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Abstract

This paper discusses the issue of interpolating data points in arbitrary Euclidean space with
the aid of Lagrange cubics γ̂L and exponential parameterization. The latter is commonly
used to either fit the so-called reduced data Qm = {qi}mi=0 for which the associated exact
interpolation knots remain unknown or to model the trajectory of the curve γ passing
through Qm. The exponential parameterization governed by a single parameter λ ∈ [0, 1]
replaces such discrete set of unavailable knots {ti}mi=0 (ti ∈ I - an internal clock) with
some new values {t̂i}mi=0 (t̂i ∈ Î - an external clock). In order to compare γ with γ̂L

the selection of some φ : I → Î should be predetermined. For some applications and
theoretical considerations the function φ : I → Î needs to form an injective mapping (e.g.
in length estimation of γ with any γ̂ fitting Qm). We formulate and prove two sufficient
conditions yielding φ as injective for givenQm and analyze their asymptotic character which
forms an important question for Qm getting sufficiently dense. The algebraic conditions
established herein are also geometrically visualized in 3D plots with the aid of Mathematica.
This work is supplemented with illustrative examples including numerical testing of the
underpinning convergence rate in length estimation d(γ) by d(γ̂) (once m → ∞). The
reparameterization has potential ramifications in computer graphics and robot navigation
for trajectory planning e.g. to construct a new curve γ̃ = γ̂◦φ controlled by the appropriate
choice of interpolation knots and of mapping φ (and/or possibly Qm).

1 Introduction

Assume that γ : I → En represents a smooth regular curve (i.e. γ̇(t) 6= ~0) of class Ck (usually
with k = 3, 4) defined over a compact interval I = [0, T ] (with 0 < T < ∞). Suppose that
m+ 1 interpolation points {qi}mi=0 = {γ(ti)}mi=0 (forming the so-called reduced data Qm) belong
to an arbitrary Euclidean space En. Here T = {ti}mi=0 is not given. We introduce now (see e.g.
[1], [7], [12] or [19]) some preliminary notions (applicable for m→∞).

Definition 1.1. The interpolation knots T are admissible if:

lim
m→∞

δm → 0, where δm = max
1≤i≤m

{ti − ti−1 : i = 1, 2, . . . ,m}. (1)
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Definition 1.2. The interpolation knots T are more-or-less uniform if there exist constants
0 < Kl ≤ Ku such that:

(Kl/m) ≤ ti − ti−1 ≤ (Ku/m), (2)

for all i = 1, 2, . . . ,m and any m ∈ N. Alternatively, more-or-less uniformity amounts to the
existence of some constant 0 < β ≤ 1 such that βδm ≤ ti − ti−1 ≤ δm for all i = 1, 2, . . . ,m
and arbitrary m ∈ N. Lastly, the subfamily Tβ0

of more-or-less uniform samplings represents a
set of β0-more-or-less uniform samplings if each of its representatives satisfies β0 ≤ β ≤ 1, for
some 0 < β0 ≤ 1 fixed.

Having selected the fitting scheme γ̂ of Qm the unknown knots T for the interpolant γ̂ must
somehow be replaced by estimates T̂ = {t̂i}mi=0 subject to γ̂(t̂i) = qi. We use here the so-called
exponential parameterization (see e.g. [17]) which depends on a single parameter λ ∈ [0, 1]
according to:

t̂0 = 0 and t̂i = t̂i−1 + ‖qi − qi−1‖λ, (3)

for i = 1, 2, . . . ,m. It is also assumed here that qi 6= qi+1 so that the extra condition t̂i < t̂i+1

is preserved as stipulated generically while fitting reduced data Qm. The case of λ = 0 in (3)
gives uniform knots t̂i = i. Evidently the latter does not reflect the geometry of Qm. On the
other hand, λ = 1 yields the so-called cumulative chord parameterization which coincides with
Euclidean distances between consecutive points qi and qi+1 and as such it refers to the spread
of Qm. More information on the above topic and related issues can be found e.g. in [3], [5],
[16], [17] or [18].

The selection of the specific interpolant γ̂ : Î = [0, T̂ ] → En (with T̂ = t̂m) together with
some knots’ estimates T̂ ≈ T raises an important question concerning the convergence rate (if
any) in approximating γ with γ̂ (or its length) once m→∞. Recall first (see [1], [12] or [19]):

Definition 1.3. Consider a family {Fδm , δm > 0} of functions Fδm : I → En. We say that Fδm
is of order O(δαm) (denoted as Fδm = O(δαm)), if there is a constant K > 0 such that, for some
δ̄ > 0 the inequality ‖Fδm(t)‖ < Kδαm holds for all δm ∈ (0, δ̄), uniformly over I.

For a given γ̂ fitting dense data Qm based on T̂ ≈ T (and some a priori selected mapping
φ : I → Î) the natural question arises about the distance measurement ‖Fδm‖ = ‖γ − γ̂ ◦ φ||
tending to 0 (uniformly over I), while m → ∞. Of course, by (1) proving Fδm = γ − γ̂ ◦ φ =
O(δαm) not only guarantees the latter but also establishes lower bound on convergence speed.
The coefficient α appearing in Def. 1.3 is called the convergence rate in approximating γ by
γ̂ ◦φ uniformly over [0, T ]. If additionally such α cannot be improved (once γ and T are given)
then α is sharp. The latter analogously extends to the length estimation (with n = 1), for
which the scalar expression Fδm = d(γ)− d(γ̂) = O(δβm) is to be considered.

