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Abstract. A new mathematical model and a numerical method were construct-

ed for numerical investigation of a two-phase turbulent flow in an open channel. 

Solid particles with a density close to that of water were considered a continu-

ous phase with effective properties. This new model is based on a continuum-

mechanics approach, a hydrostatic assumption, and equations averaged by the 

flow depth. Turbulent closure of the equations was done with a two-parameter 

k    turbulence model modified by Pourahmadi and Humphrey to account for 

the influence of the particles on the turbulent structure of the flow. The new 

numerical method is based on partial elimination algorithm for computing areas 

of the two-phase flow free of ice particles and uses semi-implicit approximation 

in time. The influence of the dynamic parameters of the dispersed phase on the 

structure of the flow was also investigated by computing several scenarios of 

the flow in an open channel with a 90-degree bend. Applications of the ap-

proach to the modeling of riverside flooding due to sudden increase in the river 

depth after a release of an ice jam illustrate the capabilities of the model. 

Keywords: Mathematical Modeling, Two-Phase Dispersed Flow, Continuum-

Mechanics Approach, Depth-Averaged Equations, Turbulent Flow, Solid Parti-

cles, Finite Volume Method, Partial Elimination Algorithm. 

1 Introduction 

Dispersed two-phase flows occur in such areas of environmental modeling as the 

atmosphere (clouds, airborne particulate matter), sediment transport in rivers, and 

river flow with ice as well as in technological facilities (coolants in cooling systems, 

fuel combustion). The majority of the flows mentioned above are turbulent. In spite of 

geophysical flows involving sediment transport in rivers being among the first flows 
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observed from the mechanical point of view, river flow with ice is much less re-

searched than multiphase flows in technological facilities and flows with sediment 

transport [1,2]. Nevertheless several hydrodynamic approaches to modeling river ice 

processes have been developed. One of the most important applications of these mod-

els is predicting riverside flooding caused by ice jams. 

Static Models 

Classical theoretical research on surface ice jams formed on a river during the 

breakup is based on the assumption that an ice jam is a one-dimensional static for-

mation of ice floes with constant porosity. River flow velocity and characteristics of 

ice cover are considered to be constant across the river. 

This approach allows evaluating the thickness of the existing ice jam but cannot 

indicate the initiation of an ice jam in a particular place and the conditions in which a 

jam could form, because they cannot correctly describe transport of ice and ice inter-

action with a flow. Static models are applicable when there is much data about the 

object of modeling such as ice thickness, density, friction between ice particles in the 

jam, and some other characteristics of ice cover. Wide review and comparison of the 

static models based on test cases is found in [1,3]. 

Dynamic Models 

Dynamic models of ice processes in rivers include a hydrodynamic model of the flow 

and a model of moving particles. Because multiphase flow is a very complex phe-

nomenon, dynamic models began to develop from one-dimensional spatial approxi-

mation [4,5,6]. One-dimensional models, however, have limited application, because 

the transport of ice particles is a significantly two-dimensional process due to the wall 

friction, bathymetry, and mutual influence of the flow and the ice jam. 

An advanced approach to modeling river flow with ice involves a multidimension-

al hydrodynamic model of the flow and a model to describe the movement of solid 

particles. Some of the multidimensional dynamic models that are precise in describing 

a flow with ice particles are that of Shen et al. [7,8,9], which is built within the finite-

element Eulerian approach and Lagrangian model of ice particles; the three-

dimensional unsteady Eulerian two-phase model of the flow with ice particles sug-

gested by Wang et al. [10]; the model based on two-dimensional inviscid shallow 

water equations and Lagrangian model for ice particles by Shlychkov et al. [11]; and 

the two-dimensional hydrodynamic code with DEM for ice particles by Stockstill et 

al. [12]. 

Mathematical models that are part of much current hydrological software are quite 

robust in mathematical description of physical processes and require high-quality 

input data about a hydrological object, especially its bathymetry. Therefore develop-

ing mathematical models for hydrodynamic investigation of small rivers without pre-

cise bathymetric data about them is of particular interest. 

Developing effective numerical algorithms for solving hydrodynamic equations are 

also of particular importance, especially in cases of river breakup, floods, and flows 

with ice particles, because of the complexity of these problems. 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_16

https://dx.doi.org/10.1007/978-3-030-50417-5_16


3 

In this work, both a new mathematical model and a numerical method for compu-

ting two-phase flow of water with light particles densely placed at the water surface 

are presented. This approach meets all the requirements that exist for an advanced, 

up-to-date model. 

