
Preconditioning Jacobian Systems by
Superimposing Diagonal Blocks

M. Ali Rostami1[0000−0001−6154−4464] and H. Martin
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Abstract. Preconditioning constitutes an important building block for
the solution of large sparse systems of linear equations. If the coeffi-
cient matrix is the Jacobian of some mathematical function given in
the form of a computer program, automatic differentiation enables the
efficient and accurate evaluation of Jacobian-vector products and trans-
posed Jacobian-vector products in a matrix-free fashion. Standard pre-
conditioning techniques, however, typically require access to individual
nonzero elements of the coefficient matrix. These operations are com-
putationally expensive in a matrix-free approach where the coefficient
matrix is not explicitly assembled. We propose a novel preconditioning
technique that is designed to be used in combination with automatic
differentiation. A key element of this technique is the formulation and
solution of a graph coloring problem that encodes the rules of partial Ja-
cobian computation that determines only a proper subset of the nonzero
elements of the Jacobian matrix. The feasibility of this semi-matrix-free
approach is demonstrated on a set of numerical experiments using the
automatic differentiation tool ADiMat.

Keywords: Combinatorial scientific computing · Partial Jacobian com-
putation · Partial graph coloring · Sparsity exploitation · ADiMat.

1 Introduction

Large sparse systems of linear equations are critical to computational methods
in science, technology, and society. A key characteristic of iterative methods for
the solution of such systems is that they can be implemented in a matrix-free
fashion [12]. That is, given an N -dimensional right-hand side vector b and an
N ×N nonsingular coefficient matrix J , these methods aim to solve systems of
the form

Jy = b (1)

by making use of J solely in the form of matrix-vector products, Jz, or trans-
posed matrix-vector products, JT z, where the symbol z denotes some given
N -dimensional vector. Therefore, there is no need to assemble the coefficient
matrix in some sparse data storage format. We consider a rather typical situa-
tion in computational science where the coefficient matrix J is the Jacobian of

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_8

https://dx.doi.org/10.1007/978-3-030-50417-5_8


2 M. A. Rostami and H. M. Bücker

some mathematical function given in the form of a computer program. Jacobian-
vector products as well as transposed Jacobian-vector products can be efficiently
and accurately computed by automatic differentiation (AD) [6, 11] without ex-
plicitly setting up the Jacobian matrix. Thus, the major computational kernels
of iterative methods match to the functionality that is provided by AD.

In practice, iterative methods involve preconditioning techniques [1, 12] that
transform (1) into an equivalent system of the form

M−1Jy = M−1b, (2)

whose solution y is the same as the solution of (1). Here, the N ×N nonsingular
matrix M is the preconditioner that is to be constructed such that M is somehow
close to J , i.e.,

M ≈ J.

Preconditioning techniques typically need access to individual nonzero elements
of the coefficient matrix [1, 12]. However, in a matrix-free approach, such ac-
cesses to individual Jacobian entries are computationally expensive, not only in
automatic differentiation but also in numerical differentiation.

To bridge the gap between preconditioned iterative methods and AD, we
propose a novel approach that is based on superimposing two diagonal block
schemes. The first scheme consists of nonoverlapping diagonal blocks of size r
that represent a sparsification operation. These blocks are used to define the
required nonzero elements [3] of a partial Jacobian computation [9]. The required
nonzeros are then determined by AD employing the solution of a suitably defined
graph coloring problem [5] that colors a subset of the vertices encoding the rules
of partial Jacobian computation.

The second scheme consists of nonoverlapping diagonal blocks of size d that
define a simple preconditioner. A standard preconditioning approach is taken
that applies ILU decomposition separately on each diagonal block. Here, we
deliberately choose d ≥ r enabling to incorporate a maximal number of nonre-
quired nonzero elements outside of the r×r diagonal blocks of the Jacobian that
are produced as by-products of the partial Jacobian computation.