For certain applications such as the analysis of the convergence rate in d(γ) =
∫ T
0
‖γ̇(t)‖dt ≈

d(γ̂) =
∫ T̂
0
‖γ̂′(t̂)‖dt̂ (see e.g. [2], [5] or [15]) the mapping φ(t) = t̂ should be a reparameterization

of I into Î (i.e. φ̇ > 0). In other situations such as robot’s and drone path planning the extra
trajectory looping of γ̂ is sometimes needed (e.g. for traction line posts’ inspection while making
circles by drone). Of course, in many other applications robot navigation requires trajectory
planning with no loops whatsoever. In that context (as well as for length estimation) one of
the conditions to exclude the local looping of γ̂ ◦ φ is to require φ to be an injective function
(see e.g. [13]).

From now on it is assumed that γ̂ = γ̂L which represents a piecewise-Lagrange cubic γ̂L :
Î = [0, T̂ ] → En (see e.g. [1]). More precisely, the interpolant γ̂L is defined as a track-sum of

Lagrange cubics {γ̂Li=3k}
m/3
k=0 with each γ̂Li : Îi = [t̂i, t̂i+3] → En satisfying qi+j = γ̂Li (ti+j), for

2
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j = 0, 1, 2, 3. As already pointed out the unavailable knots T are estimated with T̂ governed by
exponential parameterization (3). For simplicity we suppose that m = 3k, where k ∈ N. In a

similar fashion, one selects here φ = ψL defined as a track-sum of Lagrange cubics {ψLi=3k}
m/3
k=0

mapping ψLi : Ii = [ti, ti+3]→ [t̂i, t̂i+3] and fulfilling ti+j = ψ̂Li (ti+j), for j = 0, 1, 2, 3. Evidently

if ψ̇Li > 0 (as t̂i < t̂i+1) then ψLi : Ii → Îi = Rg(ψLi ) (here Rg(ψLi ) denotes the range of ψLi ).

On the other hand if ψLi is not injective we may also have ψLi : Ii → Îi ⊂ Rg(ψLi ). In order
to construct the composition γ̂Li ◦ ψLi as a well-defined function, each domain of γ̂Li is here

understood as naturally extendable from Îi to R. Such adjusted Lagrange piecewise-cubics
denoted as γ̌Li satisfy γ̌Li |Îi = γ̂Li . The following result holds (see e.g. [7], [9] or [19]):

Theorem 1.4. Assume γ ∈ C4([0, T ]) be a regular curve in En sampled admissibly (see (1)).
For γ̂L and λ = 1 in (3) each mapping ψLi is a C∞ reparameterization of Ii into Îi and we
have (uniformly over [0, T ]):

γ − γ̂Li ◦ ψLi = O(δ4m). (4)

In the remaining cases of λ ∈ [0, 1) from (3) let γ be sampled more-or-less uniformly (see (2)).
Then for each mapping ψLi combined with γ̌Li the following holds (uniformly over [0, T ]):

γ − γ̌Li ◦ ψLi = O(δm). (5)

Both (4) and (5) are sharp within the class of γ ∈ C4([0, T ]) and within a given family of
admitted samplings, assumed here as either (1) or (2), respectively. By the latter we understand
the existence of at least one γ0 ∈ C4([0, T ])) and some admissible (or more-or-less uniform)
sampling T0 for which α(1) = 4 in (4) (or α(λ) = 1 for λ ∈ [0, 1) in (5)) are sharp according

to Def. 1.3 - see also [9] or [12]. Note that ψL as a track-sum of {ψm/3i=3k} defines a piecewise
C∞ mapping of I into R at least continuous at T . If ψL is a reparameterization (e.g. always
holding asymptotically for λ = 1) then ψL : I → Î. In particular for λ = 1 we also have
d(γ) − d(γ̂L) = O(δ4m) - see [19]. In contrast, the injectivity of ψLi and length estimation for
λ ∈ [0, 1) has not been so far examined.

In this paper we introduce two sufficient conditions enforcing each ψLi : Ii → Îi to be
injective, for λ ∈ [0, 1) governing the exponential parameterization (3). These two conditions
are represented by the inequalities (6) and (7). In the next step, Th. 2.1 is established (the
main result of this paper) to formulate several sufficient conditions enforcing (6) and (7) to hold
asymptotically. Noticeably all derived conditions stipulating asymptotically the injectivity of
ψL are independent from γ and apply to any fixed λ ∈ [0, 1) and to any preselected β0-more-or-
less-uniform samplings (i.e. to any 0 < β0 < 1 fixed a priori). Additionally, all re-transformed
algebraic constraints established here are visualized with the aid of 3D plots in Mathematica (see
[22]). The conditions can also be exploited once the incomplete information about samplings
is available such as a priori knowledge of the respective upper and lower bounds for each
triples (Mim, Nim, Pim) characterizing T as specified in (8) - see also Rem. 3.1. The examples
illustrate Th. 2.1 and the relevance of this work (see Ex. 1). The conjecture concerning the

sharp convergence rate α(λ) = 2 in length estimation d(γ)− d(γ̂L) = O(δ
α(λ)
m ) (combined with

(3) for all λ ∈ [0, 1) yielding φ̇ > 0) is tested numerically (see Ex. 2 and Rem. 3.2).

2 Sufficient Conditions for Injectivity of ψLi

In this section we establish and discuss the asymptotic character (i.e. applicable for m suffi-
ciently large) of two sufficient conditions enforcing ψLi to be a genuine reparameterization of Ii
into Îi based on multidimensional reduced data Qm.

