routes 𝜋𝑣 of the available fleet of logistic trains is marked by Π. It is assumed that 

nodes representing a warehouse (e.g. 𝑁1, 𝑁5) appear on every route, and each node 

representing a workstation (e.g. 𝑁2-𝑁4, 𝑁6-𝑁11) occurs only on one route from the set 

Π. In order to avoid collisions/blockades between trains, the following condition must 

also be met: given are two routes 𝜋𝑣 , 𝜋𝑤 ∈ Π. If for any pair of edges (𝑁𝑣𝑖 , 𝑁𝑣𝑖+1) be-

longing to 𝜋𝑣 and (𝑁𝑤𝑗 , 𝑁𝑤𝑗+1) belonging to 𝜋𝑤, the following condition holds 

 [(𝐾𝑣𝑖,𝑣𝑖+1 𝐾𝑤𝑗,𝑤𝑗+1 ≠ ∅) ∧ (𝐼𝑁𝑣𝑖,𝑣𝑖+1 𝐼𝑁𝑤𝑗,𝑤𝑗+1 ≠ ∅)], then trains 𝐿𝑇𝑣, 𝐿𝑇𝑤 

which travel along routes 𝜋𝑣 , 𝜋𝑤 are collision/blockade-free. In other words, it means 

that two trains 𝐿𝑇𝑣, 𝐿𝑇𝑤 travelling along routes 𝜋𝑣 , 𝜋𝑤will not block each other if they 

do not occupy the same edge during the same period of time. 

 
Fig. 2. Graph model of a distribution network  

Taking into account the assumptions mentioned above, we are looking for a set of 

routes of logistic trains and the associated delivery schedules that guarantee congestion-

free and timely delivery of goods to the nodes. Examples of routings that guarantee 

timely delivery of goods and the resulting schedule are presented in Figs. 3 and 4. The 

routes are the following sequences of nodes visited repetitively by 𝐿𝑇1 and 𝐿𝑇2: 𝜋1 =
(𝑁1, 𝑁7, 𝑁6, 𝑁4, 𝑁8, 𝑁11, 𝑁5), 𝜋2 = (𝑁1, 𝑁2, 𝑁10, 𝑁9, 𝑁3, 𝑁5). These routes guarantee 

collision-free and deadlock-free delivery. However, in many cases (e.g. in Milk-run 

systems), transport operations and loading/unloading operations are usually carried out 

by people, which means they are quite uncertain. The uncertainty of the duration of the 
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operations results in uncertain moments of node occupation and release. Consequently, 

the actual implementation of the schedule may differ significantly from the planned 

one, and even minor deviations from the plan may have serious implications, such as 

blockages. Figure 3 illustrates a situation in which a 90-s delay (relative to the deadline 

resulting from the planned schedule in Fig. 4) of train 𝐿𝑇2 with the simultaneous 

acceleration of the train 𝐿𝑇1 by 60 s leads to blockade in edges 𝑁10-𝑁9 and 𝑁8-𝑁11 (the 

condition introduced above does not hold). Therefore, there is a need to synthesize such 

routes, which, assuming a specific range of data uncertainty, still guarantee collision-

free and deadlock-free performance of periodically repeating delivery operations.  

 
Fig. 3. Routes of trains 𝐿𝑇1 and 𝐿𝑇2 servicing the distribution network from Fig. 2 

 
Fig. 4. Gantt chart of a multi-depot delivery schedule for the train routes from Fig. 3 
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4 Problem formulation 

4.1 Assumptions 

The problem under consideration can be defined as follows. Assuming that: 

 there is a known transportation network 𝐺 = (𝑁, 𝐸), where 𝑁 is a set of nodes and 

𝐸 is a set of edges; the set 𝑁 contains the subsets of nodes representing workstations 

𝑁𝐶 ⊆ 𝑁 and warehouses 𝑁𝑊 ⊆ 𝑁 : 𝑁𝑊 ∪𝑁𝐶 = 𝑁, 𝑁𝑊 ∩𝑁𝐶 = ∅, 

 each edge (𝑁𝛽 , 𝑁𝜆) ∈ 𝐸 is labelled by a fuzzy value 𝑑𝛽,𝜆̂ (represented in terms of 

