
Investigating the Benefit of FP16-Enabled
Mixed-Precision Solvers for Symmetric Positive

Definite Matrices using GPUs

Ahmad Abdelfattah1, Stan Tomov1, and Jack Dongarra1,2,3

1 University of Tennessee, USA
2 Oak Ridge National Laboratory, USA

3 University of Manchester, UK
{ahmad,tomov,dongarra}@icl.utk.edu

Abstract. Half-precision computation refers to performing floating-point
operations in a 16-bit format. While half-precision has been driven largely
by machine learning applications, recent algorithmic advances in numer-
ical linear algebra have discovered beneficial use cases for half precision
in accelerating the solution of linear systems of equations at higher pre-
cisions. In this paper, we present a high-performance, mixed-precision
linear solver (Ax = b) for symmetric positive definite systems in double-
precision using graphics processing units (GPUs). The solver is based on
a mixed-precision Cholesky factorization that utilizes the high-performance
tensor core units in CUDA-enabled GPUs. Since the Cholesky factors are
affected by the low precision, an iterative refinement (IR) solver is re-
quired to recover the solution back to double-precision accuracy. Two
different types of IR solvers are discussed on a wide range of test matri-
ces. A preprocessing step is also developed, which scales and shifts the
matrix, if necessary, in order to preserve its positive-definiteness in lower
precisions. Our experiments on the V100 GPU show that performance
speedups are up to 4.7× against a direct double-precision solver. How-
ever, matrix properties such as the condition number and the eigenvalue
distribution can affect the convergence rate, which would consequently
affect the overall performance.

Keywords: Mixed-precision Solvers · Half-precision · GPU Computing

1 Introduction

The solution of a dense linear system of equations (Ax = b) is a critical compo-
nent in many scientific applications. The standard way of solving such systems
includes two steps: a matrix factorization step and a triangular solve step. In
this paper, we discuss the specific case where the matrix AN×N is dense and
symmetric positive definite (SPD). It is also assumed that A, b, and x are stored
in 64-bit double precision format (FP64).

The standard LAPACK software [1] provides the dposv routine for solving
Ax = b for SPD systems in FP64. The routine starts with a Cholesky factoriza-
tion (dpotrf) of A, such that A = LLT , where L is a lower triangular matrix.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

2 A. Abdelfattah et al.

The factors are used to find the solution x using two triangular solves with
respect to b (dpotrs). Throughout the paper, we assume that b is an N × 1
vector, and so the triangular solve step requires O(N2) floating-point operations
(FLOPs). In such a case, the Cholesky factorization dominates the execution
time, since it requires O(N3) FLOPs. Therefore, any performance improvements
for solving Ax = b usually focus on improving the factorization performance.

A full FP64 factorization extracts its high performance from a blocked im-
plementation that traverses the matrix in panels of width nb (which is often
called the blocking size). A blocked design enables high performance through
the compute-bound Level 3 BLAS4 routines. Sufficiently optimized routines such
as matrix multiplication (dgemm) and symmetric rank-k updates (dsyrk) would
guarantee a high performance Cholesky factorization that is close to the hard-
ware peak performance. As an example, both cuSOLVER [14] (the vendor li-
brary) and the MAGMA library [4, 11] reach an asymptotic performance of ≈ 6.3
teraFLOP/s on the V100 GPU for dpotrf. This is about 90% of the dgemm peak
performance, meaning that there is little room for improving the performance
of the factorization. Another direction to achieve more performance is to change
the algorithmic steps for solving Ax = b. This is where mixed-precision itera-
tive refinement (MP-IR) algorithms come into play. The basic idea of MP-IR
solvers is to perform the Cholesky factorization using a “reduced precision.” If
FP32 is used for the factorization instead of FP64, a natural 2× improvement is
expected. However, we cannot use the traditional triangular solves with the low-
precision factors of A. In order to recover the solution back to FP64 accuracy,
an extra algorithmic component is required: iterative refinement (IR). It applies
iterative corrections to an initial solution vector until it converges to FP64 ac-
curacy. Early efforts to implement such algorithms in LAPACK were introduced
by Langou et al. [12], and Baboulin et al. [5]. GPU-accelerated versions of the
MP-IR solver also exist in the MAGMA library [4, 11].