2 Mathematical Model 

Two-phase isothermal flow of the mixture of water and light particles in an open 

channel (river bed) is considered. Thermal exchange between phases is not considered 

because the temperatures of the water and the environment are close and change 

slightly during the period modeled. Because the considered density of ice 
0 3910 /i kg m   is less than the density of water 0 31000 / ,l kg m   ice particles are 

considered to be packed in the upper layer of water and their concentration remains 

constant at the inlet of the channel (or the section of the river). Interactions between 

particles (collisions and friction) are also accounted for. Horizontal dimensions of the 

area of modeling are presumed to be much greater than the water depth. The size of 

ice particles is significantly less than the characteristic linear dimension of the chan-

nel (river bed). 

Hydrostatic balance was applied because of the significant difference in the scale 

of the process in vertical and horizontal, and therefore all the terms in the equation for 

vertical velocity are negligible except ones that describe pressure and the force of 

gravity. 

The mathematical model of the process described is based on continuum mechan-

ics approach [13]. Light particles densely placed on the water surface are regarded as 

a continuum with effective properties. 

Equations that describe the flow of the liquid phase (water) are [14] 
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For the dispersed phase of light particles (ice) 
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Here g  is the gravitational acceleration;  1 2,w ww  is the velocity of phase; 0

l  is 

the density of water. ( , )b bz z x y  is the function that describes the bathymetry; and 
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h  is the water depth. ,
b

i b
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i i i
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dz h h
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tic depth of the layer of ice particles. 
2

0.333f

gn
c

h
  is the bed friction of the liquid 

phase, and n>0 is the Manning coefficient.  

The bed friction of the dispersed phase in shallow regions is computed as 

i
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 are the compo-

nents of the viscous and turbulent stress tensor for the liquid/ice particles; 0

,l i  is the 

viscosity of liquid/dispersed phase; 
,

t

l i  is the eddy viscosity of the flow (liquid/ice); 

kj  is the Kronecker delta; and k is the turbulent kinetic energy. Viscous stress tensor 

in the dispersed phase appears due to collisions of particles and friction between 

them. 

2.1 Force Terms in the Momentum Equations for Phases 

The force term in the momentum equation for the dispersed phase is

   i A μ VM CF F F F F , which is the sum of the following forces [13]: 

 buoyancy  
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 fluid drag force [16]  
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where  0.68724
max 1 0.15 ,0.44

Re
D p

p
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 is the dimensionless drag coefficient, 

and 
id  is the characteristic diameter of the ice particles; 

0

0
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 virtual mass  
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0
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F , 0.5VMc   for spherical particles; 

 coriolis force  h 
C i

F w ω . 

The model is closed with the high-Reynolds k    turbulence model for depth-

averaged equations [17] with a modification suggested by Pourahmadi and Humphrey 

[18] to account for the influence of particles on the flow. Constants of the model are 

the same as in the standard high-Reynolds k    model [17].  

Initial and Boundary Conditions 

At the initial moment 0t   the following conditions are used:  

 
iceh h  , 

iceh  is a known value; 

 
0 0 0 0, ; ; , .i i i i ice l l l lu u v v h h h u u v v        

At the inlet of the channel, parameters of the liquid phase are considered to be known; 

at the outlet normal derivatives of the parameters are set to zero. At the solid bounda-

ries shear stresses are considered both for liquid and for particles. Both normal and 

tangential velocities on the wall are set to zero. In the liquid phase, near the wall the 

stresses and turbulent characteristics of the liquid phase were set by Launder-Spalding 

wall functions [19]. 

3 Numerical Method 

The area of the flow is contained in the rectangle covered with structured mesh. The 

equations of the model are discretized with the finite volume method on staggered 

mesh (Fig. 1), that is, finite volumes for velocity components are half-cell shifted 

from the node P, which is the center of the cell where scalar values , , ,h h k    are 

defined. 

 

Fig. 1. Mesh stencil. Uppercase letters are for centers of the finite volumes, lowercase letters 

are for midpoints of their edges. 

All the terms in the equations (1)–(4) were approximated explicitly in time except for 

the drag force in the momentum equations (2) and (4) which was approximated 

implicitly.  
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Convective fluxes in the momentum equations and advection-diffusion equations 

are approximated the MUSCL scheme [20].  

To reach the third order accuracy in space in regions where the functions are 

monotonic, variables on the edges of the finite volumes are computed with linear 

interpolation from the values in the centers of the volumes (Fig. 1) [21]: 
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 ;e e E P     . Slope limiter     was chosen to satisfy the sufficient condi-

tion of the Harten’s theorem [22] 
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, which means that 

reconstructed value is within the values used for reconstruction. In this work the func-

tion  
2
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3
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e w

w


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
 and 

e  could be approximated with left, right, or central finite 

difference. 

First order upwind scheme was used to approximate convective terms in the equa-

tions of the turbulence model. 

Central finite difference scheme 
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was used to approximate the source terms, which represent the influence of the bed 

slope in momentum equations. 