OFN) determining the travel time between nodes 𝑁𝛽 and 𝑁𝜆,   

 each edge (𝑁𝛽 , 𝑁𝜆) ∈ 𝐸 consists of sectors described by a set of indexes 𝐾𝛽,𝜆 ⊆ ℕ,  

 given is a fleet of logistic trains 𝐿𝑇, in which each of the trains 𝐿𝑇𝑣  corresponds to a 

route 𝜋𝑣 (𝜋𝑣 ∈ 𝛱) described by a sequence of successively visited nodes,  

 trains can only move between nodes connected by an edge,  

 if for any pair of edges: (𝑁𝑣𝑖 , 𝑁𝑣𝑖+1) and (𝑁𝑤𝑗 , 𝑁𝑤𝑗+1) belonging to 𝜋𝑣, 𝜋𝑤, the 

following condition holds  [(𝐾𝑣𝑖,𝑣𝑖+1 𝐾𝑤𝑗,𝑤𝑗+1 ≠ ∅) ∧ (𝐼𝑁𝑣𝑖,𝑣𝑖+1 𝐼𝑁𝑤𝑗,𝑤𝑗+1 ≠

∅)], then the trains travelling along routes 𝜋𝑣 , 𝜋𝑤 are congestion-free,  

 each node 𝑁𝜆 ∈ 𝑁𝐶 occurs exactly on one route of the set 𝛱, 
 each node 𝑁𝜆 ∈ 𝑁𝑊 occurs exactly on all routes of the set 𝛱, 
 node 𝑁𝜆 located on route 𝜋𝑣 is associated with the delivery operation 𝑜𝜆 ∈ 𝒪, 
 the duration of the delivery operation is determined by the fuzzy value 𝑡𝜆̂, 
 deliveries of goods take place cyclically in time windows repeated with a period 𝑇̂,  

 goods are delivered in accordance with the fuzzy delivery deadline 𝑑𝑥𝜆̂ and fuzzy 

delivery margin 𝜏𝜆̂ (represented as OFN),  

 fuzzy beginning moments of node occupation 𝑥𝜆̂ and node release 𝑥𝑠𝜆̂  (represented 

as  OFN) make up the fuzzy cyclic schedule 𝑋̂,   

the following question can be considered: Does there exist a set of routes 𝛱 operated 

by the given fleet 𝐿𝑇, which ensures that a fuzzy cyclic schedule 𝑋̂ will guarantee 

timely delivery (with given deadlines 𝑑𝑥𝜆̂ and delivery margin  𝜏𝜆̂) of goods to the 

nodes? 

The proposed model uses decision variables whose values OFNs as defined in 

Definition 1. For the needs of the model, OFN 𝐴̂  is specified by sequences 𝑓𝐴′ and 𝑔𝐴′ 
containing values of functions 𝑓𝐴 and 𝑔𝐴 obtained as a result of discretization of the 

interval [0, 1], i.e. 

 𝑓𝐴′ = (𝑓𝐴(0), 𝑓𝐴(𝑑𝑥), . . . , 𝑓𝐴((𝑀 −  1) 𝑑𝑥), 𝑓𝐴(1)),  (3) 

 𝑔𝐴
′ = (𝑔𝐴(1), 𝑔𝐴((𝑀 − 1)𝑑𝑥), . . . , 𝑔𝐴(1𝑑𝑥), 𝑔𝐴(0)), 𝑑𝑥 =

1

𝑀
 , (4) 

where (𝑀 + 1) is the number of discrete points (Fig. 1c). The adoption of such an OFN 

representation allows to implement the defined operations (see Def. 2 and 3). 
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4.2 Declarative model 

The previously introduced terminology and symbols referring to OFN and the 

following notation were used in designing the Milk-run like traffic model:  

Symbols:   

𝑁𝜆 ∈ 𝑁:  𝜆-th node. 

𝐿𝑇𝑣 ∈ 𝐿𝑇: 𝑣-th logistic train. 