The algorithmic structure of MP-IR solvers did not change for almost a
decade. This was true until half precision (16-bit floating-point format) was in-
troduced into commercial HPC hardware (e.g., NVIDIA GPUs). The original
motivation for FP16 computation was to accelerate machine learning applica-
tions rather than scientific HPC workloads. NVIDIA GPUs support the “bi-
nary16” format which is defined by the IEEE-754 standard [2]. Intel and Google
support a different format called “bfloat16”. Since our study targets GPUs, we
focus on the binary16 format, which we also call half precision or simply FP16.
NVIDIA’s Volta and Turing architectures provide hardware accelerators, called
Tensor Cores (TCs), for gemm in FP16. TCs can also perform a mixed-precision
gemm, by accepting operands in FP16 while accumulating the result in FP32.
TCs are theoretically 4× faster than using the regular FP16 peak performance
on the Volta GPU. Applications that take advantage of TCs have access to up
to 125 teraFLOP/s of performance. The vendor library cuBLAS [13] provides
a number of matrix multiplication routines that can take advantage of TCs.

4 Basic Linear Algebra Subroutines

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

FP16 Mixed-Precision Solvers for SPD Systems on GPUs 3

Some other efforts introduced open-source routines that are competitive with
cuBLAS [3].

Such a high performance of half-precision has drawn the attention of the
HPC community to assess its benefit for scientific HPC workloads. Originally
motivated by the analysis of Carson and Higham [6] [7], the work done by Haidar
et al. [9] introduced a mixed-precision solver that is different in several ways
from the ones introduced in [12] and [5]. First, the new method uses three
precisions (double, single, and half) to solve Ax = b up to double-precision
accuracy. Second, the new solver uses a mixed-precision LU factorization, where
the dominant trailing matrix updates are performed using a mixed-precision
gemm. Third, the new solver uses a new IR algorithm based on the GMRES
method, instead of the classic IR solver that is based on triangular solves. The
GMRES-based IR uses the original matrix A preconditioned by its low-precision
factors, which yields a faster convergence and thus a higher performance.

In this paper, we design a similar mixed-precision solver for SPD matrices.
Technically, the LU factorization supports such matrices, but (1) its operation
count is much higher than a Cholesky factorization, and (2) SPD matrices don’t
need pivoting, which is a plus for performance. We show that the developed solver
works well with problems whose condition number κ∞(A) is up to O(109). We
also implement an optional preprocessing step that includes scaling and diagonal
shifts. The preprocessing step, which is based on [10], protects the matrix from
losing its definiteness when FP16 is used in the factorization. Therefore, it helps
solve a wider range of problems. Our experiments are conducted on a Tesla V100
GPU and span a wide range of dense SPD matrices with different condition
numbers and eigenvalue distributions. We show how these two properties affect
the convergence rate of GMRES-based IR, which in turn affects the performance.
Our results show that the developed solution can be up to 4.7× faster than a
direct full FP64 solver. This work is lined up for integration into the MAGMA
library [4] [11].

2 Background and Related Work

Classic MP-IR solvers for SPD systems used to perform the Cholesky factoriza-
tion in single precision. The refinement phase iteratively updates the solution
vector x̂ until it is accurate enough. At each refinement iteration, three main
steps are performed. First, the residual r = b− Ax is computed in FP64. Sec-
ond, we solve for the correction vector c, such that Ac = r. This step uses the
low precision factors of A. Finally, the solution vector is updated x̂i+1 = x̂i+ c.
Convergence is achieved when the residual is small enough.

A key factor for the high performance of MP-IR solvers is the number of itera-
tions in the refinement stage. As mentioned before, a maximum of 2× speedup is
expected from the factorization stage in FP32. This performance advantage can
be completely gone if too many iterations are required for convergence. Typically,
an MP-IR solver (FP32→FP64) requires 2–3 iterations for a well-conditioned
problem. This is considered a best case scenario, since the asymptotic speedup

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

4 A. Abdelfattah et al.

approaches 2×, meaning a minimal overhead by the IR stage. In most cases, an
MP-IR solver is asymptotically 1.8× faster than a full FP64 solver.