3
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Evidently the positivity of the quadratic ψ̇Li (t) = ait
2 + bit + ci over Ii is e.g. guaranteed

(for both sparse and dense data Qm) provided if e.g. either (6) or (7) hold:

ai < 0 and ψ̇Li (ti) > 0 and ψ̇Li (ti+3) > 0, (6)

ai > 0 and ψ̇Li

(
− bi

2ai

)
> 0. (7)

Noticeably, any admissible sampling (1) can be characterized as follows:

ti+1 − ti = Mimδm, ti+2 − ti+1 = Nimδm and ti+3 − ti+2 = Pimδm, (8)

where 0 < Mim, Nim, Pim ≤ 1. The main theoretical contribution of this paper reads as:

Theorem 2.1. Let γ ∈ C3 be sampled β0-more-or-less uniformly (see Def. (1.2)) with knots
T represented by (8). For data Qm combined with exponential parameterization (3) (with any
fixed λ ∈ [0, 1)) the condition (6) yielding each ψLi : I → Îi as a reparameterization holds
asymptotically, if the following three inequalities are satisfied for sufficiently large m:

1

Pim +Nim +Mim

(
Pλ−1im −Nλ−1

im

Pim +Nim
− Nλ−1

im −Mλ−1
im

Nim +Mim

)
≤ ρ < 0, (9)

Mλ−1
im − (Nλ−1

im −Mλ−1
im )Mim

Nim +Mim
+

(Pλ−1im −Nλ−1
im )Mim(Nim +Mim)

(Pim +Nim)(Pim +Nim +Mim)
− (Nλ−1

im −Mλ−1
im )Mim

Pim +Nim +Mim

≥ ρ1 > 0, (10)

Pλ−1im − (Nλ−1
im −Mλ−1

im )Pim(Pim +Nim)

(Nim +Mim)(Pim +Nim +Mim)
+
Pim(Pλ−1im −Nλ−1

im )

Pim +Nim +Mim
+
Pim(Pλ−1im −Nλ−1

im )

Pim +Nim
≥ ρ2 > 0, (11)

with fixed ρ < 0, ρ1 > 0 and ρ2 > 0 but arbitrary small. Similarly, the condition (7) enforcing
ψ̇Li > 0 holds asymptotically if the following two inequalities are met for sufficiently large m:

1

Pim +Nim +Mim

(
Pλ−1im −Nλ−1

im

Pim +Nim
− Nλ−1

im −Mλ−1
im

Nim +Mim

)
≥ ρ3 > 0, (12)

Mλ−1
im +

(Nλ−1
im −Mλ−1

im )(2Nim +Mim)

3(Nim +Mim)

− (Nλ−1
im −Mλ−1

im )2

3(Nim +Mim)
· (Pim +Nim)(Pim +Nim +Mim)

(Pλ−1im −Nλ−1
im )(Nim +Mim)− (Nλ−1

im −Mλ−1
im )(Pim +Nim)

−
[ (Pλ−1im −Nλ−1

im )(Nim +Mim)− (Nλ−1
im −Mλ−1

im )(Pim +Nim)

(Nim +Mim)(Pim +Nim)(Pim +Nim +Mim)

] (N2
im +NimMim +M2

im)

3

≥ ρ4 > 0,

(13)

where constants ρ3 > 0 and ρ4 > 0 are fixed and small.

4
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Proof. Newton interpolation formula (see [1]) based on divided differences of ψLi yields over Ii:

ψLi (t) = ψLi (ti) + ψLi [ti, ti+1](t− ti) + ψLi [ti, ti+1, ti+2](t− ti)(t− ti+1) + ψLi [ti, ti+1, ti+2, ti+3],

which for each t ∈ Ii renders ψ̇Li (t) =

ψLi [ti, ti+1] + ψLi [ti, ti+1, ti+2](2t− ti − ti+1)
+ψLi [ti, ti+1, ti+2, ti+3]

(
(t− ti+1)(t− ti+2) + (t− ti)(t− ti+2) + (t− ti)(t− ti+1)

)
. (14)

We recall now the proof of (18) (see [9] or [12]) since it is vital for further arguments. As γ is
regular it can be assumed to be parameterized by arc-length rendering ‖γ̇(t)‖ = 1, for t ∈ [0, T ]
(see [2]). The latter due to 1 ≡ ‖γ̇(t)‖2 = 〈γ̇(t)|γ̇(t)〉 results in 0 ≡ (‖γ̇(t)‖2)′ = 2〈γ̇(t)|γ̈(t)〉
over t ∈ [0, T ]. The orthogonality of γ̇ and γ̈ nullifies certain terms in the expression (for
j = i+ k with k = 0, 1, 2 and any λ ∈ [0, 1]):

t̂j+1 − t̂j = ‖qj+1 − qj‖λ = ‖γ(tj+1)− γ(tj)‖λ = 〈γ(tj+1)− γ(tj)|γ(tj+1)− γ(tj)〉λ (15)

once Taylor expansion for γ ∈ C3 is used:

γ(tj+1)− γ(tj) = (tj+1 − tj)γ̇(tj) +
(tj+1 − tj)2

2
γ̈(tj) +O((tj+1 − tj)2). (16)

Indeed, upon substituting (16) into (15) and exploiting 〈γ̇(t)|γ̈(t)〉 = 0 one obtains:

t̂j+1 − t̂j = (tj+1 − tj)λ
(
1 +O((tj+1 − tj)2)

)λ
2 . (17)