𝑜𝜆 ∈ 𝒪:  operation of delivery of materials to node 𝑁𝜆 on route 𝜋𝑣. 
Parameters:  

Crisp parameters: 

𝐺 = (𝑁, 𝐸):  graph of a transportation network: 𝑁 = {𝑁1…𝑁𝜔} is a set of nodes, 

   𝐸 = {(𝑁𝑖 , 𝑁𝑗)| 𝑖, 𝑗 ∈ 𝑁 , 𝑖 ≠  𝑗} is a set of edges, 𝜔 – the number of nodes.  

𝑙𝑛:  the number of logistic trains. 

𝐾𝛽,𝜆:  a set of indexes assigned to zones located along the edge (𝑁𝛽 , 𝑁𝜆). 

Imprecise parameters: (defined as positive-oriented OFNs and marked by     ̂"):  

𝑑𝛽,𝜆̂:  time of a transport operation executed along the edge (𝑁𝛽 , 𝑁𝜆).  

𝑡𝜆̂:  time of operation 𝑜𝜆. 

𝑑𝑥𝜆̂: deadline of delivery of containers to node 𝑁𝜆 (see example in Fig. 3). 

𝜏𝜆̂ : delivery margin, (see Fig. 3),     

𝑇̂ : window width understood as a period, repeated at regular intervals, in 

which deliveries must be made to all nodes (see Fig. 3). 

Variables:  

Crisp variables: 

𝑟𝑏𝜆:   an index of the operation that precedes the operation 𝑜𝜆; 𝑟𝑏𝜆 = 0 means 

that operation 𝑜𝜆, is the first one on the route.  

𝑟𝑓𝜆:  an index of the operation that follows 𝑜𝜆. 
Imprecise variables (positive-/negative-oriented OFNs):  

𝑥𝜆̂:  moment of commencement of the delivery operation 𝑜𝜆 on node 𝑁𝜆. 
𝑦𝜆̂:  moment of completion of the operation 𝑜𝜆 on node 𝑁𝜆. 
𝑥𝑠𝜆̂: moment of release of node 𝑁𝜆 by operation 𝑜𝜆. 

Sets and sequences:  

𝑁𝐶: a subset of nodes representing workstations 𝑁𝐶 ⊆ 𝑁.  
𝑁𝑊: a subset of nodes representing warehouses 𝑁𝑊 ⊆ 𝑁.  
𝑅𝐵:  a sequence of predecessor indexes of delivery operations, 𝑅𝐵 =

(𝑟𝑏1, … , 𝑟𝑏𝛼 , … , 𝑟𝑏|𝑁𝐶|+𝑙𝑛×|𝑁𝑊|), 𝑟𝑏𝛼 ∈ {0, … , 𝜔}. 

𝑅𝐹: a sequence of successor indexes of delivery operations, 𝑅𝐹 =

(𝑟𝑓1, … , 𝑟𝑓𝛼 , … , 𝑟𝑓|𝑁𝐶|+𝑙𝑛×|𝑁𝑊|), 𝑟𝑓𝛼 ∈ {1, … , 𝜔}, e.g. 𝑅𝐵 and 𝑅𝐹 that 

determine routes 𝜋1 and 𝜋2 (see Fig. 3), and take the following form: 
 𝑁1 𝑁2 𝑁3 𝑁4 𝑁5 𝑁6 𝑁7 𝑁8 𝑁9 𝑁10 𝑁11 𝑁1′ 𝑁5′ 
𝑅𝐵 = ( 0, 1’, 9, 6, 11, 7, 1, 4, 10,  2, 8, 0, 3) 
𝑅𝐹 = ( 7, 10, 5’, 8, 1, 4, 6, 11, 3, 9, 5, 2, 1’) 

The symbol ‘ refers to nodes associated with the warehouses visited by train 𝐿𝑇2.  

𝜋𝑣:  route of the train 𝐿𝑇𝑣, 𝜋𝑣 = (𝑁𝑣1 , … ,𝑁𝑣𝑖 , 𝑁𝑣𝑖+1 , … , 𝑁𝑣𝜇), where: 𝑣𝑖+1 =

𝑟𝑓𝑣𝑖  for 𝑖 =  1, … , 𝜇 − 1 and 𝑣1 = 𝑟𝑓𝑣𝜇 . 
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𝑋 ′̂:  a sequence of moments 𝑥𝜆̂: 𝑋
′̂ = (𝑥1̂, … , 𝑥𝜆̂ , … , 𝑥𝜔̂).  