The structure of this article is as follows. In Sect. 2, the overall approach is
sketched that consists of a problem arising from scientific computing. It involves
the computation of a subset of the nonzero elements of the Jacobian matrix
by AD. This partial Jacobian computation problem is then modeled by a suitably
defined graph coloring problem in Sect. 3. In Sect. 4 implementation details
of the approach are given. Numerical experiments are reported in Sect. 5 and
concluding remarks are presented in Sect. 6.

2 Preconditioning via Two Block Schemes

The novel preconditioning approach is inspired by the semi-matrix free precon-
ditioning technique introduced in [3]. The approach in [3] for the solution of (2)
is summarized as follows:
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– Carry out Jacobian-vector products Jz or transposed matrix-vector products
JT z by applying AD with a seed matrix that is identical to the vector z.

– Choose a block size r and get the sparsified matrix of the Jacobian J denoted
by ρr(J). Here, the sparsification ρr(J) consists of the nonzero elements of
the r×r diagonal blocks of J . Assemble ρr(J) via AD and store it explicitly.

– Construct a preconditioner M from ρr(J) by performing an ILU(0) decom-
position [12] on each block of ρr(J). That is, no fill-in elements are allowed
during the decomposition.

The nonzero elements of J that are selected by the sparsification ρr(J) are
called required nonzero elements. The symbols used for the block size r and the
sparsification ρr(J) indicate that these quantities define the required elements.
We also denote the nonzero pattern of the required elements by the set R. As
usual for sparsity patterns, we use the binary matrix and the set of the posi-
tions of the nonzero elements interchangeably. That is, symbols like R denoting
sparsity patterns are either matrices or sets, depending on the context.

The novel approach borrows the first and the second item of the previous
list and replaces the third item by a different preconditioning scheme. The new
idea is that AD does not only compute the required elements R, but also certain
additional information at no extra computational cost. However, only parts of
this additional information is immediately useful for preconditioning. This use-
ful information is called by-product and is denoted by the set B. The overall
approach is detailed in the remaining part of this section.

Like the previous approach in [3], the new approach is based on computing
only a proper subset of the nonzero elements of the Jacobian J , which is referred
to as partial Jacobian computation [9, 5, 10, 8, 7]. We summarize partial Jacobian
computation by considering Fig. 1 taken from [3]. Suppose that we are interested
in computing the nonzeros of J on all 2×2 diagonal blocks, but are not interested
in the remaining nonzeros. In this example, all nonzeros on the diagonal blocks
of size r = 2 are the required nonzeros, which are denoted by black disks in
the sparsity pattern of the Jacobian depicted in this figure left. All remaining
nonzeros of J are called nonrequired elements, represented by black circles.

The relative computational cost associated with the forward mode of AD
computing the matrix-matrix product J ·S is given by the number of columns of
the seed matrix S, see [6, 11]. We stress that AD does not assemble the matrix J ,
but computes the product J ·S for a given S directly. The symbol cp(J) := J ·S
represents this so-called compressed Jacobian matrix.

The exploitation of sparsity has a long tradition in AD; see the survey [5]. The
main idea behind sparsity exploitation is to form groups of columns of J . This
grouping is denoted by colors in the middle of the Fig. 1. If J is an N×N matrix,
all (zero and nonzero) elements of J are computed by setting the seed matrix
to the identity of order N . The relative computational cost of this approach is
then the number of columns of the identity given by N . However, exploiting
the grouping of columns it is possible to find a seed matrix with fewer than N
columns. In the middle of Fig. 1, there are three colors representing three groups
of columns. Each group of columns in J corresponds to a single column in the
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Fig. 1. Sparsity patterns of a 6 × 6 Jacobian J shown left and its compressed version
cp(J) shown right. Grouping of columns of J is denoted by colors in the middle. (Figure
taken from [3].)

compressed Jacobian matrix depicted in the right. More precisely, a column of
cp(J) with a certain color c is the linear combination of those columns of J that
belong to the group of columns with the color c. Equivalently, there is a binary
seed matrix S whose number of columns corresponds to the number of colors
such that all required nonzero elements R of J also appear in cp(J).

In the semi-matrix-free approach [3], given the sparsity pattern of J and
the set of required elements R, the problem of assembling the required nonzero
elements with a minimal relative computational cost is as follows.