Using half precision in legacy MP-IR algorithms was mostly unsuccessful.
Performing the factorization in FP16 further worsens the quality of the factors
of A, which leads to a longer convergence or even a divergence. For SPD matrices,
an FP16 factorization can fail due to the loss of definiteness during the conversion
to FP16. While countermeasures have been proposed by Higham et al. [10], a
more practical approach for high performance is possible. Similar to [9], we
adopt a mixed-precision Cholesky factorization, in which the rank-k updates are
performed using a mixed-precision gemm (FP16→FP32), while all other steps
are performed in FP32. The quality of the Cholesky factors would be better
than a full FP16 factorization. We also apply a slightly modified version of
the preprocessing proposed by Higham et al. [10] in order to support matrices
with higher condition numbers and avoid the loss of definiteness, overflow, and
possibly underflow.

Now, considering the IR step, the low quality of the produced factors leads
to the likely failure of the classic IR algorithm (e.g., following the classic mixed-
precision solvers’ convergence theory [12]). In fact, classic IR would only work
for matrices with relatively small condition numbers, as we show later in Sec-
tion 7. An alternative approach, which further improves the numerical stabil-
ity and convergence of the overall solver, is to solve the correction equation
(Ac = r) using an iterative method, such as GMRES [16]. The solver thus uses
two nested refinement loops, which ar also often referred to as “inner-outer”
iterative solvers [15] [17]. We call the new IR algorithm IRGMRES. The recent
work by Carson and Higham [6] [7] analyzes this type of solvers when three
precisions are used (e.g., {FP16, FP32, FP64} or {FP16, FP64, FP128} for
{factorization, working precision, residual precision}, respectively). They prove
that, if a preconditioned GMRES is used to solve the correction equation, then
forward and backward errors in the order of 10−8/10−16 are achievable if the
condition number of A satisfies κ∞(A)< 108/1012, respectively. The work in [9]
implements a simplified version of GMRES with just two precisions, typically us-
ing the working precision as the residual precision. By preconditioning GMRES
using the low-precision factors of A, FP64 accuracy can be achieved for matrices
with condition numbers up to 105. Our study expands upon this work for SPD
matrices using a mixed-precision Cholesky factorization. Successful convergence
is achieved for condition numbers up to 109. In addition, we study the behavior
of both IR and IRGMRES for a wide range of SPD matrices, and show how
the condition number and the eigenvalue distribution affect the convergence of
the IRGMRES solver. Finally, we show that the modified version of the prepro-
cessing steps proposed in [10] enable our solver to support harder problems that
were not solvable otherwise (i.e., without preprocessing).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

FP16 Mixed-Precision Solvers for SPD Systems on GPUs 5

3 System Setup

All the experiments reported in this paper are conducted on a system with two
Intel Broadwell CPUs (Intel Xeon CPU E5-2698 v4 @ 2.20GHz), with 20 cores
per CPU. The system has 512 GB of memory. The GPU is a Tesla V100-SXM2,
with 80 multiprocessors clocked at 1.53 GHz. Our solver is developed as part
of the MAGMA library, which is compiled using CUDA-10.1 and MKL-2018.0.1
for the CPU workloads. The number of MKL threads is set to 40 throughout all
the experiments.

B

C A

D

A = A - C × CT (ssyrk)
B = B – D × CT (sgemm + fp16)
(Tensor Core GEMM with FP32 accumulate)

Untouched
B

C

D

A

SYRK:Update A = A - C×CT1

TRSM:SOLVE XAT=B, BßX4

GEMM:Update B = B – D×CT2

N

N

nb

f
a
c
t
o
ri
z
e
d

POTF2(A)3

Fig. 1: Steps of a single iteration in the left-looking Cholesky factorization, as
well as the mixed-precision update (syrk + gemm).

4 Mixed-Precision Cholesky Factorization

The first step in our solver is to obtain the Cholesky factorization (A = LLT).
This step is expected to be much faster than a factorization in FP64 or FP32.
The performance advantage obtained in this step serves as an upper bound for
the speedup achieved by the whole solver. As mentioned before, we use an FP32
factorization that uses mixed-precision updates. Figure 1 shows the steps of the
mixed-precision factorization. Both the potf2 and trsm steps are performed in
FP32. We adopt the left-looking variant of the factorization, since it relies on
gemm as the dominant operation in the update. The factorization is designed
similarly to other factorizations in MAGMA. The panel step is performed on
the CPU. This “hybrid execution” has the advantage of hiding the panel task
on the CPU while the GPU is performing the update [18].

