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Abstract. The paper presents the approach for solving 2D elastic bound-
ary value problems defined in domains with inclusions with different ma-
terial properties using the parametric integral equation system (PIES).
The main feature of the proposed strategy is using Bézier surfaces for
global modeling of inclusions. Polygonal inclusions are defined by bilinear
surfaces, while others by bicubic surfaces. It is beneficial over other nu-
merical methods (such as FEM and BEM) due to the lack of discretiza-
tion. Integration over inclusions defined by surfaces is also performed
globally without division into subareas. The considered problem is solved
iteratively in order to simulate different material properties by applying
initial stresses within the inclusion. This way of solving avoids increasing
the number of unknowns and can also be used for elasto-plastic prob-
lems without significant changes. Some numerical tests are presented, in
which the results obtained are compared with those calculated by other
numerical methods.
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1 Introduction

Practical elastic problems very often require the analysis of piecewise homoge-
neous domains in which several regions exist, each with various material prop-
erties. Well known numerical methods such as the finite element method (FEM)
[1–3] and the boundary element method (BEM) [1, 4–6] deal with such situa-
tions, however, they demand a completely different approach. Including two or
more materials in FEM is quite straightforward, because different properties can
be assigned to specific finite elements, which are always generated at the stage
of body modeling, regardless of the problem solved. It is reduced to the proper
discretization of the body and linking the right attributes with the right finite
elements. On the other hand, most problems solved by BEM require defining
only the boundary elements, which causes that elements inside the domain do
not exist. Therefore, the only way to handle piecewise homogeneous problems in
BEM is to divide the model into subregions or zones. Each zone has its own set
of material properties and they are connected along a common interface. At the
beginning, various zones are treated as separate BEM models, and finally they
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are combined into a single system, using so-called constraint equations. The dis-
advantage of this strategy lies in the additional degrees of freedom arising from
boundary elements on the common interface, which have to consider different
results in separate zones.

The described above multi-region approach used in BEM results in the larger
system of equations, therefore in [7, 8] the authors propose the different tech-
nique. The classical BEM is extended to include heterogeneous domains by in-
troducing the volume effect. Such defined problem should be solved iteratively
in order to modify the solution from the one with elastic homogeneous domain
to this with presence of inclusions with different material properties. The only
drawback of the proposed approach is that it requires cells for the evaluation
of the domain integrals, which is an additional effort and is technically simi-
lar to discretization in FEM. Therefore, in order to overcome the need for a
domain discretization, another concept is introduced in [9]. The new idea is to
define subregion by two NURBS curves and a linear interpolation between them.
It eliminates the need for cell generating, but the subdivision into integration
regions still exists.

Taking into account mentioned above disadvantages, in this paper another
approach is presented. The arising volume is not discretized into cells or defined
by two curves, but is entirely modeled with one parametric surface. For subre-
gions with linear boundary the surfaces of the first degree can be used, while
for those with curvilinear edges the surfaces of the third degree are applied.
Moreover, the evaluation of volume integrals is done in global manner, with-
out dividing the area into subregions. Mentioned features (global modeling and
integrating without classical discretization) are main advantages of the paramet-
ric integral equation system (PIES) [10]. This method was successfully used to
solve 2D and 3D problems like potential [11], elastic [12], acoustic [13] and most
recently elastoplastic [14]. As was emphasized above, PIES is characterized by
no discretization and flexible way of modeling both the boundary and the do-
main by any curves and surfaces known from computer graphics [15, 16]. This
crucial advantage comes from the fact that the shape is analytically included
in the mathematical formalism of the method. Moreover, such approach gives
a possibility for applying various methods for approximating of boundary and
domain functions, because it is separated from approximating of the shape. Men-
tioned feature causes simple, independent improving of the accuracy of solutions
without interfering with the shape of the boundary and the domain.