Problem 1 (Block Seed). Let J be a sparse N ×N Jacobian matrix with known
sparsity pattern and let ρr(J) denote its sparsification using r× r blocks on the
diagonal of J . Find a binary N × p seed matrix S with a minimal number of
columns, p, such that all nonzero entries of ρr(J) also appear in the compressed
matrix cp(J) := J · S.

The compressed Jacobian cp(J) contains by definition all required elements
of J . However, by inspecting the example in Fig. 1, it also contains additional
nonzero elements. These additional nonzero elements decompose into two differ-
ent classes. There are nonzero elements of cp(J) that are nonrequired elements
of J . In the example, the three nonzeros at the positions (5, 1), (6, 1) and (6, 2)
belong to this class. The other class of nonzero elements of cp(J) consists of those
nonzeros that are linear combinations of nonzero entries of J . For instance, the
nonzero at the position (3, 3) in cp(J) is the sum of J(3, 5) and J(3, 6).

The overall idea of the novel approach is to incorporate into the precondi-
tioning not only the required elements of J , but also a certain subset of the
nonzero elements of cp(J) that are nonrequired elements of J . To this end, an-
other sparsification operator ρd(·) is introduced that extracts from cp(J) the
nonzero elements of the d×d diagonal blocks of J that are not required. The set
of by-products B is then defined as those nonzero elements of the compressed
Jacobian cp(J) that are nonzeros within these d×d blocks of J and that are not
contained in the set of required elements R. In other words, the by-products B
are obtained from the compressed Jacobian cp(J) by removing all entries that
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are linear combinations of nonzeros of J and by additionally removing all (re-
quired and nonrequired) nonzeros of J that are outside the d×d diagonal blocks.
The preconditioner M that approximates J is then constructed by assembling
the nonzeros R ∪B in a matrix denoted as rc(J) and using an ILU decomposi-
tion on the d× d diagonal blocks. The symbols used for the block size d and the
sparsification operator ρd(·) indicate that these quantities are used to carry out
a decomposition on each block.

We remark that the sparsification operators, ρr(·) and ρd(·), that extract the
diagonal blocks reduce the size of the bottom right block accordingly if the order
of the matrix is not a multiple of the block size. For instance, returning to the
example in Fig. 1 with r = 2 and assuming that d = 5, then the operator ρd(·)
leads to a top left 5 × 5 block and a bottom right 1 × 1 block. The set of by-
products B then consists of the single nonzero entry J(5, 3) which is stored in
cp(J) at position (5,1).

In summary, a high-level description of the new preconditioning approach
that uses two diagonal block schemes of size r and of size d is given as follows:

– Carry out Jacobian-vector products Jz or transposed matrix-vector products
JT z using AD.

– Choose a block size r, solve Problem 1, and compute cp(J) using AD.
– Choose a block size d and assemble the required elements R as well as the

by-products B from cp(J) using the sparsification operator ρd(·). Store R∪B
explicitly in a matrix rc(J).

– Construct a preconditioner M from R∪B by performing an ILU decompo-
sition on each diagonal d× d block of rc(J).

The only other work that is related to our approach is the preconditioning
technique introduced in [4], which is also based on partial matrix computation,
but differs in formulating balancing problems.

The purpose of the following section is to reformulate the combinatorial prob-
lem from scientific computing given by Problem 1 in terms of an equivalent graph
coloring problem.

3 Modeling via Partial Graph Coloring

Recall from the previous section that the exploitation of sparsity is a well-studied
topic in derivative computations [5]. Interpreting these scientific computing prob-
lems in the language of graph theory does not only give us a better insight to
the abstract problem structure but also offers an intimate connection to the rich
history of research in graph theory that can lead to efficient algorithms for the
solution of the resulting problems. In this section, we consider the graph problem
corresponding to the scientific computing problem that was introduced in the
previous section.