The diffusive terms are discretized with the second order central-difference 

scheme. 

In order to reduce a limitation on the time step for momentum equations, terms that 

express the dynamic interaction between phases (friction) was approximated with an 

implicit scheme and the partial elimination algorithm that allows solving equations in 

the areas with no dispersed phase  0h  . A brief description of this approach is 

below. 
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Consider equations (2) and (4) for the longitudinal velocity component for the in-

ner node e of the mesh shown at Fig. 1 . 
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0 0ande e   combine approximations of convective, diffusive, and source terms,    

is the coefficient of difference between velocities of the phases in the expression for 

the drag force. Upper index ‘ 0 ’ is for the discrete values from the previous time step. 

Here and below in the section the over-bar for averaging is omitted. 

In the right side of the discrete equations (5)–(6), terms  0

e i e l eh u u   and 
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0 0

0

l

e l e i e
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

 describe dynamic interactions between phases and contain the 

differences between velocities of phases. Explicit approximation of these terms leads 

to a more strict convergence condition than the Courant–Friedrichs–Lewy condition 
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in the case of flow with particles with large inertia.  

In the case of 0h   equation (6) becomes an identity. To avoid this, rewrite equa-

tions (5)–(6): 
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  (8) 

In (8), the term 0 0

e eh  0

e  is equated to zero if 0

eh   , where   is an infinitely 

small positive value. The determinant of the SLAE (7)–(8) is nonzero and the system 

is being solved by Cramer’s rule. The SLAE for ,l n i nv v  was solved in the same way. 

The wet-dry boundary treatment for an unsteady flow is of particular complexity 

because the solution becomes unstable due to very little water depth in the boundary 

cell [23,24]. One of the simplest approaches to wet-dry boundary treatment is choos-

ing a small positive value 0   such that if the depth becomes less than  , the cell is 

considered dry and excluded from computations. In the case of the two-phase flow 

considered in this article, h , which is the depth of the liquid phase, was compared to 

 . When the cell became dry, the depth of the dispersed phase h  was also equated to 

zero. 
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Several test cases of unsteady flow in open channels were computed with the mod-

el and the method presented above. The results were compared to experimental data 

to evaluate the model. 

4 Results and Discussion 

4.1 Two-Phase Flow in a 180  Bend Flume 

Unsteady turbulent flow in a 180  bend flume with polypropylene particles to model 

ice was computed. This test case was investigated both experimentally and numerical-

ly in [25]. The depth of the flow at the inlet of the channel was set to 0.45m , and the 

volumetric flow rate was 
30.16 /m s . These parameters define turbulent flow with 

Reynolds number Re 77170h   defined by the depth of the flow. Spherical polypro-

pylene particles ( 3900 /kg m  ) with the diameter 0.005id m  were used to model 

ice floes. Particles were tossed with constant rate into the steady flow at the end of the 

first straight section of the channel. A wire-mesh screen was placed after the bend to 

initiate ice jam development and support its downstream end. 

Results of the computations made were compared with those of Urroz and Ettema 

[25] (Fig. 2). 

 
(a)                                                                (b) 

Fig. 2. Jam-head profiles around the bend (a) experiment [25], (b) computations 

Moving along the flume, particles tend to accumulate near the left wall because of the 

centrifugal force, which also causes the increase in the velocity towards the left wall. 

After crossing the longitudinal axis of the channel, the flow tends to move closer to 

the right bank (Fig. 2). 

This showed that the mathematical model and the computational method proposed 

accurately predicted both the velocity field and the distribution of the particles in the 

channel: they showed the increase in ice jam thickness both downstream and toward 

the inner bank of the bend as it was observed in experiments and gave a jam-head 

shape similar to those observed. 

In [25] it was also noted that a similar shape of the front of ice particles was ob-

served on the Iowa River during the breakup. 
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4.2 Two-Phase Flow in Open Channel with a 90  Bend  

Two-phase flow in the channel with a 90  bend was computed. The first section of 

the channel was 5.555 m long and 0.86 m wide with a flat bottom, and the second 

section was 4.43 m long and 0.72 wide with a flat bottom. At the end of the first sec-

tion there was a step with a change in the bed elevation of 0.013 m. One-phase flow in 

this channel was investigated in detail in [23,26]. In the present article, the two-phase 

flow of the water with ice particles in the described channel is discussed. At the inlet, 

the longitudinal velocity of the flow was 
0 0.2m/sU  , the initial depth of the flow 

was 0.175mh  , and the depth of the dispersed phase was 0.04mh  . Parameters 

of the dispersed phase are shown in Table 1. Structured mesh of 254x208 nodes was 

used in computations. Time step was chosen automatically from the Courant–

Friedrichs–Lewy condition. 