The main aim of the paper is to develop the approach for solving elastic
problems with inclusions using PIES and global modeling of the shape. The idea
bases on treating the whole solid as single region and simulating iteratively dif-
ferent material properties by applying initial stresses within the inclusion. The
geometry of the inclusion is defined globally by Bézier surface. The approxi-
mation of initial stresses is performed by the Lagrange polynomial with various
number and arrangement of interpolation nodes. Finally, the approach is verified
compared to other well-known numerical methods.
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2 Parametric integral equation system (PIES)

The parametric integral equation system (PIES) for elastic problems with inclu-
sions taking into account incremental initial stress formulation can be presented
in the following form

0.5u̇l(s̄) =
n

∑

j=1
∫

sj

sj−1
{U∗

lj(s̄, s)ṗj(s) −P∗

lj(s̄, s)u̇j(s)}Jj(s)ds

+∫
Ω
E∗

l (s̄,y)σ̇0(y)dΩ(y),

(1)

where U∗

lj(s̄, s), P
∗

lj(s̄, s), E
∗

l (s̄,y) are fundamental solutions for the displace-
ments, tractions and strains respectively. Functions ṗj(s), u̇j(s) are incremental
forms of parametric functions corresponding to tractions and displacements on
the boundary. Vector σ̇0(y) contains increments of initial stresses inside the in-
clusion. s,s̄ are parameters in one-dimensional parametric reference system in
which the boundary in PIES is defined and sl−1 ≤ s̄ ≤ sl, sj−1 ≤ s ≤ sj . In PIES
sl−1 and sj−1 correspond to the beginning of lth and jth segments, while sl
and sj to the end of these segments. Jj(s) is the Jacobian, n is the number of
boundary segments, y ∈ Ω and l, j = 1..n.

The displacement fundamental solution U∗

lj(s̄, s) is presented explicitly in
[12] by

U∗

lj(s̄, s) = −
1

8π(1−ν)µ

⎡
⎢
⎢
⎢
⎢
⎣

(3 − 4ν)ln(η) −
η21
η2

−
η1η2
η2

−
η1η2
η2

(3 − 4ν)ln(η) −
η22
η2

⎤
⎥
⎥
⎥
⎥
⎦

, (2)

where η1 = Γ
(1)
j (s)−Γ

(1)
l (s̄), η2 = Γ

(2)
j (s)−Γ

(2)
l (s̄), η = [η21 + η

2
2]

0.5
, ν is Poisson’s

ratio and µ is the shear modulus.
The traction fundamental solution P∗

lj(s̄, s) is given by [12]

P∗

lj(s̄, s) = −
1

4π(1 − ν)η
[
P11 P12

P21 P22
] , (3)

where

P11 = {(1 − 2ν) + 2
η21
η2

}

∂η

∂n
, P22 = {(1 − 2ν) + 2

η22
η2

}

∂η

∂n
,

P21 = P12 = {2
η1η2
η2

∂η

∂n
− (1 − 2ν) [

η1
η
n2(s) +

η2
η
n1(s)]} ,

and ∂η
∂n

=
∂η1
∂n
n1(s)+

∂η2
∂n
n2(s), while n1(s) and n2(s) are direction cosines of the

external normal to jth segment of the boundary.
The strains fundamental solution E∗

l (s̄,y) can be presented by

E∗

l (s̄,y) = −
1

8π(1 − ν)Gη̄

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2Aη̄1 − η̄1 + 2η̄31 −η̄2 + 2η̄21 η̄2
Aη̄2 + 2η̄21 η̄2 Aη̄1 + 2η̄1η̄

2
2

Aη̄2 + 2η̄21 η̄2 Aη̄1 + 2η̄1η̄
2
2

−η̄1 + 2η̄1η̄
2
2 2Aη̄2 − η̄2 + 2η̄32

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

, (4)
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where A = (1 − 2ν), η̄ = [η̄21 + η̄
2
2]

0.5
, η̄1 = G

(1)
(y) − Γ

(1)
l (s̄) and η̄2 = G

(2)
(y) −

Γ
(2)
l (s̄).