The sgemm updates are replaced by a call to a cuBLAS routine that performs
an implicit FP32→FP16 conversion of the multiplicands, while accumulating the
result in FP32. A tuning experiment was conducted to find the best blocking
size nb for the mixed-precision factorization. The details of the experiment are
omitted for lack of space, but its final outcome suggests that setting nb = 512

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

6 A. Abdelfattah et al.

achieves the best performance for the mixed-precision factorization. Figure 2
shows the performance of the mixed-precision Cholesky factorization (spotrf -

fp16). The figure shows significant speedups against full-precision factorizations.
In fact, the asymptotic speedup approaches 3× against single precision, and 6×
compared to double precision. As mentioned before, we expect the IR phase to
consume some of these performance gains.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

T
f
o
p
/s

Matrix size (x 1000)

 spotrf + fp16

 spotrf (full fp32)

 dpotrf (full fp64)

Fig. 2: Performance of the mixed-precision Cholesky factorization (spotrf fp16)
against full-precision factorizations in FP32 (spotrf) and FP64 (dpotrf). Re-
sults are shown on a Tesla V100-SXM2 GPU, and two 20-core Intel Broadwell
CPUs.

5 GMRES-Based Iterative Refinement

The main difference between classic IR and GMRES-based IR is how the correc-
tion equation Ac = r is solved. Classic IR solvers use a direct method using two
triangular solves with respect to the Cholesky factors of A. This method works
well for matrices with relatively small condition numbers. However, the quality of
the correction vector is often impacted by the low-precision factors, which might
lead to a long convergence. As mentioned in Section 2, it is important to keep
the iteration count small in order to achieve an overall performance gain. The
proposition by Carson and Higham [6] [7] was to use a GMRES solver to solve
Ac = r. The solver uses the original matrix A preconditioned by its Cholesky
factors. This produces a correction vector of a much higher quality than a classic
IR, eventually leading to a faster convergence. As an example, Figure 3 shows
the convergence history of both the classic IR solver and GMRES-based one
(IRGMRES) for two matrices of size 10k. The matrices share the same distri-
bution of eigenvalues, but have different condition numbers. Our observations
are (1) IRGMRES usually converges faster than classic IR, and (2) IR fails to
converge for relatively large condition numbers. However, the gap between IR
and IRGMRES is not big for well-conditioned matrices. Both variants converge
in few iterations, and so the final performance would be similar.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

FP16 Mixed-Precision Solvers for SPD Systems on GPUs 7

1e-20

1e-19

1e-18

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

 1 2 3 4 5 6 7

R
e
s
id
u
a
l

Number of iterations

 Classical IR

 IRGMRES

(a) κ2(A)=1e+03

1e-20

1e-19

1e-18

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

 10 20 30 40 50 60 70 80 90 100

R
e
s
id
u
a
l

Number of iterations

 Classical IR

 IRGMRES

(b) κ2(A)=1e+06

Fig. 3: Comparisons of the conversion history between IR and IRGMRES. The
test matrix in both cases has a clustered distribution of eigenvalues (λi =
1, 1, · · · , 1

κ2(A)).

It is worth mentioning that a conjugate gradient (CG) solver can be used
instead of a GMRES solver. In fact, the study by Higham et al. [10] shows that
both GMRES and CG converge within mostly similar iteration counts. How-
ever, the error analysis in [6] [7] is based on the backward stability of GMRES.
This means that a new error analysis is required for a CG-based IR solver, since
its backward stability requires a well-conditioned matrix or a good precondi-
tioner [8].

