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Abstract. In this paper we consider the classical Kaczmarz algorithm
for solving system of linear equations. Based on the geometric relation-
ship between the error vector and rows of the coefficient matrix, we derive
the optimal strategy of selecting rows at each step of the algorithm for
solving consistent system of linear equations. For solving perturbed sys-
tem of linear equations, a new upper bound in the convergence rate of
the randomized Kaczmarz algorithm is obtained.
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1 Introduction

Kaczmarz algorithm [28] is an iterative method for solving system of linear
equations of the form

Ax = b, (1)

where A ∈ Rm×n has full column rank, m ≥ n and b ∈ Rm. In the consistent
case, the solution of (1) can be regarded as the coordinate of the common point
of hyperplanes defined by each single equation in (1):

Pi = {x|aTi x = bi}, (2)

where aTi , i = 1, 2, · · · ,m, denotes the ith row of A and bi is the ith element of
vector b.

The idea of the Kaczmarz type algorithms is to exploit the geometric struc-
ture of the problem (1), and the using a sequential of projections to seek the
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solution. The recursive process can be formulated as follows. Let x0 be an initial
guess to the solution of (1), then the classical Kaczmarz algorithm iteratively
generates a sequence of approximate solutions xk by the recursive formula:

xk+1 = xk +
bi − aTi xk

||ai||22
ai, (3)

where i = mod(k,m)+ 1. For a given xk, from (3) we can see that xk+1 satisfies
the ith equation in (1), i.e., aTi xk+1 = bi. The updating formula (3) implicitly
produces a solution to the following constraint optimization problem [21, 37]

min
{x|aT

i xk+1=b}
||x− xk||2,

which is equivalent to finding the projection of xk from the hyperplane Pi. Two
geometric explanations of the above process can be illustrated by Fig 1:

Fig. 1. Geometric illustrations of the classical Kaczmarz iterations with m = 4.

By comparing the projection processes displayed in Fig. 1, it is natural to
have the intuition that convergence of the classical Kaczmarz algorithm highly
depends on the geometric positions of the associated hyperplanes. If the nor-
mal vectors of every two successive hyperplanes keep reasonably large angles,
the convergence of the classical Kaczmarz algorithm will be fast, whereas two
nearly parallel consecutive hyperplanes will make the convergence slow down.
The Kaczmarz algorithm can be regarded as a special application of famous
von Neumann’s alternating projection [35] originally distributed in 1933. The
fundamental idea can even trace the history back to Schwarz [38] in 1870s.

In the past few years years, the Karzmarz algorithm has been interpreted as
successive projection methods [4, 7, 8, 11–13], which are also known as projec-
tion onto convex sets (POCS) [9, 17, 18, 42–44] in the optimization community.
Notice that each iteration of the Kaczmarz algorithm just need O(n) flops and
the cost is independent with the number of equations, this type of algorithms
are well-suited to problems with m ≫ n. Due to its simplicity and generality,
Kaczmarz algorithms find viable applications in the area of image processing and
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signal process [19, 20, 24–26, 30, 36] under the name of algebraic reconstruction
techniques (ART). Since 1980s, relaxation variants [11, 25, 41]

xk+1 = xk + λk
bi − aTi xk

||ai||22
ai, (4)

and the block versions [3, 33, 34]

xk+1 = xk+A†
τ (bτ−AT

τ xk), with A =


A1

A2

...
AM

 , b =


b1
b2
...

bM

 , τ ∈ {1, 2, · · · ,M},

(5)
of the Kaczmarz algorithm have been widely investigated, and some fruitful the-
oretical results have been obtained. In particular, for consistent linear systems,
it is shown [5, 31, 21, 39] that the Kaczmarz iterations converges to the least
square norm solution x = A†b with any starting vector x0 in the column space
of AT . For inconsistent linear systems, the cyclic subsequences generated by the
Kaczmarz algorithm converges to a weighted least squares solution when the
relaxation parameter λk goes to zero [12].