The shape of the boundary and the domain is analytically included in (2),(3)
and (4). The boundary can be modeled by means of any parametric curves

Γj(s) = [Γ
(1)
j (s), Γ

(2)
j (s)]

T
[15, 16], which are included into functions η1 and

η2. Functions η̄1 and η̄2 contain G(y) = [G(1)
(y),G(2)

(y),G(3)
(y)]

T
, which

is a parametric surface known from computer graphics [15, 16]. It should be
emphasized that for 2D problems considered in this paper G(3)

(y) = 0.

As can be seen formula (1) requires initial stresses inside the inclusion. They
can be calculted using the strains and generalized Hooke’s law. For this reason
the integral identity for strains is also required.

3 Internal results

As mentioned in the previous section, the proposed strategy requires calculating
strains inside the inclusion. They can be obtained using the following integral
equation

ε̇(x) =
n

∑

j=1
∫

sj

sj−1
{D̂

∗

j (x, s)ṗj(s) − Ŝ
∗

j (x, s)u̇j(s)}Jj(s)ds

+∫
Ω
Ŵ

∗

(x,y)σ̇0(y)dΩ(y) + f̂ σ̇0(x).

(5)

The integrand Ŝ∗
j
(x, s) is presented by the following formula (in plain strain)

Ŝ
∗

j (x, s) =
1

4π(1 − ν)r2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S111 S211

S112 S212

S121 S221

S122 S222

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6)

S111 = [2 ∂r
∂n

[2νr1 + r1 − 4r31] + (1 − 2ν)(n1 + 2r21n1) + 4νr21n1],

S112 = S121 = [2 ∂r
∂n

[νr2 − 4r21r2] + (1 − 2ν)(n2 + 2r1r2n1) + 2ν(r21n2 + r1r2n1)],

S122 = [2 ∂r
∂n

[r1 − 4r1r
2
2] + (1 − 2ν)(−n1 + 2r22n1) + 4νr1r2n2],

S211 = [2 ∂r
∂n

[r2 − 4r2r
2
1] + (1 − 2ν)(−n2 + 2r21n2) + 4νr1r2n2],

S212 = S221 = [2 ∂r
∂n

[νr1 − 4r22r1] + (1 − 2ν)(n1 + 2r1r2n2) + 2ν(r22n1 + r1r2n2)],

S222 = [2 ∂r
∂n

[2νr2 + r2 − 4r32] + (1 − 2ν)(n2 + 2r22n2) + 4νr22n2],

where ∂r
∂n

=
∂r1
∂r
n1(s) +

∂r2
∂r
n2(s), r = [r21 + r

2
2]

0.5, r1 = Γ
(1)
j (s) − G(1)

(x) and

r2 = Γ
(2)
j (s) −G(2)

(x).

The integrand D̂
∗

j (x, s) can be described by (4) multiplied by -1, in which
η̄, η̄1, η̄2 are replaced by r,r1,r2.
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The last integral in (5) can be presented by the following expression

Ŵ
∗

(x,y) =
1

8πG(1 − ν)r̄2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W1111 W1112 W1121 W1122

W1211 W1212 W1221 W1222

W2111 W2112 W2121 W2122

W2211 W2212 W2221 W2222

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

W1111 = [2(1 − 2ν) − 1 + 8νr̄21 + 2(2r̄21 − 4r̄41)],
W1112 =W1121 =W1211 =W2111 = [4νr̄1r̄2 + 2(r̄1r̄2 − 4r̄31 r̄2)],
W1122 =W2211 = [−1 + 2(r̄21 + r̄

2
2 − 4r̄21 r̄

2
2)],

W1221 =W1212 =W2112 =W2121 = [(1 − 2ν) + 2ν(r̄21 + r̄
2
2) − 8r̄21 r̄

2
2],

W1222 =W2122 =W2221 =W2212 = [4νr̄1r̄2 + 2(r̄1r̄2 − 4r̄1r̄
3
2)],

W1111 = [2(1 − 2ν) − 1 + 8νr̄22 + 2(2r̄22 − 4r̄42)],
where r̄ = [r̄21 + r̄

2
2]

0.5, r̄1 = G
(1)

(y) −G(1)
(x) and r̄2 = G

(2)
(y) −G(2)