In the spirit of [3], we define a combinatorial model that handles the decompo-
sition of the nonzero elements of J into two sets called required and nonrequired
elements. The following new definition introduces the concept of structurally
ρr-orthogonal columns.
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Definition 1 (Structurally ρr-Orthogonal). A column J(:, i) is structurally
ρr-orthogonal to column J(:, j) if and only if there is no row position ` in which
J(`, i) and J(`, j) are nonzero elements and at least one of them belongs to the
set of required element ρr(J).

Next, we define the ρr-column intersection graph which will be used to re-
formulate Problem 1 arising from scientific computing.

Definition 2 (ρr-Column Intersection Graph). The ρr-column intersection
graph Gρr = (V,Eρr ) associated with a pair of N × N Jacobians J and ρr(J)
consists of a set of vertices V = {v1, v2, . . . , vN} whose vertex vi represents the
ith column J(:, i). Furthermore, there is an edge (vi, vj) in the set of edges Eρr
if and only if the columns J(:, i) and J(:, j) represented by vi and vj are not
structurally ρr-orthogonal.

That is, the edge set Eρr is constructed in such a way that columns represented
by two vertices vi and vj need to be assigned to different column groups if and
only if (vi, vj) ∈ Eρr .

Using this graph model, Problem 1 from scientific computing is transformed
into the following equivalent graph theoretical problem.

Problem 2 (Minimum Block Coloring). Find a coloring of the ρr-column inter-
section graph Gρr with a minimal number of colors.

The solution of this graph coloring problem corresponds to a seed matrix S
which is then used to compute the compressed Jacobian cp(J) = J ·S using AD.
Recall from the previous section that the required elements of J are contained
in cp(J). However, we already pointed out that some additional useful informa-
tion B is also contained in cp(J). In the following section, we discuss how to
recover these by-products B from cp(J) and how to use it for preconditioning.

4 Implementation Details

Given the sparsity pattern P of the Jacobian matrix J , the following pseudocode
summarizes the new preconditioning approach:

1: R = ρr(P)
2: S = partial coloring(P,R)
3: Compute cp(J) = J · S by AD
4: rc(J) = ρd(partial recover(P, S, cp(J),R))
5: Construct M as the ILU decomposition of rc(J)
6: Solve the preconditioned linear system (2)

In this pseudocode, we first compute the required elements R using the spar-
sification operator ρr(·). The required elements R are taken as an input to
solve Problem 2 using a partial graph coloring algorithm [3]. The solution of
this graph coloring problem corresponds to a seed matrix S that is used by the
AD tool ADiMat [2, 14] to compute the compressed Jacobian cp(J). Then, we
need a function partial recover() to recover the nonzero elements R∪B of J
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from the compressed Jacobian cp(J). The preconditioner M is constructed by a
blockwise ILU decomposition of rc(J) and the preconditioned system is solved
by Jacobian-vector products using ADiMat.

To introduce the function partial recover(), it is convenient to consider
the standard approach of recovering the nonzeros of a Jacobian from its com-
pressed version [6]. The standard approach assumes that all nonzeros of a sparse
Jacobian are to be determined, whereas in a partial Jacobian approach we are
interested in a subset of the nonzeros. In the standard approach, the nonzeros
are recovered using the following MATLAB-like pseudocode:

1: procedure recover(P, S, cp(J))
2: J = zeros(size(P))
3: for i = 1 : size(cp(J), 1) do
4: I = P(i, :) ∼= 0
5: SI = S(I, :)
6: [row, col] = find(SI)
7: [rs, perm] = sort(row)
8: J(i, I) = cp(J)(i, col(perm))

Given the pattern P of a sparse Jacobian J , the seed matrix S, and the com-
pressed Jacobian cp(J) = J · S, this procedure recovers the Jacobian matrix J .
It reconstructs every row i of J step by step. In each step, it first computes the
indices I of the nonzeros of the row i of J . Then, it considers a reduced seed
matrix SI = S(I, :). Here, SI is a matrix containing those rows of S that corre-
spond to the nonzeros of J in the row i. Suppose that there is a nonzero element
in J in position (i, k). We then need the column index of the entry 1 in the row k
of the reduced seed matrix. With this column index, the corresponding nonzero
is extracted from cp(J). Because of MATLAB’s implementation of find(), the
row indices in row have to be sorted in increasing order.