As indicated in Fig 1, convergence of the classical Kaczmarz algorithm de-
pends on the sequence of successive projections, which relies upon the ordering
of the rows in the matrix A. In some real applications, it is observed [25, 30]
that instead of selecting rows of the matrix A sequentially at each step of the
Kaczmarz algorithm, randomly selection can often improve its convergence. Re-
cently, in the remarkable paper [39], Strohmer and Vershynin proved the rate of
convergence for the following randomized Kaczmarz algorithm

xk+1 = xk +
br(i) − aTr(i)xk

||ar(i)||22
ar(i)

where r(i) is chosen from {1, 2, · · · ,m} with probabilities
||ar(i)||22
||A||2F

. In particular,

the following bound on the expected rate of convergence for the randomized
Kaczmarz method is proved

E||xk − x||22 ≤ (1− 1

κ(A)2
)k||x0 − x||22, (6)

where κ(A) = ||A||F ||A−1||2, with ||A−1||2 = inf{M : M ||Ax||2 ≥ ||x||2} be
the scaled conditioned number of A introduced by J. Demmel [14]. Due to
this pioneering work that characterized the convergence rate for the randomized
Kaczmarz algorithms, the idea stimulated considerable interest in this area and
various investigations [1, 2, 6, 10, 15] have been performed recently. In particular,
some acceleration strategies have been proposed [6, 16, 22] and convergence anal-
ysis was performed in [21, 27, 23, 29, 31, 32]. See also [21, 23] for some comments
on equivalent interpretations of the randomized Kaczmarz algorithms.
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2 Optimal row selecting strategy of the Kaczmarz
algorithm for solving consistent system of linear
equations

In this section, we consider the case that system of linear equations (1) is con-
sistent and x is a solution. If the ith row is selected at the (k+1)th iteration of
the Kaczmarz algorithm, i.e.,

xk+1 = xk +
bi − aTi xk

||ai||22
ai,

then xk+1 can be reformulated as

xk+1 = xk +
bi−aT

i xk

||ai||22
ai

= xk + bi
||ai||22

ai − xT
k ai

||ai||22
ai

= xk +
aT
i x

||ai||22
ai − aT

i xk

||ai||22
ai

= xk +
aT
i (x−xk)

||ai||22
ai

= xk +
aia

T
i

||ai||22
(x− xk).

It follows that

x− xk+1 = x− xk − aia
T
i

||ai||22
(x− xk)

= (I − aia
T
i

||ai||22
)(x− xk)

(7)

and thus

xk+1 − xk =
aia

T
i

||ai||22
(x− xk). (8)

From (7) and (8), we can see that

x− xk+1 ⊥ xk+1 − xk, (9)

i.e.,
x− xk+1 ⊥ ai. (10)

To this end, let us make the following orthogonal direct sum decomposition
x− xk,

x− xk = αâi + βâ⊥i , (11)

where âi =
ai

||ai||2 and â⊥i is a normalized vector orthogonal to ai. Then coeffi-

cients α and β can be written as

α = ||x− xk||2 cos θki ,

β = ||x− xk||2 sin θki ,

where θki = ∠(x− xk, ai) is the angle between the vectors (x− xk) and ai.
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Substituting the above decomposition (11) into (7) gives

x− xk+1 = (I − aia
T
i

||ai||22
)(αâi + βâ⊥i )

= βâ⊥i
= ||x− xk||2 sin θki â

⊥
i .

(12)

It follows that
||x− xk+1||2 = ||x− xk||2 · | sin θki |. (13)

From (13) we can see that the error norms generated by the Kaczmarz algo-
rithm are monotonically nonincreasing. Moreover, the convergence can be opti-
mized if | sin θki | is minimized at every iteration, which is equivalent to selecting
the row ai that solves the optimization problem

| sin∠(x− xk, ai)| = min
j

| sin∠(x− xk, aj)|.

As x is the unknown solution, the above minimization problems seems unsolv-
able. However, noting that consistent linear system (1) implies

aTj x = bj , j = 1, 2, · · · ,m

and xk is fixed at the (k + 1)th iteration. The minimization problem can be
tackled by maximizing | cos∠(x− xk, aj)|, i.e.,

| cos∠(x− xk, aj)| =
|aT

j (x−xk)|
||x−xk||2||aj ||2

=
|bj−aT

j xk|
||x−xk||2||aj ||2

= |rk(j)|
||x−xk||2||aj ||2 ,

(14)

where rk = b−Axk =
(
rk(1), rk(2), · · · , rk(m)

)T
.

It is clear from (14) that the optimal updating strategy for the Kaczmarz
algorithm is to select the row î that satisfies

|bî − aT
î
xk| = max

j
|bj − aTj xk| = ||b−Axk||∞,

i.e., the index where rk has the largest entry in absolute value. We refer to
the above row selection method as the optimal selecting strategy, and call the
Kaczmarz algorithm with the optimal selecting strategy as the optimal Kaczmarz
algorithm.

Next, we analyze the convergence of the optimal Kaczmarz algorithm for
solving consistent system of linear equations. To simplify the analysis, we intro-
duce two notations

θîk = min
j

∠(xk − x, aj),

and
θîp = max

k
θîk,
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where 1 ≤ î ≤ m and 1 ≤ p ≤ k.