(x).
The free term from (5) for the plane strain case is given by

f̂ = −

1

16G(1 − ν)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − 2(3 − 4ν) 0 0 −(3 − 4ν)
0 −(3 − 4ν) 1 0
0 1 −(3 − 4ν) 0

−(3 − 4ν) 0 0 1 − 2(3 − 4ν)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8)

4 Solving PIES

Solving problems without inclusions by PIES is reduced to finding functions
u̇j(s) and ṗj(s). They are approximated using series with various base functions,
e.g. in this paper the Lagrange polynomials are used [14]. After substituting
such series into PIES, writing down the resultant equation at all interpolation
(collocation) points and reordering the following system of equation is obtained

Aẋ = ḃ, (9)

where A is a matrix that contains mixed values of both integrands (2,3), ẋ
contains the unknown boundary values, while ḃ contains prescribed values on
the boundary.

If inclusions are considered, this equation should be extended by the addi-
tional term

Aẋ = ḃ + ḟ , (10)

where ḟ includes integrals (4) with the initial stresses.
Initial stresses are also approximated using series similar to those applied for

boundary functions, but they depend on two variables

σ̇0(y) =
R1−1

∑

r=0

R2−1

∑

w=0

σ̇rw
0 (y)Lrw(y), (11)

where
Lrw(y) = Lr(y1)Lw(y2),
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Lr(y1) =
R1

∏

o=0,o≠r

y1 − y1o
y1r − y1o

, Lw(y2) =
R2

∏

o=0,o≠w

y2 − y2o
y2w − y2o

,

and N = R1 × R2 is the given number of interpolation nodes, while σ̇rw
0 (y) is

the value of initial stress at interpolation node with (y1, y2) coordinates.
As was mentioned in the previous section, to calculate initial stresses strains

are required. The final matrix form of the formula for calculating strains can be
obtained in a similar as above manner using (5)

ε̇ = −A
′

ẋ + b
′

+ (W +F )σ̇0, (12)

where (W +F ) correspond to expressions (7,8), A
′

is a matrix that contains

mixed values of two first integrands in (5), while b
′

contains prescribed values
on the boundary.

Integrals required for (10) and most of integrals for (12) are regular or weakly
singular, therefore they are calculated using Gauss integration and the subdivi-
sion technique applied to the surfaces [4–6]. The integral over the domain with
function (7), which should be calculated in (12), is strongly singular, with sin-
gularity of order 1

r2
for 2D problems. The singularity is isolated by replacing the

integral by two integrals. The first is weakly singular and is treated by the sub-
division technique, while second is transformed into the boundary as presented
in [17].

5 Modeling of inclusions

As can be seen in (1) and (5), last integrals require defining the domain of
inclusion. In FEM, regardless of the problem, the whole body is modeled by
finite elements. Therefore, considering the inclusion requires assuming various
material properties for various groups of elements (Fig. 1).

In BEM, the inclusion is divided into so-called cells, which technically resem-
ble finite elements (Fig. 2). In both methods the number, type and arrangement
of those elements influence also the accuracy of the solutions. Such approach is
troublesome and often forces the use of more elements than the shape of the ge-
ometry actually requires. Moreover, integration also is performed over elements,
even if mapping method is used [9], which bases on modeling the inclusion using
two NURBS curves and interpolation between them.

For this reason in this paper another approach is proposed. It bases on the
popular tool of computer graphics, namely on surface patches [15, 16]. Unlike
other methods, the inclusion area is modeled entirely using a single Bézier sur-
face, but also other types of surfaces can be used instead. If the polygonal inclu-
sion is considered, then bilinear surfaces should be used (Fig. 3), while for other
curvilinear shapes of subdomains bicubic surfaces can be applied (Fig. 4).