𝑌′̂: a sequence of moments 𝑦𝜆̂: 𝑌
′̂ = (𝑦1̂, … , 𝑦𝜆̂ , … , 𝑦𝜔̂). 

𝑋𝑠′̂ : a sequence of moments 𝑥𝑠𝜆̂: 𝑋𝑠
′̂ = (𝑥𝑠1̂, … , 𝑥𝑠𝜆̂ , … , 𝑥𝑠𝜔̂). 

𝑋̂: a fuzzy cyclic schedule: 𝑋̂ = (𝑋 ′̂, 𝑌′̂, 𝑋𝑠′̂ ). 

Constraints:  

1. constraints describing the orders of operations depending on the logistic train routes: 

 𝑦𝜆̂ = 𝑥𝜆̂ + 𝑡𝜆̂, 𝑜𝜆 ∈ 𝒪, (5) 

 𝑟𝑏𝜆 = 0,∀𝜆 ∈ 𝐵𝑆 ⊆ 𝐵𝐼 = {1, … , 𝜔},|𝐵𝑆| = 𝑙𝑛,  (6) 

 𝑏𝜆 ≠ 𝑟𝑏𝛽,  ∀𝜆, 𝛽 ∈ 𝐵𝐼\𝐵𝑆,  𝜆 ≠ 𝛽,  (7) 

  𝑟𝑓𝜆 ≠ 𝑟𝑓𝛽 , ∀𝜆, 𝛽 ∈ 𝐵𝐼, 𝜆 ≠ 𝛽 ,   (8) 

 (𝑟𝑏𝜆 = 𝛽) ⇒ (𝑟𝑓𝛽 = 𝜆), ∀𝑏𝜆 ≠ 0 ,   (9) 

 𝑥𝑠𝜆̂ ≥ 𝑦𝜆̂, 𝑜𝜆 ∈ 𝒪  (10) 

 [(𝑓𝜆 = 𝛽) ∧ (𝑏𝛽 = 0)] ⇒ (𝑥𝑠𝜆̂ = 𝑥𝛽̂ + 𝑇̂ − 𝑑𝜆,𝛽̂),  𝑜𝜆 , 𝑜𝛽 ∈ 𝒪,   (11) 

 [(𝑓𝜆 = 𝛽) ∧ (𝑏𝛽 ≠ 0)] ⇒ (𝑥𝑠𝜆̂ = 𝑥𝛽̂ − 𝑑𝜆,𝛽̂),  𝑜𝜆 , 𝑜𝛽 ∈ 𝒪, (12) 

2. if edge (𝑁𝜀 , 𝑁𝛽)  has common sectors with the edge (𝑁𝜆, 𝑁𝛾), then:  

 (𝐾𝜀,𝛽 𝐾𝜆,𝛾 ≠ ∅) ⇒ [(𝑥𝛽̂ ≤ 𝑥𝑠𝜆̂) ∨ (𝑥𝛾̂ ≤ 𝑥𝑠𝜀̂)], 𝑜𝜆, 𝑜𝛽 , 𝑜𝜀 , 𝑜𝛾 ∈ 𝒪 (13) 

3. the delivery operation 𝑜𝜆 should be completed before the given delivery deadline 

𝑑𝑥𝜆 (with a margin 𝜏𝜆̂) resulting from the production flows of an individual product: 

 𝑦𝜆̂ + 𝑐 × 𝑇̂  ≤  𝑑𝑥𝜆̂,  𝑜𝜆 ∈ 𝒪 , (14) 

  𝑦𝜆̂ + 𝑐 × 𝑇̂  ≥  𝑑𝑥𝜆̂ + 𝜏𝜆̂,  𝑜𝜆 ∈ 𝒪; 𝑐 ∈ ℕ. (15) 