Based on (13), the (k + 1)th error can be bounded as follows

||x− xk+1||2 = ||x− xk||2 · | sin θîk|
= ||x− x0||2 · | sin θîk| · | sin θîk−1| · · · | sin θî0|
≤ ||x− x0||2 · | sin θîp|k,

(15)

where 1 ≤ p ≤ k.

Notice that

0 ≤ sin θîp ≤ 1,

we can theoretically divide the convergence history of the Kaczmarz algorithm
into two periods:

– when sin θîp < 1, the algorithm converge exponentially,

– when sin θîp = 1, we have

max
j

aTj (xp − x) = 0

and thus,

aTj (xp − x) = 0, j = 1, 2, · · · ,m.

This implies that Axp = b, i.e., xp solves the system of linear equation (1).

In summary, for solving consistent system of linear equations (1), there exists
a theoretical optimal selecting strategy or optimal randomization strategy for
Kaczmarz algorithm. With the strategy, the algorithm converges exponentially
and will achieve convergence when

max
k

min
1≤j≤m

∠(xk − x, aj) =
π

2
.

3 Randomized Kaczmarz algorithm for solving
inconsistent system of linear equations

Suppose (1) is a consistent system of linear equations and its right hand side is
perturbed with a noise vector r as follows:

Ax ≃ b+ r, (16)

where (16) can be either consistent or inconsistent. In this section, we give some
remarks on the convergence of randomized Kaczmarz algorithm for solving (16),
which was investigated by D. Needell [32].
Firstly, we recall the Lemma 2.2 in [32].

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_17

https://dx.doi.org/10.1007/978-3-030-50417-5_17


Title Suppressed Due to Excessive Length 7

Lemma 1. Let Hi be the affine subspaces of Rn consisting of the solutions to
unperturbed equations, Hi = {x | ⟨ai, x⟩ = bi}. Let H̃i be the solution spaces of
the noisy equations, H̃i = {x | ⟨ai, x⟩ = bi + ri}. Then

H̃i = {w + αiai | w ∈ Hi}

where αi =
ri

||ai||22
.

Remarks: If the Lemma 1 is used to interpret the Kaczmarz algorithm for
solving the perturbed and unperturbed equations, we need to introduce a vector
a⊥i in the as the orthogonal complement of the vector ai, and write x̃i ∈ H̃i as

x̃i = xi + αiai + βvi

where xi is a solution generated by Kaczmarz algorithm for solving the unper-
turbed equations, and vi is a vector in the orthogonal complement of ai.
Example 1. Consider the 2× 2 system of linear equations{

x1 + x2 = 1,
x1 − x2 = 1,

and the perturbed equations {
x1 + x2 = 1.5,
x1 − x2 = 1.5,

i.e., A =

(
1 1
1 −1

)
, b =

(
1
1

)
and r =

(
0.5
0.5

)
.

Let
Hi

.
= {x | ⟨ai, x⟩ = bi}

and
H̃i

.
= {x̃ | ⟨ai, x̃⟩ = bi + ri}.

If we use x0 =

(
1
0

)
as the same initial guess for the perturbed and unperturbed

linear system, then

H1 = {
(
1
0

)
+ ξ

(
−1
1

)
| ξ ∈ R}

and

H̃1 = {
(
1.5
0

)
+ ξ

(
−1
1

)
| ξ ∈ R}

Note that a1 =

(
1
1

)
, ||a1||22 = 2 and r1 = 1

2 . We have

(
1.5
0

)
=

(
1
0

)
+

1

4

(
1
1

)
+
1

4

(
1
−1

)
,
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i.e.,

x̃1 = x1 +
r1

||a1||22
a1+

r1
||a1||22

a⊥1 .

In order to derive the convergence rate of randomized Kaczmarz algorithm
for solving the perturbed linear equations (16), we need to make use of the estab-
lished convergence results [39] for the unperturbed linear system (1), together
with the relationship between the approximate solutions generated by the Kacz-
marz algorithm [39] for perturbed and unperturbed linear equations. In [32], D.
Needell analyzed the convergence rate and error bound of the randomized Kacz-
marz algorithm for solving the perturbed linear equations, in which the author
take the approximate solution to the perturbed linear equations as the guess for
the unperturbed system, which make the derivation process simplified. Howev-
er, the approximate solutions generated by applying the randomized Kaczmarz
algorithm to the perturbed linear system may not converge to the solution of
the unperturbed linear system.