For any admissible samplings the constants in the term O((tj+1 − tj)2) depend on the third
derivative of γ which is bounded over [0, T ] as γ ∈ C3. Again Taylor Th. applied to the function

f(x) = (1 + x)
λ
2 at x0 = 0 yields for all x ∈ [−ε, ε] = Iε (with some fixed ε > 0) the existence

of some ξx satisfying |ξx| < |x| such that f(x) = 1 + λ
2x+ λ

4 (λ2 − 1)(1 + ξx)
λ
2−2. For 0 < ε < 1

we exclude the singularity of τ(ξx) = (1 + ξx)
λ
2−2 at ξx = −1 (with λ ∈ [0, 1]) which forces τ to

be bounded over Iε. Thus for |ξx| < |x| ≤ ε < 1 we have f1(x) = 1 + λ
2x+O(x2) - the constant

standing along x2 depends now on λ (which is fixed). Take now x = O((tj+1− tj)2) determined
in (17) which is asymptotically small (for m large) due to the admissibility condition (1) and
thus separated from −1. Hence the second-divided differences of ψLi satisfy (with k = 0, 1, 2):

ψLi [ti+k, ti+k+1] =
t̂i+k+1 − t̂i+k
ti+k+1 − ti+k

= (ti+k+1 − ti+k)λ−1 +O((ti+k+1 − ti+k)1+λ). (18)

Thus, by (8) and (18) one obtains for each λ ∈ [0, 1] and k = 0, 1, 2 the following formula for
the second divided differences of ψLi (needed also in (14)):

ψLi [ti+k, ti+k+1] = Rλ−1imk δ
λ−1
m +O(δ1+λm ), (19)

with Rim0 = Mim, Rim1 = Nim and Rim2 = Pim. Furthermore still by (18) combined with
0 < (ti+l+1−ti+l)(ti+2−ti)−1 ≤ 1 (for l = 0, 1) and telescoped ti+2−ti = (ti+2−ti+1)+(ti+1−ti)
the third-divided difference of ψLi is equal to ψLi [ti, ti+1, ti+2]

=
(ti+2 − ti+1)λ−1 − (ti+1 − ti)λ−1

ti+2 − ti
+
O((ti+2 − ti+1)1+λ) +O((ti+1 − ti)1+λ)

ti+2 − ti

=
Nλ−1
im δλ−1m −Mλ−1

im δλ−1m

(Nim +Mim)δm
+O

(
(ti+2 − ti+1)1+λ

ti+2 − ti

)
+O

(
(ti+1 − ti)1+λ

ti+2 − ti

)
5
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=
Nλ−1
im −Mλ−1

im

Nim +Mim
δλ−2m +O((ti+2 − ti+1)λ) +O((ti+1 − ti)λ). (20)

A similar argument leads to:

ψLi [ti+1, ti+2, ti+3] =
Pλ−1im −Nλ−1

im

Pim +Nim
δλ−2m +O((ti+3 − ti+2)λ) +O((ti+2 − ti+1)λ). (21)

Hence by (20) and (21) (for l = 0, 1) the third divided differences of ψLi (needed in (14)) read
as:

ψLi [ti+l, ti+l+1, ti+l+2] =
Rλ−1im(l+1) −R

λ−1
iml

Rim(l+1) +Riml
δλ−2m +O(δλm). (22)

Coupling again (20) and (21) with telescoped ti+3− ti = (ti+3− ti+2)+(ti+2− ti+1)+(ti+1− ti)
and 0 < (ti+l+1 − ti+l)(ti+3 − ti)−1 < 1 reduces the fourth divided difference of ψLi into:

ψLi [ti, ti+1, ti+2, ti+3] =

Pλ−1
im −Nλ−1

im

Pim+Nim
− Nλ−1

im −Mλ−1
im

Nim+Mim

ti+3 − ti
δλ−2m +

2∑
l=0

O

(
(ti+l+1 − ti+l)λ

ti+3 − ti

)
,

which ultimately yields ψLi [ti, ti+1, ti+2, ti+3]

=
1

Pim +Nim +Mim

(Pλ−1im −Nλ−1
im

Pim +Nim
− Nλ−1

im −Mλ−1
im

Nim +Mim

)
δλ−3m +O(δλ−1m ). (23)

The proof of (23) relies on O
(

(ti+l+1−ti+l)λ
ti+3−ti

)
= O((ti+l+1 − ti+l)λ−1) = O(δλ−1m ). The second

step resorts to more-or-less uniformity (3) of admitted samplings T for any λ ∈ [0, 1) (as λ−1 <
0). However, to keep all constants in O(δλ−1m ) from (23) as independent from each representative
of (3) from now on we admit only β0-more-or-less uniform samplings for some fixed 0 < β0 ≤ 1
(see Def. 1.3). The latter permits to exploit the inequality |(ti+l+1 − ti+l)λ−1| ≤ βλ−10 δλ−1m to
justify (23) with constants in O(δλ−1m ) depending on γ and λ (but not on samplings T ).

Recalling now that ψ̇Li (t) = ait
2 + bit+ ci over Ii, by (14) we have:

ai = 3ψi[ti, ti+1, ti+2, ti+3],
bi = 2ψi[ti, ti+1, ti+2]− 2ψi[ti, ti+1, ti+2, ti+3](ti+2 + ti+1 + ti),
ci = ψi[ti, ti+1]− ψi[ti, ti+1ti+2](ti + ti+1) + ψi[ti, ti+1, ti+2, ti+3](titi+1 + ti+1ti+2 + titi+2).

(24)

In the next steps both conditions (6) and (7) enforcing ψ̇Li > 0 (for arbitrary m) are transformed
into their asymptotic analogues applicable for sufficiently largem (i.e. forQm sufficiently dense).
This will ultimately complete the proof of Th. 2.1.

