
Fitting Penalized Logistic Regression Models
using QR Factorization?

Jacek Klimaszewski[0000−0003−4885−2475] and Marcin Korzeń[0000−0002−1306−7146]

Faculty of Computer Science and Information Technology
West Pomeranian University of Technology in Szczecin, Szczecin, Poland

{jklimaszewski,mkorzen}@wi.zut.edu.pl

Abstract. The paper presents improvement of a commonly used learning
algorithm for logistic regression. In the direct approach Newton method
needs inversion of Hessian, what is cubic with respect to the number
of attributes. We study a special case when the number of samples m
is smaller than the number of attributes n, and we prove that using
previously computed QR factorization of the data matrix, Hessian inver-
sion in each step can be performed significantly faster, that is O

(
m3

)
or O

(
m2n

)
instead of O

(
n3

)
in the ordinary Newton optimization case.

We show formally that it can be adopted very effectively to `2 penalized
logistic regression and also, not so effectively but still competitively, for
certain types of sparse penalty terms. This approach can be especially
interesting for a large number of attributes and relatively small number
of samples, what takes place in the so-called extreme learning. We present
a comparison of our approach with commonly used learning tools.

Keywords: Newton Method · Logistic Regression · Regularization · QR
Factorization.

1 Introduction

We consider a task of binary classification problem with n inputs and with one
output. Let X ∈ Rm×n be a dense data matrix including m data samples and n
attributes, and ym×1, yi ∈ {−1,+1} are corresponding targets. We consider the
case m < n. In the following part bold capital letters X,Y, . . . denote matrices,
bold lower case letters x,w stand for vectors, and normal lower case xij , yi, λ
for scalars. The paper concerns classification, but it is clear that the presented
approach can be easily adopted to the linear regression model.

We consider a common logistic regression model in the following form:

Pr(y = +1|x,w) ≡ σ(x,w) =
1

1 + e−
∑n

j=1 xjwj
. (1)

? This work was financed by the National Science Centre, Poland. Research project
no.: 2016/21/B/ST6/01495

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

2 Jacek Klimaszewski and Marcin Korzeń

Learning of this model is typically reduced to the optimization of negative log-
likelihood function (with added regularization in order to improve generalization
and numerical stability):

L(w) = λP (w) +

m∑
i=1

log(1 + e−yi·
∑n

j=1 xijwj), (2)

where λ > 0 is a regularization parameter. Here we consider two separate cases:

1. rotationally invariant case, i.e. P (w) = 1
2‖w‖

2
2,

2. other (possibly non-convex) cases, including P (w) = 1
q‖w‖

q
q .

Most common approaches include IRLS algorithm [7, 15] and direct Newton
iterations [14]. Both approaches are very similar — here we consider Newton
iterations:

w(k+1) = w(k) − αH−1g, (3)

where step size α is chosen via backtracking line search [1]. Gradient g and
Hessian H of L(w) have a form:

g = λ
∂P

∂w
+

m∑
i=1

yi · (σ(xi,w)− 1) · xi ≡ λ
∂P

∂w
+ XTv, (4)

H = λ
∂2P

∂w∂wT
+ XTDX ≡ E + XTDX, (5)

where D is a diagonal matrix, whose i-th entry equals σ(xi,w) · (1− σ(xi,w)),
and vi = yi · (σ(xi,w)− 1).

Hessian is a sum of the matrix E (second derivative of the penalty function
multiplied by λ) and the matrix XTDX. Depending on the penalty function P ,
the matrix E may be: 1) scalar diagonal (λI), 2) non-scalar diagonal, 3) other
type than diagonal. In this paper we investigate only cases 1) and 2).

Related works. There are many approaches to learning logistic regression model,
among them there are direct second order procedures like IRLS, Newton (with
Hessian inversion using linear conjugate gradient) and first order procedures with
nonlinear conjugate gradient as the most representative example. A short review
can be found in [14]. The other group of methods includes second order procedures
with Hessian approximation like L-BFGS [21] or fixed Hessian, or truncated
Newton [2, 13]. Some of those techniques are implemented in scikit-learn [17],
which is the main environment for our experiments. QR factorization is a common
technique of fitting the linear regression model [15, 9].

2 Procedure of optimization with QR decomposition

Here we consider two cases. The number of samples and attributes leads to
different kinds of factorization:

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

Fitting Penalized Logistic Regression Models using QR Factorization 3

– LQ factorization for m < n,
– QR factorization for m > n.

Since we assume m < n, we consider LQ factorization of matrix X:

X = LQ =
[
L̂ 0
]
·
[
Q̂

Q̃

]
= L̂Q̂, (6)

where L̂ is m×m lower triangular matrix, Q is n× n orthogonal matrix and Q̂
is m× n semi-orthogonal matrix (Q̂Q̂T = I, Q̃Q̂T = 0). The result is essentially
the same as if QR factorization of the matrix XT was performed.

Finding the Newton direction from the eq. (3):

d = H−1g (7)

involves matrix inversion, which has complexity O(n3). A direct inversion of
Hessian can be replaced (and improved) with a solution of the system of linear
equations:

Hd = g, (8)

with the use of the conjugate gradient method. This Newton method with Hessian
inversion using linear conjugate gradient is an initial point of our research. We
show further how this approach can be improved using QR decomposition.