In what follows, we will consider the convergence rate of the randomized
Kaczmarz algorithm for solving (16) from a different perspective. We try to
bound the difference between the solution for the unperturbed linear system
(1) and approximate solutions generated by applying the randomized Kaczmarz
algorithm to the perturbed linear system.

In the following discussion, we use xk and x̃k to denote the approximate
solutions generated by applying the randomized Kaczmarz algorithm to (1) and
(16), respectively. The recursive formulas can be written as

xk+1 = xk +
bik − xT

k aik
||aik ||22

aik (17)

and

x̃k+1 = x̃k +
bik + rik − x̃T

k aik
||aik ||22

aik , (18)

where the subscript ik ∈ {1, 2, · · · ,m} is used to denote that the ikth row is

selected with probability
||aik

||22
||A||2F

at the kth iteration.

Suppose the same initial guess x0 = x̃0 is used as the starting vector. Then

x̃1 = x̃0 +
bi0 + ri0 − x̃T

0 ai0
||ai0 ||22

ai0

and potentially

x1 = x0 +
bi0 − xT

k ai0
||ai0 ||22

ai0 .

It follows that

x̃1 = x1 +
ri0ai0
||ai0 ||22

. (19)
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In the next iteration, we have

x̃2 = x̃1 +
bi1+ri1−x̃T

1 ai1

||ai1 ||
2
2

ai1

= x1 +
ri0ai0

||ai0
||22

+
bi1−(x1+

ri0
ai0

||ar0 ||22
)T ai1

||ai1
||22

ai1 +
ri1ai1

||ar1
||22

= x1 +
bi1 − xT

1 ai1
||ai1 ||22

ai1︸ ︷︷ ︸
x2

+
ri1ai1

||ai1 ||
2
2
+ (I −

ai1a
T
i1

||ai1 ||22
)
ri0ai0
||ai0 ||22︸ ︷︷ ︸

a⊥
i1

= x2 +
ri1ai1

||ai1 ||
2
2
+ vi1

where vi1 = (I − ai1a
T
i1

||ai1 ||
2
2
)
ri0ai0

||ai0 ||
2
2
∈ span{ai1}⊥ with ||vi1 ||2 =

|ri0 |
||ai0 ||2

.

Continue the above process, we have

x̃k = xk +
rik−1

||aik−1
||22

aik−1
+

k−2∑
j=1

vij , (20)

where vij = (I −
aij

aT
ij

||aij
||22
)
rij−1

aij−1

||aij−1
||22

∈ span{aij}⊥ and ||vij ||2 =
|rij−1

|
||aij−1

||2 .

Subtracting x on both sides of (20) gives

x̃k − x = xk − x+
rik−1

aik−1

||aik−1
||22

+
k−2∑
j=1

vij . (21)

Based on Jensen’s inequality and (6), we have

E||xk − x||2 ≤ (1− 1

κ(A)2
)

k
2 ||x0 − x||2, (22)

where κ(A) = ||A||F ||A−1||2, with ||A−1||2 = inf{M : M ||Ax||2 ≥ ||x||2}.
Taking norm on both sides of (21) and using triangle inequality, we have

E(||x̃k − x||2) ≤ E(||xk − x||2) + || rik−1
aik−1

||aik−1
||22

||2 +
k−2∑
j=1

||vij ||2

≤ (1− 1
κ(A)2 )

k
2 ||x0 − x||2 +

k−1∑
j=1

||vij ||2

= (1− 1
κ(A)2 )

k
2 ||x0 − x||2 +

k−1∑
j=1

|rij |
||aij

||2

= (1− 1
κ(A)2 )

k
2 ||x0 − x||2 + (k − 1)γ

where γ = max
1≤i≤m

|ri|
||ai||2 .

In conclusion, we have derived the following theorem.
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Theorem 1. Let A be a matrix full column rank and assume the system Ax = b
is consistent. Let x̃k be the kth iterate of the noisy randomized Kaczmarz method
run with Ax ≃ b+ r, and let a1, · · · , am denote the rows of A. Then we have

E||x̃k − x||2 ≤ (1− 1

κ(A)2
)

k
2 ||x0 − x||2 + (k − 1)γ,

where κ(A) = ||A||F ||A−1||2 and γ = max
1≤i≤m

|ri|
||ai||2 .

4 Conclusions

In this paper, we provide a new look at the Kaczmarz algorithm for solving
system of linear equations. The optimal row selecting strategy of the Kaczmarz
algorithm for solving consistent system of linear equations is derived. The con-
vergence of the randomized Kaczmarz algorithm for solving perturbed system of
linear equations is analyzed and a new bound of the convergence rate is obtained
from a new perspective.
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