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Abstract. We investigate a residual minimization (RM) based stabilized isogeometric finite
element method (IGA) for the Stokes problem. Starting from an inf-sup stable discontinuous
Galerkin (DG) formulation, the method seeks for an approximation in a highly continuous trial
space that minimizes the residual measured in a dual norm of the discontinuous test space.
We consider two-dimensional Stokes problems with manufactured solutions and the cavity
flow problem. We explore the results obtained by considering highly continuous isogeometric
trial spaces, and discontinuous test spaces. We compare by the Pareto front the resulting
numerical accuracy and the computational cost, expressed by the number of floating-point
operations performed by the direct solver algorithm.
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1 Introduction

The Isogeometric Analysis (IGA) [1] bridges the gap between the Computer Aided Design (CAD)
and Computer Aided Engineering (CAE) communities. The idea of IGA is to apply B-spline ba-
sis functions [2] for finite element method (FEM) simulations. The ultimate goal is to perform
engineering analysis directly to CAD models without expensive remeshing and recomputations.
IGA has multiple applications in time-dependent simulations, including phase-field models [3, 4],
phase-separation simulations with application to cancer growth simulations [5,6], wind turbine aero-
dynamics [7], incompressible hyper-elasticity [8], turbulent flow simulations [9], transport of drugs
in cardiovascular applications [10], or the blood flow simulations and drug transport in arteries
simulations [11,12].

The stability of a numerical method based on Petrov-Galerkin discretizations of a general weak
form relies on the famous discrete inf-sup condition (see, e.g., [13]): “Babuška-Brezzi condition”
(BBC) developed in years 1971-1974 at the same time by Ivo Babuśka, and Franco Brezzi [14–16].

Let U,V denote two Hilbert spaces. For a given variational formulation of the form:

Find u ∈ U, such that b(u, v) = l(v), ∀ v ∈ V, (1)

with b : U×V→ R being a bilinear form, and l : V→ R being a linear form, the BBC condition
states that the problem is stable if there exists a positive constant γ > 0, such that:

sup
v∈V,v 6=0

|b(u, v)|
‖v‖V

≥ γ ‖u‖U, ∀ u ∈ U. (2)
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The inf-sup condition in the above form concerns the abstract formulation where we consider all
the test functions from v ∈ V and look for solution at u ∈ U. The above condition is satisfied also
if we restrict to a conforming space of trial functions Uh ⊂ U. This is,

sup
v∈V,v6=0

|b(wh, v)|
‖v‖V

≥ γ ‖wh‖Uh
, ∀wh ∈ Uh. (3)

However, if we consider test functions from a finite dimensional test space Vh (not necessarily
conforming), there is not guarantee that the inf-sup condition is realized on the discrete level.

There are many methods constructing test functions providing better stability of the method
for a given class of problems [17–20]. In 2010 the Discontinuous Petrov-Galerkin (DPG) method
was proposed, with the modern summary of the method described in [21, 22]. The key idea of the
DPG method is to construct the optimal test functions “on the fly”, element by element. The DPG
automatically guarantee the numerical stability of difficult computational problems, thanks to the
automatic selection of the optimal basis functions. The DPG method is equivalent to the residual
minimization method [21]. The DPG is a practical way to implement the residual minimization
method when the computational cost of the global solution is expensive (non-linear).

There is consistent literature on residual minimization methods, especially for convection-diffusion
problem [23–25], where it is well known that the lack of stability is the main issue to overcome. In
particular, the class of DPG methods [26,27] aim to obtain a practical approach to solve the mixed
system by breaking the test spaces (at the expense of introducing a hybrid formulation).

Recently, in [28] a new stabilized finite element method based on residual minimization was
introduced. The method consider first an adequate discontinuous Galerkin formulation. Then, the
wanted solution is obtained by solving a residual minimization problem in terms of a dual discontin-
uous Galerkin norm. As in DPG methods, the method delivers a stable approximation and an error
estimator to guide the adaptivity. However, its main attractive relies in that it allows to obtain a
solution in a conforming sub space with the same quality of those ones obtained with the discontin-
uous Galerkin formulations. Last is evidenced by the authors considering standard Lagrange FEM
polynomials.