6 Scaling and Shifting

Higham et al. [10] proposed some countermeasures to ensure a successful fac-
torization in FP16. The countermeasures avoid the loss of definiteness, overflow,
and possibly underflow. In this study, the factorization uses two precisions (FP32
+ FP16), so these countermeasures are still legitimate for our implementation.
We also point out that the work done in [10] focuses only on the numerical
analysis part, with no actual implementation on a high-performance hardware.
Since our work focuses more on the performance, we are interested in determin-
ing the extent to which these safeguards ensure a successful factorization and
convergence without too much impact on the performance. More specifically, our
preprocessing works as follows:

1. Two-sided diagonal scaling. A lightweight GPU kernel computes the ma-
trix H = D−1Afp32D

−1, where D is a diagonal matrix such that Dii =√
aii, i = 1, · · · , N . This operation equilibrates the matrix rows and columns,

and reduces their range to [0, 1]. The multiplication by diagonal matrices
can be simplified to a row-wise or a column-wise matrix scaling. Therefore,
the GPU kernel is very lightweight with a nearly negligible execution time.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

8 A. Abdelfattah et al.

2. An optional diagonal shift. In order to avoid the loss of positive definite-
ness, the GPU kernel allows an optional small perturbation on the diagonal
of H. Note that the diagonal of H is all ones. This step forms the matrix
G = H + cuhI, where uh is the unit roundoff (machine epsilon) of FP16,
and c is a constant parameter. The original proposition is to set c as a small
positive integer constant. However, we show that this shift is sometimes
unnecessary, and setting it anyway might affect the convergence of the GM-
RES solver. We also allow c < 1, since our shift occurs in FP32, where uh is
possibly a large shift to start with. We can shift by a fraction of uh.

3. Matrix scaling. Finally, the entire matrix is scaled by µ, where µ = θxmax

1+cuh
.

The constant xmax is 6.55×104. The constant θ is a parameter that is set to
0.1 in all of our experiments, but in general θ ∈ (0, 1). The purpose of this
scaling operation is to make a better use of the half-precision range. This
scaling step avoids overflow and reduces the chances of underflow. Further
details can be found in [10].

All of these preprocessing steps are performed by one lightweight GPU kernel.
The preprocessing step obviously implies modifications in other numerical steps.
In an IRGMRES solver, the matrix A is preconditioned by the Cholesky factors.
However, the action of the preconditioner on a vector is obtained by a triangular
solve (similar to the classical IR), and then a matrix-vector multiplication with
respect to A. Noting that A = 1

µDHD, any triangular solve (Ap = q) inside the

GMRES solver now solves for y with respect to D−1q and then forms p = µD−1y.
Another GPU kernel that performs diagonal matrix-vector products has been
developed for such a purpose.

Distribution Name Specification (i = 1, 2, · · · , N)

Arithmetic λi = 1− (i−1
N−1

)(1− 1
κ2(A)

)

Clustered λ1 = 1, λi = 1
κ2(A)

for i > 1

Logarithmic log(λi) uniform on [log(1
κ2(A)

), log(1)]

Geometric λi = κ2(A)(
1−i
N−1

)

Custom-clustered λi = 1 for i ≤
⌊
N
10

⌋
, 1
κ2(A)

otherwise

Table 1: Eigenvalue distributions used in the test matrices.

7 Performance Results

Test Matrices and General Outlines. Our experiments use a matrix gen-
erator that is available in MAGMA, which is similar to the LAPACK routine
dlatms. It generates random dense SPD matrices with (1) a specified 2-norm
condition number κ2(A), and (2) a specified distribution of eigenvalues. The
matrix is generated as the product A = V λV T , where λ is the diagonal matrix
of eigenvalues and V is a random orthogonal matrix. Performance results are

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

FP16 Mixed-Precision Solvers for SPD Systems on GPUs 9

shown for matrices with different types of distributions and different condition
numbers. Tabel 1 shows the distributions used in this paper.

Throughout this section, the performance is measured in tera FLOPs per
second (teraFLOP/s). In order to have a fair comparison, a constant number
of FLOPs for each matrix size is divided by the time-to-solution of each tested
solver. That constant is equal to the operation count of a full FP64 solver, which

is equal to (N
3

3 + 5N2

2 + N
6) for one right-hand side. Performance figures have

the left Y -axis with a fixed maximum value of 30 teraFLOP/s. The right Y -axis
displays the infinity norm condition number (κ∞(A) = ‖A‖∞

∥∥A−1∥∥∞), since
this condition number is the one used in the error analysis of the IRGMRES
solver [6, 7]. The 2-norm condition number is constant across a single figure, and
is equivalent to the ratio between the maximum and the minimum eigenvalues.

We accept convergence when the residual r =
‖b−Ax‖∞
N‖A‖∞

is at most O(10−14).