For partial Jacobian computation where only a subset of nonzeros is deter-
mined, we need to extend the previous procedure to recover the Jacobian matrix
using the seed matrix which is computed by the partial coloring. The following
pseudocode introduces the new procedure partial recover() which computes
the Jacobian J from its compressed version cp(J) in partial Jacobian computa-
tion. Compared to the previous procedure recover(), this procedure needs the
pattern of the required elements R as an additional input.

1: procedure partial recover(P, S, cp(J),R)
2: NR = P−R
3: J = zeros(size(P))
4: for i = 1 : size(cp(J), 1) do
5: I = P(i, :) ∼= 0
6: SI = S(I, :)
7: [row, col] = find(SI)
8: [rs, perm] = sort(row)
9: J(i, I) = cp(J)(i, col(perm))

10: colS = ones(1, size(S(I, :), 1)) · S(I, :)
11: positions = find(colS > 1)
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12: if ∼ isempty(positions) then
13: for p = 1 : length(positions) do
14: ri = find(S(:, positions(p)))
15: if sum(NR(i, ri)) ∼= 1 then
16: J(i, ri) = 0

The first steps up to the step 9 of this procedure are similar to the previous
procedure recover(). The new procedure, however, needs to take into account
the nonrequired elements. So, it looks for the columns of SI which have more
than one nonzero (in steps 10 and 11) since there are the columns in which
the addition of two nonrequired elements can happen. Then, it goes through all
of those columns, if any, and checks if any nonrequired elements is added. If
such an addition happens in a column ri, we put a zero in the corresponding
entry J(i, ri) in the recovered Jacobian. The variable NR in this algorithm
contains the positions of the nonrequired elements in P.

After recovering the Jacobian matrix J via the procedure partial recover(),
we need to make sure that only those elements will remain that are inside the
diagonal blocks of size d. That is, we need to compute the by-products B using
the sparsification operator ρd(·) which, in the current implementation, is car-
ried out outside of the procedure partial recover(); see also the sparsification
operator ρd(·) in the algorithm sketched at the beginning of this section.

5 Numerical Experiments

Here, we employ the semi-matrix-free approach for the solution of a system of
linear equations of the form (2). This system arises in the solution of an optimal
boundary control problem for radiative transfer. Throughout the following ex-
periments, the resulting coefficient matrix has the order N = 1, 944 and contains
49, 856 nonzero elements. Its nonzero pattern is depicted in the left of Fig. 2. In
the middle of this figure, the pattern of the sparsification ρr(J) is depicted for
a block size of r = 100. The dN/re = 20 blocks are visible and are highlighted
using a gray background. Notice that the last block is considerably smaller than
the remaining blocks. To illustrate the preconditioning approach, the pattern of
rc(J) is also plotted for a block size of d = 500 in the right of this figure.

The present experiments are carried out in MATLAB, R2019b. All derivative
computations are computed by ADiMat. The right-hand side b of the linear
system is chosen as the sum of all columns of J such that the exact solution y
to (2) is given by the vector containing ones in all positions.

The linear system is solved using the Generalized Minimal RESidual method
(GMRES) [13] with restart parameter of 20. We always take y0 = 0 as the initial
guess. For the unpreconditioned system, the iteration is stopped in the nth step
if

||b− Jyn||2/||b||2 ≤ ε. (3)

For the preconditioned system, convergence is obtained if

||M−1(b− Jyn)||2/||M−1b||2 ≤ ε. (4)
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Fig. 2. Left: The nonzero pattern of the Jacobian J corresponding to the linear system
(1) with the problem size N = 1, 944. Middle: The pattern of the sparsified Jacobian
ρr(J) illustrating the required elements for a block size of r = 100. Right: The pattern
of the required and by-product elements rc(J) for a block size of d = 500.

The tolerance ε = 10−13 is chosen for both cases. All tests are carried out on an
Intel Core i7-8550U CPU with a clock rate of 1.80GHz and 16GB RAM.