As can be seen in Fig. 3 and Fig. 4, the proposed way of definition requires
smaller number of points than in FEM and BEM. For example the inclusion
presented in Fig. 3 is created using only 4 control points (∎), which are actually
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E ,vD D

E ,v -D D material properties of the body

E ,v -I I material properties of the inclusion

E ,vI I

finite
elements

Fig. 1. Modeling the inclusion in FEM

E ,v -D D material properties of the body

E ,v -I I material properties of the inclusion

E ,vI I

E ,vD D

cells

Fig. 2. Modeling the inclusion in BEM

corner points. For comparison, the same inclusion in FEM (Fig. 1) and BEM
(Fig. 2) is composed of 32 finite elements and 32 cells respectively. If we assume
that those elements and cells are linear, both cases require 128 nodes for defining
them, while FEM additionally needs finite elements for modeling the whole body
(64 elements and 256 nodes in total). The curvilinear shape of the inclusion in
Fig. 4 requires 12 control points (∎), which define its boundary (other 4 are not
important due to 2D nature of the problem).
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E ,vI I

E ,vD D

bilinear surface patch
with control points

E ,v -D D material properties of the body

E ,v -I I material properties of the inclusion

Fig. 3. Modeling the polygonal inclusion in PIES

E ,vI I

E ,vD D

bicubic surface patch
with control points

E ,v -D D material properties of the body

E ,v -I I material properties of the inclusion

Fig. 4. Modeling the curvilinear inclusion in PIES

Moreover, the proposed approach gives the opportunity for simple modifi-
cation of the defined shape. Moving even one control point causes significant
change in the shape of the inclusion. Such feature can be very useful when deal-
ing with identification or optimization of the shape. Furthermore, modification
of the geometry automatically modifies the mathematical formalism of PIES (1),
because the shape is included in it. It also allows for separation of shape model-
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ing from the approximation of solutions, which results in possibility of applying
various methods for both stages of solving boundary problems.

6 Iterative procedure

The general iterative procedure can be adapted to various kinds of inclusions
(elastic, inelastic) and various formulations (initial strains, initial stress). In this
paper only elastic inclusions are considered, while the problem is formulated as
initial stress. The following steps have to be performed in order to approximate
final results [7–9]:

a) The elastic problem is solved assuming that there is no inclusions (using (9))
Aẋi=0 = ḃ.

b) The strains ε̇ are calculated within the inclusion (using (12)).
c) The total boundary and internal results are initilized
xtotal = ẋi=0,
εtotal = ε̇i=0.

d) Convert the internal strains into the initial stresses using
σ̇0 = (CD −CI)ε̇,
where CD is the constitutive matrix of the domain used in a) as a homoge-
neous, while CI is the constitutive matrix for the inclusion.

e) Compute the last integral over the domain from (1) using kernel (4) and
obtained in d) values of σ̇0. The result of that operation is the residual
vector ḟ i.

f) Check if the residual vector is sufficiently small. If yes the iterative process
ends, otherwise it continues.

g) The residual vector obatained in e) is applied as the right hand side for the
system of equation (9)
Aẋi = ḟ i.

h) The above system of equations is solved and once again the strains inside the
inclusions are calculated.

i) The final boundary and internal results are updated
xi = xi−1 + ẋi,
εi = εi−1 + ε̇i.

j) Repeate the procedure from step e).

7 Numerical verification and discussion

The example concerns a square plate (2m × 2m) with a square inclusion in the
center (1m×1m). The considered body is fixed at the bottom and loaded on the
top with a constant pressure p = 1MN/m2 (Fig. 5 ). The plate is in plane strain
conditions and it is composed of two different materials. The material of the
plate (D) and the material of the inclusion (I) are characterized by the following
properties: ED = 5000MN/m2, νD = 0.3 and EI = 2500MN/m2, νI = 0.3.
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2m

2m

p

P0 P1

P4

P7 P6

P5

P2P3

1m

1m

x1

x2

corner points defining the plate

corner points defining the inclusion

E =5000MN/mD

2

E =2500MN/mI

2

v =0.3I

v =0.3D

Fig. 5. Geometry and boundary conditions for the square plate with the inclusion

At first, the main feature of the proposed approach is analyzed - the way of
modeling of inclusions. As can be seen in Fig. 5, the boundary of the plate in
PIES is modeled by four linear Bézier segments, using two corner ● points for
each of them. Such approach requires only four corner points (P0, P1, P2, P3).
The inclusion is defined using single Bézier surface of the first degree, which is
created also by only four corner points ∎ (P4, P5, P6, P7).