4.3  Fuzzy Constraint Satisfaction Problem 

Our problem can be viewed as a Fuzzy Constraint Satisfaction (FCS) Problem (16): 

  𝐹𝐶𝑆̂  = ((𝒱̂, 𝒟̂), 𝒞̂),  (16) 

where: 𝒱̂ = {𝑋̂, 𝛱} – a set of decision variables, including: 𝑋̂ – a fuzzy cyclic schedule: 

𝑋̂ = (𝑋 ′̂, 𝑌′̂, 𝑋𝑠′̂ ), 𝛱 – a set of routes determined by sequences 𝑅𝐵, 𝐹𝑅.  𝒟̂ – a finite 

set of decision variable domains: 𝑥𝜆̂, 𝑦𝜆̂, 𝑥𝑠𝜆̂ ∈ ℱ (ℱ is a set of OFNs (1)), 𝑟𝑏𝜆 ∈
{0, …𝜔}, 𝑟𝑓𝜆 ∈ {1, …𝜔}, 𝒞𝑅𝐸 – a set of constraints specifying the relationships between 

the operations implemented in Milk-run cycles (5)–(15). 

To solve 𝐹𝐶𝑆̂ (16), the values of the decision variables from the adopted set of 

domains for which the given constraints are satisfied must be determined. 

Implementation of 𝐹𝐶𝑆̂ in a constraint programming environment such as OzMozart, 

allows us to find the answer.  

5 Computational experiments 

Consider the system layout from Fig. 2. The goal is to find congestion-free routes 

for the given fleet of logistic trains (i.e. the set Π). The trains cyclically supply goods 

to nodes 𝑁1-𝑁11 in time windows with a width of 𝑇̂ = 2970 [s] (in the case under 

consideration, 𝑇̂ is defined as a singleton – an OFN with a strictly neutral direction). It 
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is assumed that the available vehicle fleet consists of two trains 𝐿𝑇 ={𝐿𝑇1, 𝐿𝑇2}. It is 

also assumed that the fuzzy times of a delivery operation (𝑡𝜆̂) and admissible fuzzy 

travel times (𝑑𝛽,𝜆̂) are as shown in Figs. 5b and 5c. The answer to the following question 

is sought: Does there exist a set of routes 𝛱 operated by the given logistic trains 𝐿𝑇1 
and 𝐿𝑇2, which ensures that there exists a fuzzy cyclic schedule 𝑋̂, that guarantees 

timely delivery of the goods to the nodes? While searching for the answer, problem 

𝐹𝐶𝑆̂  (16) was formulated, and then implemented in the constraint programming envi-

ronment OzMozart (Windows 10, Intel Core Duo2 3.00 GHz, 4 GB RAM). The solu-

tion time of this scale of problems with up to 12 nodes does not exceed 2 s. The results 

are shown in graphical form in Figs. 6 and 7. The obtained sequences 𝑅𝐵 and 𝑅𝐹 make 

up the following routes (Fig. 6): 𝜋1 = (𝑁1, 𝑁8, 𝑁9, 𝑁2, 𝑁5) and 𝜋2 =
(𝑁1, 𝑁7, 𝑁6, 𝑁4, 𝑁3, 𝑁10, 𝑁11, 𝑁5). 

 

 

 
Fig. 5. Input data specifying the delivery time windows a), loading/unloading times b), periods 

in which a train moves between a pair of nodes c).  

The fuzzy values of decision variable 𝑋̂, and the cyclic schedule determined by them, 

which guarantees timely delivery of the goods, are presented in Fig. 6. In the Gantt’s 

chart like schedule, the execution of each operation is represented as a ribbon-like 

“arterial road”, whose increasing width represents the time of train movement resulting 

from the growing uncertainty of the moments of occupation and release of nodes. For 

example, the moment when the node 𝑁11 can be occupied is determined by the fuzzy 

variable 𝑥11̂ (Fig. 6a), whose support is the interval [1473 s, 1750 s] (interval width of 

277 s). In turn, the moment the node is released is determined by 𝑦11̂; for which the 

support is the interval [1573 s, 1880 s] (interval width of 307 s). 