Each performance graph features some or all of the following solvers:

– dposv: a direct solver in full double precision.
– dsposv: a classic MP-IR solver with two precisions (FP64→FP32).
– dsposv-fp16-ir : our new MP-IR solver with three precisions.
– dsposv-fp16-irgmres : our new MP-IRGMRES solver with three preci-

sions. This solver always scales and equilibrates the matrix, but the shift is
optional. The time of the these preprocessing steps is included in the final
timing of the solver.

Matrices with an Arithmetic Distribution of Eigenvalues. Figure 4a
shows a “best case scenario” for a small κ2(A). The infinity norm condition
number is capped at 104. Both dsposv-fp16-ir and dsposv-fp16-irgmres

converge within 3 iterations at most, which yields significant performance gains.
The asymptotic performance reaches 28.5 teraFLOP/s, which is 4.7× faster than
dposv, and 2.7× faster than dsposv. Figure 4b shows the impact of increasing
the condition number. The dsposv-fp16-irgmres solver converges within 7− 8
iterations in most cases, while the dsposv-fp16-ir solver converges within 6−11
iterations, leading to performance drops at some points. The increased iteration
count on both sides leads to a drop in the asymptotic performance, which is now
measured at 24 teraFLOP/s. This is still 4× faster than dposv and 2.3× faster
than dsposv.

Matrices with a Clustered Distribution of Eigenvalues. Figure 5a
shows a performance similar to the best case scenario of Figure 4a. However,
there is a slight advantage for using the dsposv-fp16-irgmres solver. It con-
verges in 3 − 4 iterations, while the dsposv-fp16-ir solver requires 3 − 6 it-
erations. The dsposv-fp16-irgmres solver maintains asymptotic speedups of
4.5×/2.6× against dposv/dsposv, respectively. Now we increase κ2(A) to 108,
which results in κ∞(A) in the range of 109. No convergence was achieved ex-
cept for the dsposv-fp16-irgmres solver. This is a test case where classic IR
fails in both dsposv and dsposv-fp16-ir . As Figure 5b shows, the dsposv-

fp16-irgmres solver requires 5 iterations for this type of matrices, leading to
an asymptotic performance that is 4.4× faster than dposv. The result of this

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

10 A. Abdelfattah et al.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

T
f
o
p
/s

k
∞
(A
)

Matrix size (x 1000)

 dsposv+fp16 (IRGMRES, c=0)
 dsposv+ fp16 (IR)
 dsposv (fp64 -> fp32)
 dposv (full fp64)
 condition number (right axis)

(a) κ2(A)=5e+00

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

T
f
o
p
/s

k
∞
(A
)

Matrix size (x 1000)

 dsposv+fp16 (IRGMRES, c=0)
 dsposv+ fp16 (IR)
 dsposv (fp64 -> fp32)
 dposv (full fp64)
 condition number (right axis)

(b) κ2(A)=1e+05

Fig. 4: Performance on matrices with an arithmetic distribution of eigenvalues.

experiemnt also encourages using the GMRES-based IR with single-precision fac-
torization. While this combination is not discussed this paper, the performance
would be similar to dsposv in Figure 4a.

Matrices with Logarithmic/Geometric Distributions of Eigenval-
ues. It is clear that by trying harder-to-solve matrices, the dsposv-fp16-irgmres
solver requires more iterations, which would impact the final performance of the
solver. Figure 6 shows two example for such a case, where the benefit of using
half-precision is limited only to large matrices. The condition number κ∞(A) is
intentionally high to show such a behavior. Several useful observations can be
taken away from these results. First, this is the first time we see a benefit for the
matrix preprocessing stage. Both dsposv-fp16-ir and and the dsposv-fp16-

irgmres (without preprocessing) fail during the factorization, meaning that the
matrix loses its positive-definiteness during the mixed-precision updates. Sec-

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

FP16 Mixed-Precision Solvers for SPD Systems on GPUs 11

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

T
f
o
p
/s

k
∞
(A
)

Matrix size (x 1000)

 dsposv+fp16 (IRGMRES, c=0)
 dsposv+ fp16 (IR)
 dsposv (fp64 -> fp32)
 dposv (full fp64)
 condition number (right axis)

(a) κ2(A)=1e+02

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

T
f
o
p
/s

k
∞
(A
)