In doing so, both conditions (6) and (7) are reformulated into asymptotic counterparts
expressed in terms of (Mim, Nim, Pim) (see Th. 2.1). To save space only the first inequality
from (6) i.e. ai < 0 is fully addressed here (which automatically covers both (i) and (iv) -
see (9) and (12)). The remaining more complicated cases (ii), (iii) and (v) (listed below) are
supplemented with the final asymptotic formulas (10), (11) and (13). The proof of the latter
shall be given in the full journal version of this paper.

(i) By (24) the first inequality ai < 0 from (6) amounts to ψLi [ti, ti+1, ti+2, ti+3] < 0 which
in turn by (23) holds subject to:( Pλ−1im −Nλ−1

im

(Pim +Nim)(Pim +Nim +Mim)
− Nλ−1

im −Mλ−1
im

(Nim +Mim)(Pim +Nim +Mim)

)
δλ−3m +O(δλ−1m ) < 0,

(25)

6
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for (Mim, Nim, Pim) ∈ [β0, 1]3. Asymptotically, for fixed λ ∈ [0, 1) the slowest term determining
the sign of (25) accompanies δλ−3m and reads as (for all β0-more-or-less uniform samplings):

θ1(Mim, Nim, Pim) =
1

Pim +Nim +Mim

(
Pλ−1im −Nλ−1

im

Pim +Nim
− Nλ−1

im −Mλ−1
im

Nim +Mim

)
,

provided θ1 is not of any order Θ(δ2+εm ) with ε ≥ 0. A possible sufficient condition guaranteeing
the latter is to require:

θ1(Mim, Nim, Pim) ≤ ρ < 0, (26)

to hold for any fixed ρ < 0. Evidently (26) amounts to the first inequality (9) assumed to hold
in Th 2.1 in order to enforce asymptotically the first inequality in (6) (for any fixed λ ∈ [0, 1)).

(ii) A similar but longer argument shows that (upon combining (8), (14), (19), (22) and
(23)) the asymptotic fulfillment of the second inequality from (6) i.e. ψ̇Li (ti) > 0 is met subject

to (10) satisfied for any fixed, but arbitrary small ρ1 > 0 and sufficiently large m.
(iii) The third inequality ψ̇Li (ti+3) > 0 determining (6) maps analogously into its asymptotic

counterpart (11) assumed to be fulfilled for an arbitrary but fixed ρ2 > 0 and m sufficiently
large.

(iv) Clearly the proof of (9) yields a symmetric sufficient condition for ai > 0 (representing
the first inequality in (7)) to hold asymptotically. The latter coincides with (12) stipulated to
be satisfied by any fixed ρ3 > 0, subject to m getting large.

(v) The reformulation of κim = ψ̇Li (−bi2ai
) > 0 from (7) into (13) (assumed to hold for any

fixed ρ4 > 0 and sufficiently large m) involves a more intricate treatment (it is omitted here).

The asymptotic conditions established in Th. 2.1 in the form of specific inequalities depend
(for each i) exclusively on triples (Mim, Nim,Mim) ∈ [β0, 1]3 and fixed λ ∈ [0, 1) (not on curve
γ). Consequently, they can all be also visualized geometrically in 3D for each i = 3k and
λ ∈ [0, 1) as well as for any regular curve γ. Several examples with 3D plots are presented in
Section 3 with the aid of Mathematica Package [22].

We note that all asymptotic conditions from Th. 2.1 can be extended to their 2D analogues
(with extra argument used establishing in fact a new theorem) which in turn can be visualized
in more appealing 2D plots. Again it is omitted here as exceeding the scope of this paper.

Recall that uniform sampling, for which Mim = Nim = Pim = 1 (i.e. where β0 = 1)
combined with λ ∈ [0, 1) or λ = 1 with (1) both yield ψ̇Li = 1 + O(δ2m) > 0 (see [9] and [19])).
Noticeably, conditions (10), (11) and (13) are met for either λ = 1 or T uniform and λ ∈ [0, 1).
In contrast none of (9) or (12) (participating in either (6) or (7)) holds for the above two
eventualities. A possible remedy to incorporate these two special cases in adjusted asymptotic
representations of either ai > 0 or ai < 0 is to apply the fourth-order Taylor expansion for
γ ∈ C4 - see (16). The analysis (left out here) yields a modified condition for ai > 0 (and thus
for ai < 0), this time hinging not only on triples (Mim, Nim, Pim) ∈ [β0, 1]3, λ ∈ [0, 1) but also
on γ curvature ‖γ̈(ti)‖2 along T (see [9] and [19]) - here ‖γ̇(t)‖ = 1 as γ is a regular curve
and as such can be assumed to be parameterized by arc-length (see [2]). The latter may not
always be given in advance. Alternatively, one could rely on a priori imposed restrictions on
curvatures of γ belonging to the prescribed family of admissible curves.