In this paper, we explore the extension of [28] to IGA. We investigate the possibility of consider-
ing highly-continuous B-splines spaces as trial and broken B-spline spaces as test. We focus on the
stationary Stokes problem, that requires special stabilization effort (see [29–33]). Due to the large
range of subspaces that can be considered as trial spaces, we perform experimentations considering
different setups of conforming trial spaces contained in a given broken B-spline space of degree 4.
We solve the global system calling the MUMPS solver [34–36], and we compare the obtained results
in terms of computational cost and accuracy of the obtained solution.

2 Discontinuous Galerkin based Isogeometric Residual Minimization
(DGIRM)

In this section we briefly discuss, in an abstract setting, the main idea behind the discontinuous
Galerking based residual minimization method introduced in [28] in the isogeometric context.
Assume that we want to obtain an approximation uh, of the continuous problem (1), in a given

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_15

https://dx.doi.org/10.1007/978-3-030-50417-5_15


DG with iGRM for Stokes problem 3

discrete space Uh ⊂ U (eg., a highly continuous B-spline space). The residual minimization method
is constructed as follows: First, a broken B-spline polynomial space Vh, containing Uh, is consid-
ered. Next, as starting point, is considered a discontinuous Galerkin variational formulation for
problem (1) of the form:

Find uDG
h ∈ Vh, such that bh(uDG

h , vh) = lh(vh), ∀ vh ∈ Vh, (4)

the bilinear form bh is inf-sup stable with respect to a given discrete norm ‖ · ‖Vh
of Vh. This is,

there exists a positive constant Csta, independent of the mesh size, such that:

sup
0 6=vh∈Vh

bh(wh, vh)

‖vh‖Vh

≥ Csta ‖wh‖Vh
, ∀ vh ∈ Vh. (5)

Finally, instead of solving the square problem (4), the wanted solution is obtained by solving the
following residual minimization problem:

Find uh ∈ Uh, such that uh = arg min
wh∈Uh

1

2
‖lh −Bhwh‖2V′

h
, (6)

where V′h denotes the dual space of Vh, the operator Bh : Vh → V′h is defined as:

< Bhwh, vh >V′
h×Vh

:= bh (wh, vh) , (7)

and, for φ ∈ V′h, the dual norm ‖ · ‖V′
h

is defined as:

‖φ‖V′
h

:= sup
0 6=vh∈Vh

< φ, vh >V′
h×Vh

‖vh‖Vh

. (8)

Considering the Riesz operator:

RVh
: Vh 3 vh → (vh, .)Vh

∈ V′h, (9)

where (·, ·)Vh
denotes the inner product inducing the discrete norm ‖ · ‖Vh

= (·, ·)1/2Vh
, and defining

the residual representative:

rh := R−1Vh
(lh(vh)− bh(uh, vh)) = R−1Vh

bh(uDG
h − uh, vh), (10)

with R−1Vh
being the inverse of the Riesz operator RVh

, and uDG
h being the solution of the DG

problem (4), problem (6) can be equivalently written as the following saddle-point problem:
Find (rh, uh) ∈ Vh × Uh, such that:

(rh, vh)Vh
+ bh(uh, vh) = lh(vh), ∀ vh ∈ Vh,

bh(wh, rh) = 0, ∀wh ∈ Uh.
(11)

The main attractive of the discrete saddle-point problem (11) is that it delivers automatically a sta-
ble approximation uh ∈ Uh enjoying of desired properties for the solution, such as high-continuity,
and a residual representation rh ∈ Vh that can be used as error indicator to guide an adaptive
mesh refinement. Indeed, in [28] the authors proved that, under the standard assumptions for the
Discontinuous Galerkin problem (4): a) inf-sup stability (see Equation (5)), b) boundedness and c)
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consistency (see [37] or [28] for definitions), problem (11) is well-posed. Additionally, it delivers an
approximation uh with the same quality, in terms of the norm Vh, of the one obtained by solving
problem (4). Moreover, the residual representative r is an efficient error estimator that, under an
adequate saturation assumption is satisfied (see Assumptions 4 and 5 in [28]) the residual repre-
sentative is also reliable.