Matrix size (x 1000)

 dsposv+fp16 (IRGMRES, c=0)
 dposv (full fp64)
 condition number (right axis)

(b) κ2(A)=1e+08

Fig. 5: Performance on matrices with a clustered distribution of eigenvalues.

ond, our proposition for smaller shifts proves to achieve a better performance
against limiting the constant c to an integer. Third, the number of iterations
for the dsposv-fp16-irgmres solver (c = 0.4) is asymptotically measured at 27
for Figure 6a, and at 32 for Figure 6. Such large iteration counts consume most
of the performance gains achieved in the factorization. Performance speedups
are observed only for large matrices (N ≥ 27k). Figure 6a shows an asymp-
totic speedup of 2.5×/1.56× against dposv/dsposv, respectively. The respective
speedups of Figure 6b are measured at 2.3×/1.46×.

Matrices with a Custom-Clustered Distributions of Eigenvalues.
This distribution assigns 10% of the eigenvalues to 1, and the other 90% to 1

κ2(A) .

Figure 7 shows the results, in which the two variants of dsposv-fp16-irgmres
(with/without preprocessing) successfully converge. However, the preprocessed
solver converges within 15 − 16 iterations in most cases, as opposed to at least

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

12 A. Abdelfattah et al.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

T
f
o
p
/s

k
∞
(A
)

Matrix size (x 1000)

 dsposv+fp16 (IRGMRES, c=0.4)
 dsposv+fp16 (IRGMRES, c=1)
 dsposv (fp64 -> fp32)
 dposv (full fp64)
 condition number (right axis)

(a) Logarithmic distribution, κ2(A)=1.2e+05

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

T
f
o
p
/s

k
∞
(A
)

Matrix size (x 1000)

 dsposv+fp16 (IRGMRES, c=0.4)
 dsposv+fp16 (IRGMRES, c=1)
 dsposv (fp64 -> fp32)
 dposv (full fp64)
 condition number (right axis)

(b) Geometric distribution, κ2(A)=1.7e+05

Fig. 6: Performance on matrices with logarithmic (a) and geometric (b) distri-
butions of eigenvalues.

37 iterations without preprocessing. This means that the produced Cholesky
factors without preprocessing do not form a good preconditioner for A. The
performance gains for the preprocessed solver are noticeable much earlier than
its regular variant. The asymptotic speedups for the preprocessed dsposv-fp16-

irgmres are 3.3×/1.96× against dposv/dsposv, respectively.

8 Conclusion and Future Work

This paper presented an FP16-accelerated dense linear solver for SPD systems.
The proposed solution combines a mixed-precision Cholesky factorization with
a GMRES-based iterative refinement algorithms in order to achieve double pre-
cision accuracy. Optional safeguards are developed (scaling and shifting) to en-

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

FP16 Mixed-Precision Solvers for SPD Systems on GPUs 13

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

T
f
o
p
/s

k
∞
(A
)

Matrix size (x 1000)

 dsposv+fp16 (IRGMRES, c=10)
 dsposv+fp16 (IRGMRES, c=0)
 dsposv (fp64 -> fp32)
 dposv (full fp64)
 condition number (right axis)

Fig. 7: Performance on matrices with a custom-clustered distribution (κ2(A) =
104).

sure successful factorization and solve for matrices with relatively large condition
numbers. The accelerated solver can be up to 4.7× faster than a direct solve in
full FP64 precision.

Future directions include integrating the GMRES-based IR solver into dual-
precision solvers (i.e., FP32→FP64), which would improve their performance for
matrices with higher condition numbers. It is also useful to study the impact of
the preprocessing stage (especially the diagonal shift) on the convergence of the
GMRES-based IR solver. As per our results, there is no single setting that works
well across the board, and each matrix has to be treated separately. Another po-
tential direction is to add support for the complex precision (Hermitian Positive
Definite systems), which requires half-complex BLAS routines.