3 Experimentation and Testing

In this section first Th. 2.1 is illustrated with some examples based on algebraic tests supported
by 3D plots generated in Mathematica (see Subsection 3.1). Next the convergence rate α(λ) for
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d(γ) − d(γ̂L) = O(δ
α(λ)
m ) is numerically investigated. A special attention is given to λ ∈ [0, 1)

yielding ψL as a piecewise C∞ reparameterization of [0, T ] into [0, T̂ ] (see Subsection 3.2).
In doing so, in a preliminary step, for a given fixed β0 two families of β0-more-or-less

uniform samplings (27) and (29) are introduced. Next the fulfillment of the asymptotic sufficient
conditions enforcing the injectivity of ψ̇L > 0 (see Th. 2.1) is examined for various λ ∈ [0, 1)
and both samplings (27) and (29). In particular, the inequalities (9), (10), (11), (denoted in
this section by (6)∗) and (12), (13) (marked here with (7)∗) representing asymptotically in 3D
both (6) and (7) are tested for different sets of triples (Mim, Nim, Pim) ∈ [β0, 1]3 characterizing
either (27) or (29). The algebraic calculations performed herein (assuming m is sufficiently
large) are supplemented by geometrical visualizations with 3D plots in Mathematica. At this
point, we re-emphasize that the asymptotic conditions from Th. 2.1 can be extended further
into respective 2D counterparts upon some laborious calculations. In return, the latter gives
some advantage in visualizing more appealing 2D (versus 3D) plots. To save the space the
relevant theory and testing concerning this extra 2D case are left out here.

The second example reports on tests designed to numerically evaluate α(λ) in length esti-
mation d(γ) − d(γ̂L) = O(δα(λ)), for any λ ∈ [0, 1] yielding each ψLi as an injective function.
The conjecture concerning α(λ) is proposed in Rem. 3.2 based on our numerical results.

The tests reported here are performed for 2D and 3D curves γsp, γS introduced in Ex. 2 (i.e.
for n = 2, 3). However all established results with the accompanied experimentation are equally
applicable to arbitrary multidimensional reduced data Qm = {qi}mi=0 with qi = γ(ti) ∈ En.

3.1 Testing Injectivity of ψL

Example 1. Consider first the following family T1 of more-or-less uniform sampling (for geo-
metrical distribution of {γ(ti)}15i=0 with sampling (27) see also Fig. 3 a) and Fig. 4 a)):

ti =


i
m + 1

2m , for i = 4k + 1,
i
m −

1
2m , for i = 4k + 3,

i
m , for i = 2k,

(27)

for which Kl = 1
2 , Ku = 3

2 and β1 = 1
3 (see Def. 1.2). Here 0 ≤ i ≤ m = 3k, where

k ∈ {1, 2, . . . }, so that t0 = 0 and tm = T = 1. Upon resorting to (8) the following 3D compact
asymptotic representation T 3D

1 of T1 reads as (for m = 3k):

T 3D
1 =

{
(1, 13 ,

1
3 ), (1, 1, 13 ), ( 1

3 , 1, 1), ( 1
3 ,

1
3 , 1), (1, 13 ,

2
3 ), ( 1

3 , 1,
2
3 )
}
. (28)

The last two points in (28) are generated for m = 3k as tm = 1. We set β0 = 0.16 and hence
as β0 ≤ β1 the sampling (27) is also β0-more-or-less uniform.

We also admit another β0-more-or-less uniform sampling T2 defined according to (for geo-
metrical spread of {γ(ti)}15i=0 with sampling (29) see also Fig. 3 b) and Fig. 4 b)):

ti =
i

m
+

(−1)i+1

3m
, (29)

with Kl = 1
3 , Ku = 5

3 and β2 = 1
5 ≥ β0 (see Def. 1.2). Again we set t0 = 0 and tm = T = 1

with 0 ≤ i ≤ m = 3k, for k ∈ {1, 2, . . . }. By (8) the 3D asymptotic form T 3D
2 of (29) reads as:

T 3D
2 =

{
( 4
5 ,

1
5 , 1), ( 1

5 , 1,
1
5 ), (1, 15 , 1), (1, 15 ,

4
5 ), ( 1

5 , 1,
2
5 )
}
. (30)

The last two points in (30) come for m = 3k as tm = 1 and the first point is due to t0 = 0.
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λ λ = 0.3 λ = 0.9

Sampling T 3D
1

Conditions
(6)∗ (7)∗ (6)∗ (7)∗

(1, 1
3
, 1
3
) F F T F

(1, 1, 1
3
) F T F T

( 1
3
, 1, 1) F T F T

( 1
3
, 1
3
, 1) F F T F

(1, 1
3
, 2
3
) F F T F

( 1
3
, 1, 2

3
) F T F T

Table 1: Testing conditions (6) and (7) (implied asymptotically by (6)∗ and (7)∗) for sampling
(27) (represented by (28)) and for λ = 0.3 and λ = 0.9 with ρ = −0.001, ρ1 = 0.05, ρ2 = 0.05,
ρ3 = 0.001 and ρ4 = 0.005. Here T stands for true and F for false, respectively.

λ λ = 0.3 λ = 0.9

Sampling T 3D
2

Conditions
(6)∗ (7)∗ (6)∗ (7)∗

( 4
5
, 1
5
, 1) F F T F

( 1
5
, 1, 1

5
) F T F T

(1, 1
5
, 1) F F T F

(1, 1
5
, 4
5
) F F T F

( 1
5
, 1, 2

5
) F T F T

Table 2: Testing conditions (6) and (7) (implied asymptotically by (6)∗ and (7)∗) for sampling
(29) (represented by (30)) and for λ = 0.3 and λ = 0.9 with ρ = −0.001, ρ1 = 0.05, ρ2 = 0.05,
ρ3 = 0.001 and ρ4 = 0.005. Here T stands for true and F for false, respectively.

The inequalities (9), (10), (11) marked as (6)∗ (or (12) and (13) denoted by (7)∗) enforcing
asymptotically (6) (or (7)) to hold are tested over [β0, 1]3 for both samplings (27) and (29).
The fixed parameter λ is set either to λ = 0.3 or to λ = 0.9 with ρ = −0.001, ρ1 = ρ2 = 0.05,
ρ3 = 0.001 and ρ4 = 0.005 - see Tab. 1 and Tab. 2. The corresponding sets of triples
(Mim, Nim, Pim) ∈ [β0, 1]3 satisfying either (6)∗ or (7)∗ represent the respective solids Dλ

β0
⊂

[β0, 1]3 plotted in 3D by Mathematica as shown in Fig. 1 and Fig. 2.