Therefore, roughly speaking, the following two ingredients are required to perform the discon-
tinuous Galerkin based isogeometric resual minimization:

a) A well-posed discontinuous Galerkin formulation of the form (4), satisfying the inf-sup prop-
erty (5).

b) A conforming, in U, subspace Uh ⊂ Vh as trial space.

3 The Stokes problem

Let Ω ⊂ R2 be a open bounded polygon with outer normal n, and denote by ∂Ω its boundary.
Without loss of generality, we consider Ω = (0, 1)2. The Stokes problem with no-slip boundary
condition reads:

Find u, p such that:
−∆u +∇ p = f, in Ω,

∇ · u = 0, in Ω,
u = 0, on ∂Ω,

(12)

where u := (u1, . . . , ud) : Ω → R2 denotes the velocity field, p : Ω → R the pressure and

f := (f1, . . . , fd) ∈
[
L2(Ω)

]2
a given forcing term. The solution of (12) is unique for the pressure p

up to a constant, therefore, problem (12) is complemented with the following extra condition for p:∫
Ω

p = 0. (13)

3.1 Weak variational formulation

We consider the following Hilbert spaces: L2(Ω) = {v : Ω → R :
∫
Ω
v2 < +∞}, H1(Ω) = {v ∈

L2(Ω) : ∇v ∈ [L2(Ω)]2} and H1
0 (Ω) = {v ∈ H(Ω) : v = 0 on ∂Ω}. Defining U :=

(
H1

0 (Ω)
)2

as
the space for the velocity field and, as consequence of condition (13), the space P := L2

0(Ω), with
L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω
p = 0} for the pressure, the weak variational formulation of the strong

problem (12)-(13) reads:

Find (u, p) ∈ U × P , such that:

a(u,v) + b(v, p) = (f, v)Ω , ∀v ∈ U,
−b(u, q) = 0, ∀q ∈ P, (14)

where

a(u,v) =

∫
Ω

∇u : ∇v :=

2∑
i,j=1

∫
Ω

∂jui∂jvi,

b(v, p) = −
∫
Ω

p∇ · v,
(15)
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and (·, ·)Ω denotes the inner product of L2(Ω). It is well known that problem (14) is well-posed
(see, eg. [37] or [13]) so we skip here the mathematical details.

3.2 An equal-order discontinuous Galerkin formulation

In this section we briefly introduce, in the isogeometric context, a discontinuous Galerkin formula-
tion proposed by Cockburn et al. in [38] allowing to consider equal-order discontinuous spaces for
the velocity and the pressure. A detailed discussion of alternative discontinuous Galerkin methods
for the Stokes problem can be found in [37].

For a given mesh size h, denote by Ωh a conforming isogeometric discretization of Ω [1]. Denote
by Fh the set of all faces of Ωh, and by F 0

h ⊂ Fh the set of internal faces. Over Fh, we define nF as
a predefined normal over each F being coincident with n when F is a boundary face. We denote by
hF the diameter of the face being the length of the edge in 2D, and equal to 20.5∗ length of the edge

in 3D. We denote by Sp1,...,pdc1,...cd
the space, defined over Ωh, of splines functions of degree pi ≥ 1, and

continuity ci = −1 ≤ pi−1 in the xi coordinate. Over Fh, for any function vh ∈ Sp1,...,pdc1,...cd
, we denote

by [vh] the jump operator, and by {vh} the average operator, defined as follows:

[vh] |F =

{
v−h − v+h , if F ∈ F 0

h ,

vh, if F ∈ Fh \ F 0
h ,

{vh} |F =


1

2
(v−h + v+h ), if F ∈ F 0

h ,

vh, if F ∈ Fh \ F 0
h ,

(16)

with v−h and v+h denoting the left and right traces respectively, with respect to the predefined nor-

mal nF . Finally, for a given p ≥ 1, define Wh :=
[
Sp,...,p−1,···−1

]2
as the space for the discontinuous

velocity, Qh = Sp,...,p−1,...,−1, and Q0,h := Qh ∩ L2
0(Ω) as the space for the discontinuous pressure. The

equal-order velocity and pressure discontinous Galerkin formulation reads:
Find (uDG

h , pDG
h ) ∈Wh ×Q0,h, such that:

ah(uDG
h ,vh) + bh(vh, p

DG
h ) = (f,vh)Ω , ∀vh ∈Wh,

−bh(uDG
h , qh) + sh(pDG

h , qh) = 0, ∀ qh ∈ Q0,h,
(17)

with

ah(wh,vh) =
∑

i=1,...,d

( ∑
K∈Ωh

∫
K

∇wh,i · ∇vh,i −
∑
F∈Fh

∫
F

{∇wh,i} · nF [vh,i]

−
∑
F∈Fh

∫
F

[wh,i] · {∇vh,i} · nF +
∑
F∈Fh

∫
F

η

hF
[wh,i][vh,i]

)
,

(18)

being the discretization of the diffusive term,

bh(vh, qh) = −
∑
K∈Ωh

∫
K

qh∇ · vh +
∑
F∈Fh

∫
F

[vh] · nF {qh}, (19)

is the discretization of the pressure-velocity coupling term, and

sh(ph, qh) =
∑
F∈F 0

h

hF

∫
F

[ph][qh], (20)
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an extra stabilization term allowing to consider equal-order discrete spaces. In (18), η > η denotes a
user-defined stabilization parameter that has to be considered large enough to guarantee the inf-sup
stability (see eg. Lemma 4.12 in [37]).
Notice that, by identifying Vh = Wh × Q0,h, uDG

h = (uDG
h , pDG

h ), and vh = (vh, qh), problem (17)
can be equivalently written of the form (4), with lh(vh) = (f, vh)Ω and

bh(uDG
h , vh) := ah(uDG

h ,vh) + bh(vh, p
DG
h )− bh(uDG

h , qh) + sh(pDG
h , qh). (21)

Moreover, the bilinear form (21) satisfies the inf-sup condition (5) (see Lemma 6.13 in [37]) with
the following norm:

|||(vh, qh)|||2 =
∑

i=1,...,d

( ∑
K∈Th

‖∇vh,i‖2L2(K) +
∑
F∈Fh

η

hF
‖[vh,i]‖2L2(F )

)
+ ‖qh‖2L2(Ω) +

∑
F∈F 0

h

hF ‖[qh]‖2L2(F ).

(22)

Remark 1 (Discarding the zero-mean value restriction). Following Remark 6.14 from [37], in practise
we can ignore the zero mean-value constrain (13) in the spaces for the pressure, and call MUMPS
with pivoting. Then, a zero mean-value solution can be recovered by post-processing the solution
as p = p− 1

|Ω|
∫
Ω
p.

3.3 Trial spaces for the residual minimization problem

The subspace condition for the trial space give a wide range of possibilities. In this paper, we focus
in the two dimensional case. For a given polynomial degree p, we denote by Vh = Sp,p−1,−1 × Sp,p−1,−1
the test space for the velocity, and by Qh = Sp,p−1,−1 the test space for the pressure (see Remark 1).
Denoting by Vh ⊂ Wh the trial space for the velocity, and by Ph ⊂ Qh the trial space for the
pressure, we consider the following conforming couples of spaces:

q) Raviart-Thomas type:

Vh := Sp,p−1c,c−1 × Sp−1,pc−1,c , Ph := Sp−1,p−1c−1,c−1 , with p ≥ 2 and 1 ≤ c ≤ p− 1.

b) Second order Nédélec type:

Vh := Sp,pc,c−1 × Sp,pc−1,c, Ph := Sp−1,p−1c−1,c−1 , with p ≥ 2 and 1 ≤ c ≤ p− 1.

c) Taylor-Hood type:

Vh := Sp,pc,c × Sp,pc,c , Ph := Sp−1,p−1c,c , with p ≥ 2 and 0 ≤ c ≤ p− 2.

d) Equal-order type:

Vh := Sp,pc,c × Sp,pc,c , Ph := Sp,pc,c , with p ≥ 1 and 0 ≤ c ≤ p− 2.