References

1. LAPACK - Linear Algebra PACKage. ”http://www.netlib.org/lapack/”
2. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008

pp. 1–70 (Aug 2008). https://doi.org/10.1109/IEEESTD.2008.4610935,
https://ieeexplore.ieee.org/document/4610935

3. Abdelfattah, A., Tomov, S., Dongarra, J.J.: Fast Batch Matrix Multiplication for
Small Sizes using Half Precision Arithmetic on GPUs. In: 2019 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2019, Rio de Janeiro,
Brazil, May 20-24, 2019. pp. 111–122 (2019)

4. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: The
PLASMA and MAGMA projects. J. Phys.: Conf. Ser. 180(1) (2009)

5. Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J.,
Luszczek, P., Tomov, S.: Accelerating Scientific Computations with Mixed Pre-
cision Algorithms. Computer Physics Communications 180(12), 2526–2533 (2009)

6. Carson, E., Higham, N.: A New Analysis of Iterative Refinement and
Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Sys-

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

14 A. Abdelfattah et al.

tems. SIAM Journal on Scientific Computing 39(6), A2834–A2856 (2017).
https://doi.org/10.1137/17M1122918, https://doi.org/10.1137/17M1122918

7. Carson, E., Higham, N.: Accelerating the Solution of Linear Systems
by Iterative Refinement in Three Precisions. SIAM Journal on Scientific
Computing 40(2), A817–A847 (2018). https://doi.org/10.1137/17M1140819,
https://doi.org/10.1137/17M1140819

8. Greenbaum, A.: Estimating the Attainable Accuracy of Recursively Com-
puted Residual Methods. SIAM Journal on Matrix Analysis and Ap-
plications 18(3), 535–551 (1997). https://doi.org/10.1137/S0895479895284944,
https://doi.org/10.1137/S0895479895284944

9. Haidar, A., Tomov, S., Dongarra, J., Higham, N.J.: Harnessing GPU Tensor
Cores for Fast FP16 Arithmetic to Speed Up Mixed-precision Iterative Refine-
ment Solvers. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis. pp. 47:1–47:11. SC ’18,
IEEE Press, Piscataway, NJ, USA (2018). https://doi.org/10.1109/SC.2018.00050,
https://doi.org/10.1109/SC.2018.00050

10. Higham, N., Pranesh, S.: Exploiting Lower Precision Arithmetic in Solving Sym-
metric Positive Definite Linear Systems and Least Squares Problems. Tech. Rep.
1749-9097 (November 2019), http://eprints.maths.manchester.ac.uk/2736/

11. MAGMA: Matrix Algebra on GPU and Multicore Architectures, available at
http://icl.cs.utk.edu/magma/

12. Langou, J., Langou, J., Luszczek, P., Kurzak, J., Buttari, A., Don-
garra, J.J.: Exploiting the performance of 32 bit floating point arith-
metic in obtaining 64 bit accuracy (revisiting iterative refinement for
linear systems). In: Proceedings of the ACM/IEEE SC2006 Conference
on High Performance Networking and Computing, November 11-17, 2006,
Tampa, FL, USA. p. 113 (2006). https://doi.org/10.1145/1188455.1188573,
https://doi.org/10.1145/1188455.1188573

13. NVIDIA CUDA Basic Linear Algebra Subroutines (CUBLAS), available at
https://developer.nvidia.com/cublas

14. NVIDIA cuSOLVER: A Collection of Dense and Sparse Direct Solvers, available
at https://developer.nvidia.com/cusolver

15. Saad, Y.: A Flexible Inner-outer Preconditioned GMRES Algorithm.
SIAM Journal on Scientific Computing 14(2), 461–469 (Mar 1993).
https://doi.org/10.1137/0914028, http://dx.doi.org/10.1137/0914028

16. Saad, Y., Schultz, M.H.: GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Sta-
tistical Computing 7(3), 856–869 (Jul 1986). https://doi.org/10.1137/0907058,
https://doi.org/10.1137/0907058

17. Simoncini, V., Szyld, D.: Flexible Inner-Outer Krylov Sub-
space Methods. SIAM Journal on Numerical Analysis 40(6),
2219–2239 (2002). https://doi.org/10.1137/S0036142902401074,
https://doi.org/10.1137/S0036142902401074

18. Tomov, S., Dongarra, J.J., Baboulin, M.: Towards dense linear alge-
bra for hybrid GPU accelerated manycore systems. Parallel Comput-
ing 36(5-6), 232–240 (2010). https://doi.org/10.1016/j.parco.2009.12.005,
https://doi.org/10.1016/j.parco.2009.12.005

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_18

https://dx.doi.org/10.1007/978-3-030-50417-5_18