Noticeably different points from T 3D
k , for k = 1, 2 may interchangeably satisfy one of the

sufficient conditions enforcing either (6) or (7) to hold asymptotically. The latter is demon-
strated in Tab. 1 and Tab. 2. Indeed for λ = 0.3 all conditions from (6)∗ are not satisfied
by both T 3D

k (for k = 1, 2) as we have F in the respective columns of both Tab. 1 and Tab.
2. Moreover, the conditions from (7)∗ are only fulfilled by some points (not all) from T 3D

k .
Consequently the injectivity of ψLi for either T 3D

1 or T 3D
2 is not guaranteed. Geometrically

both T 3D
k (for k = 1, 2) are not contained in the respective injectivity zones Dλ=0.3

β0
(for either

(6)∗ or (7)∗). In contrast for λ = 0.9, a simple inspection of Tab. 1 and Tab. 2 reveals that all
points from T 3D

k (for k = 1, 2) can be split into two subsets each contained in the injectivity
zones Dλ=0.9

β0
determined by either (6)∗ or by (7)∗, respectively. Algebraically the latter yields

at least one T in the last two columns of all rows for both Tab. 1 and Tab. 2. �

Remark 3.1. Note that if for a given family of β0-more-or-less uniform samplings Tβ0
the

subfamily T νβ0
⊂ Tβ0

with extra constraints ν1 ≤Mim ≤ ν2, ν3 ≤ Nim ≤ ν4 and ν5 ≤ Pim ≤ ν6
(here ν = (ν1, ν2, ν3, ν4, ν5, ν6)) is chosen one can also examine (for a fixed λ ∈ [0, 1)) whether
I3Dν ⊂ Dλ

β0
, where I3Dν = (ν1, ν2) × (ν3, ν4) × (ν5, ν6). By Th. 2.1, should the latter holds
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a) b)

c) d)

Figure 1: Condition (6) enforced asymptotically by (6)∗ visualized in 3D plots as two solids
Dλ
β0
⊂[β0, 1]3, for λ=0.3 or λ=0.9, respectively. Here β0=0.16 with dotted points representing

samplings: a) (27) mapped into (28) or b) (29) mapped into (30) both for λ=0.3 and samplings:
c) (27) mapped into (28) or d) (29)mapped into (30) both for λ=0.9.

the entire subfamily of T νβ0
yields asymptotically ψLi as injective functions. The incomplete

information on input samplings T carried by T νβ0
can in certain situations accompany Qm. �

3.2 Numerical testing for length estimation

We pass now to the experiments designed to investigate convergence rate α(λ) in length ap-
proximation by examining d(γ) − d(γ̂) = O(δα(λ)) - see Def. 1.3. The coefficient α(λ) is
estimated numerically by α̃(λ) which in turn is computed using a linear regression on the pairs
{(log(m),− log(Em)}m=mmax

m=mmin , where Em = |d(γ)−d(γ̂L)|, for a given m. The slope a of the re-
gression line y(x) = ax+ b found in Mathematica with the aid of Normal[LinearModelFit[data]]
yields a = α̃(λ) forming a numerical estimate of α(λ).

Example 2. Consider a 2D spiral γsp : [0, 1]→ E2 (a regular curve with γsp(0) = (−0.2, 0) and
γsp(1) = (1.2, 0)):

γsp(t) =
(
(t+ 0.2) cos(π(1− t)), (t+ 0.2) sin(π(1− t))

)
, (31)

and the so-called 3D Steinmetz curve γS : [0, 1] → E3 (a regular closed curve with γS(0) =
γS(1) = (1, 0, 1.2) - see a dotted gray point in Fig. 4):

γS(t) =

(
cos(2πt), sin(2πt),

√
1.22 − 1.02 sin2(2πt)

)
. (32)
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a) b)

c) d)

Figure 2: Condition (7) enforced asymptotically by (7)∗ visualized in 3D plots as two solids
Dλ
β0
⊂[β0, 1]3, for λ = 0.3 or λ = 0.9, respectively. Here β0=0.16 with dotted points representing

samplings: a) (27) mapped into (28) or b) (29) mapped into (30) both for λ=0.3 and samplings:
c) (27) mapped into (28) or d) (29) mapped into (30) both for λ=0.9.

a) b)

Figure 3: A spiral curve γsp from (31) sampled according to: a) (27) or b) (29), for m = 15.

Both curves γsp, γS (from (31) and (32)) sampled according to either (27) or (29) are plotted
in Fig. 3 and Fig. 4, respectively. The numerical results assessing the estimate α̃(λ) of α(λ)

(for d(γ) − d(γ̂L) = O(δ
α(λ)
m )) are presented in Tab. 3. Recall that here, a linear regression

to compute α̃(λ) is applied to the collections of points {(log(m),− log(Em)}mmax=201
mmin=120 , with

Em = |d(γ) − d(γ̂L)| and for various λ ∈ {0.3, 0.7, 0.9}. The results from Tab. 3 suggest that
for all λ ∈ {0.3, 0.7, 0.9} rendering ψ̇L > 0 (e.g. the latter is guaranteed if Th. 2.1 holds) one
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may expect limm→∞Em = 0 with the quadratic convergence rate α(λ) = 2 ≈ α̃(λ). �

a) b)