We notice that couple of spaces a), b) and c) are stable in the classical isogeometric case (see [39]),
while the couple d) is not.
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4 Numerical results

In this section, we explore the results obtained considering (as starting point) the equal-order
discontinuous Galerkin formulation defined in Section 3.2, with Wh = S4,4

−1,−1 × S4,4
−1,−1 and Qh =

S4,4
−1,−1 as the discontinuous spaces for the velocity and pressure respectively, and performing the

discontinuous Galerkin based residual minimization method (see Sec. 2) with the several options of
conforming trial spaces defined in Section 3.3.

4.1 A smooth analytical solution

We consider the Stokes problem (12), defined over the 2D domain Ω = [0, 1]2, and we define the
source term f in such a way that the analytical solution is given by u = (u1, u2) and p, with
(cf. [40]):

u1(x, y) = 2ex(−1 + x)2x2(y2 + y)(−1 + 2y),

u2(x, y) = − ex(−1 + x)x(−2 + x(3 + x))(−1 + y)2y2,

p(x, y) = (−424 + 156e+ (y2 − y)(−456 + ex(456 + x2(228− 5(y2 − y))+

2x(−228 + (y2 − y)) + 2x3(−36 + (y2 − y)) + x4(12 + (y2 − y))))).

(23)

In Tables 1-4 we show the L2-error in the approximation of the functions u, p and div u, obtained
by considering a fixed mesh of size 20 × 20, and the extreme allowed continuities for the Taylor-
Hood type, Raviart-Thomas type, second order Nédélec type, and equal-order type trial spaces
respectively. We also show the number of flops required for the resolution of the corresponding
saddle-point problem (see Equation (11)). As expected, all the selected trial spaces deliver good
approximations for the meassured quantities. Moreover, there is no a significative difference in the
approximation when considering a higly-continuous trial space, while the total number of flops is
reduced in almost two orders of magnitude, when compared with its C0-trial equivalent, and the
highly-continuous equal order type trial is the one that delivers a better balance between accuracy
and computational cost. Last can be also appreciated in Figure 1, where we plot the Pareto front for
the previous results (see [41]), considering the the number of floating-point operations (as performed
by the MUMPS direct solver) as the vertical axis, and the numerical error measured in the |||(·, ·)|||-
norm, defined in Equation (22), as the horizontal axis.

Finally, in Figure 2, we plot the error |||(u − uh, p − ph)||| (real), and the error of the residual
estimation |||(ruh, rph)||| (estimated), where ruh, r

p
h are the residual associated with the velocity and

pressure respectively, obtained when considering Vh = S4,4
c,c × S4,4

c,c , Ph = S4,4
c,c , with c = 0, 1, 2, 3

respectively, as trial spaces. As can be appreciated in the figures, increasing the continuity reduces
the distance between the real and the estimated errors, implying that the error bound becomes
sharper when increasing the continuity

4.2 The lid-cavity flow problem

With the spirit of exploring the behavior of the method when the solution is non-smooth, as second
example we consider the well-known lid-cavity flow problem (see eg. [42]).

The problem models a plane flow of an isothermal fluid in a square lid-driven cavity of size
(0, 1)2 (cf. [43]). The pressure solution in the problem exhibits two singularities at the corners,
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Trial spaces ‖u− uh‖L2 ‖p− ph‖L2 ‖div(u− uh)‖L2 flops

V = S4,4
0,0 × S4,4

0,0 , P = S3,3
0,0 1.72e-06 5.69e-05 5.28e-06 3.96537e+12

V = S4,4
2,2 × S4,4

2,2 , P = S3,3
2,2 1.59e-05 0.000232 2.14e-05 9.52712e+10

Table 1. Taylor-Hood type trial with minimum and maximum continuity respectively.