It is worth noting that the width of the ribbon-like arterial roads increases until the 

next time-window begins. The uncertainty of decision variables is, however, reduced 

at the end of each time window as a result of the operation of trains waiting on nodes 

𝑁1, 𝑁5. So, increasing uncertainty is not transferred to subsequent cycles of the system. 

Uncertainty is reduced as a result of the implementation of the OFN formalism. Fuzzy 

variables describing the waiting time of trains on nodes 𝑁1, 𝑁5 have a negative 

orientation (see Fig. 7 – laytimes 𝑤1̂ and 𝑤5̂), which means that the results of algebraic 

operations (𝑥𝑠1̂ = 𝑦1̂ + 𝑤1̂ and 𝑥𝑠5̂ = 𝑦5̂ + 𝑤5̂) using these variables leads to a 

decrease in uncertainty. Uncertainty cannot be decreased in the same way using 

standard fuzzy numbers. According to Zadeh’s extension principle, the uncertainty of 
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variables would grow with each subsequent cycle of system operation until the 

information about their value ceased to be useful. It is worth noting that the adoption 

of such a schedule guarantees congestion-free movement of the logistic trains despite 

the uncertainty of the parameters specified in Fig. 5. In order to verify the results, we 

ran a simulation of the delivery of goods in the system shown in Fig. 2. In this network, 

two logistic trains move along routes 𝜋1 and 𝜋2 (see Fig. 6). The trains’ travel times 

between nodes (𝑑𝛽,𝜆̂) and the delivery times (𝑡𝜆̂) are assumed to be random variables 

given by triangular distribution probability functions whose parameters correspond to 

the variation ranges from Fig. 5. The results of the simulation are shown in Fig. 7. For 

each of the nodes 𝑁1-𝑁11, OFNs of the starting moments (𝑥𝜆̂) and termination (𝑦𝜆̂) of 

the delivery operation (𝑜𝜆), as well as the corresponding histograms, are determined. It 

should be noted that the frames which are used to mark operations carried out on nodes 

𝑁7, 𝑁9, 𝑁11 are shown in Fig. 6a, too. In Fig. 7, the green charts correspond to the 

operations performed along the route 𝜋1 and the orange ones to route 𝜋2 operations. 

The charts are connected by arcs representing algebraic relationships between the 

individual variables. For instance, for the route travelled by train 𝐿𝑇2 (𝜋2), the relations 

between the variables describing the operations performed on nodes 𝑁8, 𝑁9, 𝑁2, 𝑁5, 𝑁1 

are as follows: 𝑥9̂ = 𝑦8̂ + 𝑑8,9̂ (𝑁9 can be serviced only after 𝑁8 has been released), 

𝑥2̂ = 𝑦9̂ + 𝑑9,2̂, 𝑥5̂ = 𝑦2̂ + 𝑑2,5̂, 𝑥1̂ = 𝑦5̂ + 𝑑5,1̂, 𝑥8̂ = 𝑥𝑠1̂ + 𝑑1,8̂ − 𝑇̂. These relations 

were used during the simulation. All of the histograms we obtained fall within the range 

of calculated OFN values (see Fig. 7). It should be underlined that in none of the 

simulated variants (1 000 000) did any congestion occur between the trains. 

 
Fig. 6. Graph showing sample of fuzzy variables a), obtained cyclic fuzzy schedule b)  
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Fig. 7. Graphic summary of simulation results  

6 Concluding remarks 

The results of the tests demonstrate that the proposed approach provides formal 

framework enabling to formulate and solve both routing and scheduling problems. In 

other words, it allows to more realistically model the movement of human-driven 

vehicles and replaces the usually used computer simulation methods of route 

prototyping by analytical methods employing the OFN formalism. It is worth nothing 

that the proposed approach has yet another advantage of allowing to determine 

analytically the size of the vehicle fleet and a congestion-free routing that guarantee 

successful delivery of ordered goods. 

Our future work is on finding sufficient conditions that would allow planners to 

reschedule Milk-run flows while guaranteeing smooth transition between two 

successive cyclic steady states corresponding to the current and rescheduled logistic 

train fleet flows. 
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