Table 1. Parameters of the test cases: 1 basic case, 2–3 parametric computations 

 Particle diameter, di, m Shape parameter, fi  Effective viscosity of 

the liquid phase, m
2
/s 

1 0.1 0.166 (cubic particles) 0.01 

2 0.01 0.166 0.01 

3 0.1 1 (spherical particles) 0.01 

Computations led to the following conclusions: 

1. Velocities of the smaller and the larger particles did not differ significantly near the 

bend. A recirculation area formed behind the bend near the right wall, and recircu-

lating flow was more intensive for the larger particles ( 0.1 mid  ). 

In the corner of the channel, velocities of the phases were also different, but for 

cases (1) and (2) the particles did not accumulate in the corner because the particles 

had little inertia and wall friction to resist the dragging force of the water. It was 

also found that the flow with smaller particles had less turbulent kinetic energy be-

hind the bend. 

2. The change in bottom elevation influenced the velocities and the depth of the dis-

persed phase layer more than the size of the particles. Contours of the velocity 

magnitudes of both phases were not smooth near the step on the bottom because 

particles with little inertia in the same way as the liquid phase reacted to the change 

in the flow conditions (Fig. 3). At the same time, the distribution of h showed that 

with the increase in size of particles (and consequently their inertia) h  increases 

more smoothly near the step and again near the bend. 
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Fig. 3. Liquid phase velocity field (a), dispersed phase velocity field (b), depth of the dispersed 

phase layer (c) for the basic variant (1), and computation with smaller particles (2) 

Evaluation of the Influence of the Shape of Particles 

With decrease in 
if  from 1if   to 0.16,if   resistance of the dispersed phase to the 

dragging force of the liquid phase increased (Fig. 4). The increase in the depth h  in 

the corner of the channel was more efficient for spherical particles. In the case of the 

flow with spherical particles, the intensity of the recirculating flow was greater and 

the contours of h  near the step were smoother. Computed distribution of the free 

surface in the bend was in accordance with experimental data [27]. 
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Fig. 4. Liquid phase velocity field (a), dispersed phase velocity field (b), and the depth of the 

dispersed phase (c) for the basic variant (1) and computation with spherical particles (3) 

4.3 Modeling the Floods of the Tom River Near Tomsk, Russia 

The abrupt increase in the flow rate of the river at the inlet of the section studied was 

computed. Such a phenomenon occurs when a sudden failure of an ice jam upstream 

releases large quantities of water and ice and often causes severe damage in the 

floodplain. As a precondition, flow with a longitudinal velocity of 1.25 m/s and free 

surface elevation of 69.8 m above sea level was computed for 20 h. After flow stabili-

zation, the depth at the inlet of the section studied was increased by 2 m. The struc-

tured mesh of 221x180 nodes was used in computations. 

With the increase in volume of fluid moving from the inlet, the depth of the flow in 

the section studied increased and water flooded the areas of the floodplain with the 

lowest heights: islands near 12,000 m and lowlands on the left bank of the river be-

tween 18,000 and 20,000 m (Fig. 5). The depth of the lake on the left bank of the river 

(near 6,000) increased and the lake connected to the river. Flooding of these areas is 

usually observed during the spring breakup. 
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Fig. 5. Free surface level before increasing water level, 9.61 h after increasing water level, and 

16.181 h after increasing the water level 

5 Conclusions 

A new mathematical model that is based on mechanics of interacting, interpenetrating 

continua was developed and tested. It is one of the first Eulerian hydrodynamic mod-

els of the two-phase flow of water with ice particles within the shallow water ap-

proach that takes into account interaction between phases, interactions between ice 

particles, interaction of both phases with the river bed, and the turbulence of the flow. 

A computational algorithm based on finite volume method, semi-implicit discreti-

zation in time, and original partial elimination technique was developed to avoid un-

certainty in the areas with no dispersed phase. The novelty of the computational 

method is in combining the technique for detecting the moving boundary of the river, 

which is of particular importance in modeling floods, with the partial elimination 
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technique that ensures the correctness of computations throughout the domain in cases 

of areas with no ice particles. 

The approach presented in this work was applied to numerical investigation of the 

Tom River during the breakup in spring near the city of Tomsk (Russia), where ice 

jams often form and cause localized flooding in the area behind the blockage. Two-

phase river flow modeling showed that the approach developed correctly modeled 

changes in hydrodynamic characteristics of the river during the breakup and gave 

accurate results for the cases of flooding of the floodplain that involve change in the 

boundary of the river. 

The investigation of the two-phase flow in the channel with 90  bend showed that 

the dispersed phase is more influenced by the bottom relief than by sharp change in 

flow direction. It was also shown that the presence of the ice particles in the flow 

increased the nonuniformity in the free surface level. 
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