Trial spaces ‖u− uh‖L2 ‖p− ph‖L2 ‖div(u− uh)‖L2 flops

V = S4,3
1,0 × S3,4

0,1 , P = S3,3
0,0 0.00019 0.000132 7.05e-06 4.40153e+11

V = S4,3
3,2 × S3,4

2,3 , P = S3,3
2,2 0.000493 0.000235 1.65e-06 2.7742e+10

Table 2. Raviart-Thomas type trial with minimum and maximum continuity respectively.

Trial spaces ‖u− uh‖L2 ‖p− ph‖L2 ‖div(u− uh)‖L2 flops

V = S4,4
1,0 × S4,4

0,1 , P = S3,3
0,0 1.72e-06 5.69e-05 5.27e-06 9.09917e+11

V = S4,4
3,2 × S4,4

2,3 , P = S3,3
2,2 1.72e-05 0.000232 2.27e-05 5.00601e+10

Table 3. Second-order Nédélec type trial with minimum and maximum continuity respectively.

Trial spaces ‖u− uh‖L2 ‖p− ph‖L2 ‖div(u− uh)‖L2 flops

V = S4,4
0,0 × S4,4

0,0 , P = S4,4
0,0 1.64e-06 8.29e-05 5.27e-06 2.85826e+12

V = S4,4
3,3 × S4,4

3,3 , P = S4,4
3,3 1.79e-05 9.13e-05 2.28e-05 3.86971e+10

Table 4. Equal-order type trial with minimum and maximum continuity respectively.

as presented on right panel in Figure 3. For the numerical simulation, we enforce the Dirichlet
boundary conditions for the velocity field in terms of a small parameter ε > 0, to obtain a solution
with Dirichlet trace belonging to H1/2 (see left panel in Figure 3). For the pressure, we fix its value
at one point, which is numerically equivalent to setting the condition (13). We set a homogeneous
force f = 0. We consider the spaces Wh = S4,4

−1,−1 × S4,4
−1,−1 and Qh = S4,4

−1,−1 for as test for the

velocity and pressure respectively, and the spaces Vh = S4,4
3,3 × S4,4

3,3 , Ph = S4,4
3,3 as trials for the

velocity and pressure respectively, that we recall it is not stable in the classical isogeometric sense
(cf. [39]). In Figure 5, we plot the components of the discrete velocity field, and the discrete pressure
field obtained considering several uniform meshes. As can be appreciated from the figures, also in
this scenario the method delivers stable and accurate approximations, even if a highly-continuous
space is chosen as trial, evidencing the performance of the method.

5 Conclusions

We investigated a Discontinuous Galerkin (DG) based residual minimization (RM) stabilization for
isogeometric analysis (IGA) simulations of the stationary Stokes problem. We explore the results
obtained when considering a fixed DG-type test space and several types of conforming trial spaces.
The higher continuity spaces result in a lower computational effort of the solver due to the reduction
of the number of degrees of freedom, without affecting significantly the approximation. Moreover,
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0,0
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Equal order
Taylor-Hood

Fig. 1. Pareto front for different setups of trial spaces defined in Section 3.3. The vertical axis denotes the
computational cost expressed in terms of the number of floating-point operations performed by MUMPS
solver. The horizontal axis denotes the error in the |||(·, ·)|||-norm (see (22)) for the smooth analytical
problem.

the upper error bound constant is reduced when the continuity is increased, leading to a sharper
estimation of the error in terms of the analytical solution. The method is also able to capture
singularities even is considering a highly-continuous trial space, as evidenced with the well-known
lid-cavity flow problem in the numerical section.

As future work, we plan to extend the analysis to other kind of mixed formulations, such as
the Ossen and Maxwell equations [44–46], as well as exploring parallelization techniques for the
resolution of the saddle-point problem [47], and localized adaptive mesh refinement techniques
based on the residual estimator (10). The future work will also involve incorporating of the DG
method mixed with residual minimization formulation within adaptive finite element code [42,48].
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