Figure 4: A Steinmetz curve γS from (32) sampled according to: a) (27) or b) (29), for m = 15
(with dotted gray point γS(0) = γS(1) = (1, 0, 1.2)).

curve sampling λ Em=201 α(λ) ≈ α̃(λ) (6)∗ or (7)∗

(31)

(27)
0.3 0.0735200 0.044 F
0.7 0.0000083 1.945 T
0.9 0.0000016 1.885 T

(29)
0.3 2.4619100 −0.012 F
0.7 0.0050445 0.007 F
0.9 0.0000319 1.989 T

(32)

(27)
0.3 0.2036000 0.033 F
0.7 0.0000897 2.015 T
0.9 0.0000181 2.092 T

(29)
0.3 6.7392400 −0.009 F
0.7 0.0132964 −0.080 F
0.9 0.0003419 1.985 T

Table 3: The numerical estimates of α(λ) ≈ α̃(λ) for a spiral γsp from (31) and a Steinmetz
curve γS from (32) computed for mmin = 120 ≤ m ≤ mmax = 201 and λ ∈ {0.3, 0.7, 0.9}. Here
T stands for true and F for false, respectively.

In fact the numerical results from Ex. 2 combined with (5) in conjunction with the argument
used to prove d(γ) − d(γ̂L) = O(δ4m) for λ = 1 (see [7]) or [19]) lead to expect α(λ) = 2 in

d(γ) − d(γ̂L) = O(δ
α(λ)
m ), for all λ ∈ [0, 1) yielding ψL as a piecewise C∞ reparametrization.

The latter forms an open problem which can be stated as:

Remark 3.2. Assume γ ∈ C4([0, T ]) be a regular curve in En sampled more-or-less uniformly
(see Def. 1.2). For the interpolant γ̂L and any λ ∈ [0, 1) in (3) yielding each ψLi : I → Î as a
C∞ genuine reparameterization Ex. 2 suggests a sharp quadratic convergence rate in:

d(γ)− d(γ̂Li ◦ ψLi ) = O(δ2m). (33)

In particular if Th. 2.1 holds (and β0-more-or-less uniform samplings are used) the mapping
ψL is asymptotically a reparameterization which in turn hints to expect (33). Recall that by
sharpness of (33) we understand the existence of at least one regular curve of class C4 and of
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at least one samplings from Tβ0 such that in (33) the convergence rate α(λ) has exactly order
2 (i.e. is not faster than quadratic). �

4 Conclusions

Fitting reduced data (see e.g. [3] or [16]) constitutes an important task in computer vision
and graphics, engineering, microbiology, physics and other applications like medical image
processing (e.g. for area, length and boundary estimation or trajectory planning) - see e.g. [4],
[6], [8], [11], [14], [15], [17], [20] or [21].

Two sufficient conditions (6) and (7) are first formulated to ensure that the Lagrange
piecewise-cubic ψL : [0, T ] → [0, T̂ ] (introduced in Section 1) is a genuine reparameterization.
The latter applies to both sparse and dense reduced data Qm. Here the unknown interpolation
knots T are replaced by T̂ which in turn is determined by exponential parameterization (3)
controlled by a single parameter λ ∈ [0, 1] and Qm. The main contribution established in Th.
2.1 (see Section 2) reformulates (6) and (7) into respective asymptotic representatives valid for
sufficiently large m (i.e. for Qm getting denser). These new transformed conditions (specified
in Th. 2.1) depend exclusively on λ ∈ [0, 1) and T characterized by (8) within the admit-
ted class of β0-more-or-less uniform samplings (see Def. 1.2) and apply to any regular curve
γ ∈ C3([0, T ]) (with 0 < T <∞). Lastly, in Section 3 two illustrative examples are presented.
The attached 3D plots generated in Mathematica [22] illustrate the algebraic character of the
asymptotic conditions justified in Th. 2.1 (see Ex. 1). In addition, the numerical examination
of the convergence rate in length estimation of interpolated γ for λ ∈ {0.3, 0.7, 0.9} are per-
formed. Consequently, based on the latter the conjecture suggesting the quadratic convergence
rate for d(γ) − d(γ̂L) = O(δ2m) is posed (see Ex. 2 and Rem. 3.2), subject to the injectivity
of ψL. At this point we remark that all asymptotic formulas from Th. 2.1 are extendable to
the corresponding inequalities expressed in (x, y)-variables. This can be achieved by converting
first (with the aid of special homogeneous mapping) each triple (Mim, Nim, Pim) from (8) into a
pair (x(Mim, Nim, Pim), y(Mim, Nim, Pim)) and then by reformulating all conditions from Th.
2.1, accordingly in terms of (x, y). The satisfaction of such new conditions enforces (9), (10)
and (11) or (12) and (13) asymptotically (and thus of (6) or (7)). It is a big advantage to
reduce the illustrations from 3D to more appealing 2D analogues. We omit here the theoretical
discussion and the geometrical insight of this 2D extension of Th. 2.1. Similarly, recall that
only items (i) and (iv) (see Section 2) are given here a full proof. In contrast, the final steps of
proving (ii), (iii) and (v) are left out as treated later exhaustively in a journal version of this
work (together with the mentioned above 2D extension of Th. 2.1).

Future work may include various interpolation schemes γ̂ or φ based on Qm combined with
either (3) or with other T̂ compensating the unknown knots T (see e.g. [3], [10], [13] or [16]).
Searching for alternative sufficient conditions enforcing ψLi to be injective forms an interesting
topic. Lastly the theoretical justification of (33) poses another open problem. ——–
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