For comparison, the considered body was modeled using other numerical
methods. The model corresponding to FEM was designed with the help of 400
quadratic finite elements (100 of them concern the inclusion itself). It means
that the proposed approach allows modeling with significantly fewer input data
than classical FEM (even several hundred times). The described above FEM
model was also used for numerical calculations presented later in this section.

The way of modeling of inclusions in PIES was also compared with BEM.
For this purpose, models available in the literature were used. Two approaches
were taken into account: first concerns classical discretization into cells [7], while
second presented in [9] uses NURBS curves and a linear interpolation between
them. Using classical BEM approach the plate was defined by 48 quadratic
boundary elements, while the inclusion by 36 quadratic cells. In the isogeometric
BEM two linear NURBS curves are used. As can be seen, the first way (classical
BEM) requires defining several times more nodes than in PIES, while the second
uses only 4 control points to define two curves, but approximated area should
still be divided into subareas for integration.
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It should be emphasized that in classical versions of the so-called element
methods (FEM, BEM), the number of elements, their type and arrangement
(shape approximation) are closely related to the accuracy of the obtained solu-
tions (the approximation of solutions). In many cases, the more elements, the
higher the accuracy. However, it should be remembered that the more elements,
the greater the system of equations to solve. In PIES the approximation of
solutions is independent of the approximation of the shape. Therefore, only a
minimal amount of data is used for shape modeling, while the accuracy is steered
by the number and arragement of interpolation points (e.g. see formula (11) for
initial stresses).

Vertical displacements on the right half of the upper segment of the body
were obtained. It took only a few iterations to obtain such results in PIES. They
are based on the model presented in Fig. 5 with 20 interpolation nodes assumed
for the approximation of the boundary results and 16 for the initial stresses.
Obtained displacements were compared with those returned by FEM (using the
model described above) and they both are presented in Fig. 6.
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Fig. 6. Vertical displacements on the right half of the upper segment of the body
obtained by FEM and PIES

In Fig. 6 very good agreement between FEM and PIES results can be noticed.
It should be remembered that they were obtained with a completely different
amount of data used for modeling and a completely different amount of solved
equations (both numbers in favor of PIES).

The next stage of studies concerns comparison of the deformated shape of the
boundary taking into account the body with and without the inclusion. Obtained
by PIES boundaries are shown in Fig. 7 and Fig. 8. The way of deformation of
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the body with the inclusion simulated by PIES agrees with that presented in
[18] obtained by BEM.

x1

x2

intial shape

deformated shape

Fig. 7. The deformated boundary for the body without the inclusion

The presented in this section results confirm the high efficiency of the pro-
posed method (efficient modeling of inclusions with the small number of data)
and also its accuracy (the results are consistent with another methods). The ef-
fectiveness of the method measured by the calculation time in comparison with
other methods was not checked. It comes from the fact that it is not reasonable
to compare the time of execution of the program created by the authors for
the research being considered with the commercial product for finite element
analysis.

8 Conclusions

The paper presents the PIES method for solving 2D elastic boundary value
problems with inclusions. The geometry of the inclusion is defined using Bézier
surface, without classical discretization. Such approach reduces the number of
data required for modeling and gives possibility for easy modification of the
shape. PIES separates the approximation of the shape from the approximation
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x1

x2

intial shape

deformated shape

Fig. 8. The deformated boundary for the body with the inclusion

of the solutions, therefore for displacements, tractions and initial stresses ap-
proximation, Lagrange polynomials are used. The accuracy of solution in such
case depends only on the number and arrangement of interpolation nodes.

The verification of the proposed approach was performed on the example with
elastic inclusion in comparison to other numerical methods. Obtained results are
in good agreement with FEM and BEM solutions. It should be mentioned that
PIES is especially efficient taking into account the way of modeling of inclusions,
but the accuracy is also satisfactory.

The proposed strategy requires tests on more complicated examples, espe-
cially when the inclusions with nonlinear material behavior are present.
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