In Fig. 3, the convergence behavior using GMRES is plotted versus the num-
ber of matrix-vector products. The convergence is monitored by the residual
vector of the nth iteration defined by rn = b − Jyn. More precisely, we show
the norm of the residual scaled by the initial residual norm ||r0||2. We do not
report the convergence versus the number of iterations for two reasons. Firstly,
the number of matrix-vector products is known to be a better indication of
the computing time than the number of iterations [12]; secondly, the number of
matrix-vector products directly corresponds to the number of colors and thus
makes it easy to relate the convergence to the cost of computing cp(J) that is
once needed to set up the preconditioner. This aspect is crucial in applications
such as Newton-like methods for nonlinear systems where a sequence of linear
systems with the same Jacobian sparsity pattern arises and the cost of solving
a single coloring problem is amortized over solving multiple linear systems.

On the other hand, the number of matrix-vector products is only an ap-
proximation of the computing time, in particular for GMRES without restarts,
where the number of operations carried out in an iteration linearly increases
with the iteration number. In the first set of experiments, where the block size
for the sparsification operator ρd(·) is fixed to d = 500, the computing time
needed to converge the preconditioned iteration is always smaller than for the
unpreconditioned method, if the time for partial coloring and computing cp(J) is
neglected. Taking this time into account so that the complete process of setting
up the preconditioner is included, the preconditioned method is faster than the
unpreconditioned method for all experiments where r > 10.

The unpreconditioned method exhibits the slowest convergence using the
largest number of matrix-vector products needed to converge to the desired tol-
erance. This figure also contains six additional graphs by varying the block size
r = 4, r = 20 and r = 100 and by employing two different preconditioning
approaches. The approach advocated in this article is based on the blockwise
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10 M. A. Rostami and H. M. Bücker

Fig. 3. Convergence behavior of GMRES.

ILU(0) decomposition of rc(J), the matrix that contains the nonrequired ele-
ments as well as the by-products. This approach is denoted by R ∪B. For the
sake of comparison, we also investigate another approach that is identical to
the previously mentioned approach with a single exception. Rather than using
the information R ∪ B to construct the blockwise ILU(0) preconditioner, the
diagonal blocks involve only the information R. That is, the by-products B are
discarded from the preconditioning process. This latter approach is similar to
our previous work reported in [3]. However, in [3], we do not use two different
block schemes with different block sizes.

For the three block size r = 4, r = 20 and r = 100, the two preconditioning
techniques based on R∪B and R both converge faster than the unpreconditioned
method. This statement is true for GMRES as well as for other Krylov solvers
that we tested but whose results are omitted due to the lack of space. It is also
interesting that the convergence is improved by increasing the block sizes from
r = 4 via r = 20 up to r = 100. Furthermore, keeping the block size r fixed,
the convergence of the approach R ∪ B tends to be faster than the approach
using only R. This observation is valid for the two block sizes r = 4 and r = 20.
For large block sizes, however, it is unlikely that there will be a large set of by-
products B. So, the differences in the convergence behavior between an approach
using R ∪B and an approach using R tend to be small.

To better understand the preconditioning approach, we now focus on the
number of nonzero elements when increasing the block size r. Figure 4 illustrates
the number of required elements, |R|, using black bars as well as the number of
by-products, |B|, using dark gray bars. The vertical axis (ordinate) is scaled to
the number of nonzeros in J given by 49, 856. That is, the light gray bars denote
the number of nonzero elements of J that are not taken into account when the
preconditioner is constructed. For a block size of d = 500, this diagram shows
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Fig. 4. Number of nonzeros varying the block size r for a fixed block size d = 500.

that the number of required elements increase only mildly when increasing the
block size r up to moderate values. However, when increasing r significantly,
there is also a corresponding increase in the number of required elements; see
the block sizes at the right of this figure.

The sum |R| + |B| is rather constant when increasing the block size r. So,
the approach tends to be relevant in particular for small block sizes r where the
number of by-products is comparatively large. In this situation, the information
available in B is particularly attractive since it comes from the partial Jacobian
computation without any extra computational cost.

Next, we consider the number of colors needed for the solution of the partial
graph coloring problem that is formally specified by Problem 2. This number of
colors is depicted in Fig. 5. Here, the block size r is varied in the same range as in
Fig. 4. Since the number of colors is an estimate for the relative computational
cost to compute the compressed Jacobian cp(J) = J · S using AD, a slight
increase in the number of colors can be harmful. This figure illustrates that the
number of colors increases with the block size. Once more, this is an indication
that the preconditioning approach is particularly relevant for small block sizes.
Also, for small block sizes the storage requirement tends to be lower than for
larger block sizes which corresponds to the overall setting in which a sparse data
structure for the Jacobian is assumed to exceed the available storage capacity.

Finally, we analyze the number of nonzeros and the number of colors not
only for a varying block size r, but also when varying the block size d. In Fig. 6,
the results are depicted for the three block sizes d = 300, d = 400 and d = 500.
For each value of d, this set of experiments involves those block sizes r that are
divisors of d. The legend contains the union of all divisors of the three block
sizes d. In the layout of this figure, a number of nonzeros is indicated by a
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Fig. 5. Number of colors varying the block size r.

bar to which the left ordinate is associated. A number of colors is denoted by
a disk whose value is specified on the right ordinate. As in Fig. 4, black bars
here denote the number of required nonzeros. In contrast, the by-products are
now given by bars whose colors correspond to the values of r. The results show
a similar behavior for all three values of d. The number of required nonzeros
increase with increasing r. Compared to the number of required nonzeros, the
number of by-products is in a similar magnitude, except when r approaches d.
(By construction, there cannot be any by-product for r = d.) The number of
by-products tends to by reasonably large, even for small values of r. At the
same time, the number of colors is small for small block sizes r. In other words,
small block sizes r are not only attractive because (i) they deliver additional
information (represented by nonzero elements) that is useful for preconditioning
without any extra computational cost and, at the same time, (ii) they lead to a
low relative computational cost associated with AD (represented by colors).

6 Concluding Remarks

While matrix-free iterative methods and (transposed) Jacobian-vector products
computed by automatic differentiation match well to each other, today, there
is still a gap between preconditioning and automatic differentiation. The rea-
son is that, in a matrix-free approach, accesses to individual nonzero entries of
the Jacobian coefficient matrix which are needed by standard preconditioning
techniques are computationally expensive. This statement holds not only for
automatic differentiation but also for numerical differentiation.

The major new contribution of this article is a semi-matrix-free precondi-
tioning approach that uses two separate diagonal block schemes partitioning the
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Fig. 6. Number of required nonzeros (black bars) and by-products (colored bars) on
the left axis and the number of colors (colored disks) on the right axis varying the two
block sizes r (color) and d (groups of bars and disks).

coefficient matrix into smaller submatrices. In both schemes, the diagonal blocks
do not overlap. The first scheme employs blocks that define the required nonzero
elements of a partial Jacobian computation. This scheme is relevant for mini-
mizing the relative computational cost of the partial Jacobian computation. The
resulting minimization problem is equivalent to a partial graph coloring prob-
lem. The second scheme is based on blocks whose sizes are larger than those
of the first scheme. The blocks of this second scheme define the positions from
which by-products of the partial Jacobian computation are extracted. Together
with the required nonzero elements these by-products are used to construct a
preconditioner that applies ILU decompositions to each of these blocks. Numer-
ical experiments using the automatic differentiation tool ADiMat are reported
demonstrating the feasibility of the new preconditioning technique.

There is room for further investigations that aim at bridging the gap between
preconditioning and automatic differentiation. For instance, it is interesting to
study more advanced preconditioning techniques and analyze to what extent
they are capable of exploiting the information available in the by-products of
the partial Jacobian computation.
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Europäische Fonds für regionale Entwicklung (EFRE).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_8

https://dx.doi.org/10.1007/978-3-030-50417-5_8


14 M. A. Rostami and H. M. Bücker
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