2.1 The `2 penalty case and rotational invariance

In the `2-regularized case solution has a form:

d =
(
XTDX + λI

)−1 (
XTv + λw

)
. (9)

Substituting LQ for X and Q̂T Q̂w for w:

∂

∂w

(
1

2
· ‖Q̂w‖22

)
= Q̂T Q̂w (10)

in the eq. (9) leads to:

d =
(
QTLTDLQ + λI

)−1 (
QTLTv + λQ̂T Q̂w

)
=
[
QT

(
LTDL + λI

)
Q
]−1 (

QTLTv + λQ̂T Q̂w
)

= QT
(
LTDL + λI

)−1
Q
(
QTLTv + λQ̂T Q̂w

)
=
[
Q̂T Q̃T

]
·
[
L̂TDL̂ + λI 0

0 λI

]−1
·
([

L̂T

0

]
· v +

[
λQ̂w
0

])
= Q̂T

(
L̂TDL̂ + λI

)−1 (
L̂Tv + λQ̂w

)
.

(11)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

4 Jacek Klimaszewski and Marcin Korzeń

Algorithm 1 Newton method for `2 penalized Logistic Regression with QR
factorization using transformation into a smaller space (L2-QR).

Input: X = Rm×n, ym×1, m < n
Initialization: [L̂, Q̂] = lq (X), ŵm×1 = 0
repeat

Compute ĝ and D for ŵ(k).

Solve
(
L̂TDL̂ + λI

)
· d̂ = ĝ.

ŵ(k+1) = ŵ(k) − d̂ · arg minα L
(
ŵ(k) − αd̂

)
.

until ‖ĝ‖22 < ε
Output: w = Q̂T ŵ

First, multiplication by Q̂ transforms w to the smaller space, then inversion is
done in that space and finally, multiplication by Q̂T brings solution back to the
original space. However, all computation may be done in the smaller space (using

L̂ instead of X in the eq. (9)) and only final solution is brought back to the
original space — this approach is summarized in the Alg. 1. In the experimental
part this approach is called L2-QR.

This approach is not new [8, 16], however the use of this trick does not seem
to be common in machine learning tools.

2.2 Rotational variance

In the case of penalty functions whose Hessian E is a non-scalar diagonal matrix,
it is still possible to construct algorithm, which solves smaller problem via QR
factorization.

Consider again (5), (6) and (7):

d =
(
QTLTDLQ + E

)−1
g

=
[
QT

(
LTDL + QEQT

)
Q
]−1

g

= QT
(
LTDL + QEQT

)−1
Qg.

(12)

Let A = QEQT , B = LTDL, so A−1 = QE−1QT . Using Shermann-Morrison-
Woodbury formula [5] we may write:

(A + B)
−1

= A−1 −A−1
(
I + BA−1

)−1
BA−1. (13)

Let C = I + BA−1. Exploiting the structure of the matrices L and Q (6) yields:

C−1 =

(
I +

[
L̂TDL̂ 0

0 0

]
·
[
Q̂E−1Q̂T Q̂E−1Q̃T

Q̃E−1Q̂T Q̃E−1Q̃T

])−1
=

[
L̂TDXE−1Q̂T + I L̂TDXE−1Q̃T

0 I

]−1
=

[
C1 C2

0 I

]−1
=

[
C−11 −C−11 C2

0 I

]
.

(14)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

Fitting Penalized Logistic Regression Models using QR Factorization 5

Algorithm 2 Newton method for Logistic Regression with QR factorization and
general regularizer.

Input: X = Rm×n, ym×1, m < n
Initialization: [L̂, Q̂] = lq (X)
repeat

Compute g, E and D for w(k).
Compute C−1

1 .
Compute d according to eq. (15) or eq. (20)

w(k+1) = w(k) − d · arg minα L
(
w(k) − αd

)
.

until ‖g‖22 < ε
Output: w

Hence only matrix C1 = L̂TDXE−1Q̂T + I of the size m ×m needs to be
inverted — inversion of the diagonal matrix E is trivial. Putting (14) and (13)
into (12) and simplifying obtained expression results in:

d =
(
E−1 −E−1Q̂TC−11 L̂TDXE−1

)
g. (15)

This approach is summarized in the Alg. 2.

Application to the smooth `1 approximation Every convex twice continu-
ously differentiable regularizer can be put in place of ridge penalty and above
procedure may be used to optimize such a problem. In this article we focused
on the smoothly approximated `1-norm [12] via integral of hyperbolic tangent
function:

‖x‖1soft =

n∑
j=1

1

a
log (cosh (axj)) , a > 1, (16)

and we call this model L1-QR-soft. In this case

E = diag{λa
(
1− tanh2 (aw1)

)
, . . . , λa

(
1− tanh2 (awn)

)
}.

Application to the strict `1 penalty Fan and Li proposed a unified algorithm
for the minimization problem (2) via local quadratic approximations [3]. Here we
use the idea presented by Krishnapuram [11], in which the following inequality is
used:

‖w‖1 ≤
1

2

n∑
j=1

(
w2

j

|w′j |
+ |w′j |

)
, (17)

what is true for any w′ and equality holds if and only if w′ = w.
Cost function has a form:

L(w) =

m∑
i=1

log(1 + e−yi·
∑n

j=1 xijwj) +
λ

2

n∑
j=1

(
w2

j

|w′j |
+ |w′j |

)
. (18)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

6 Jacek Klimaszewski and Marcin Korzeń

If we differentiate penalty term, we get:

λ

2

∂P

∂w
=

∂

∂w

λ
2

n∑
j=1

w2
j

|w′j |
+ |w′j |

 = Ew, (19)

where

E = diag

{
λ

|w′1|
, . . . ,

λ

|w′n|

}
= λ

∂2P

∂w∂wT
.

Initial w must be non zero (we set it to 1), otherwise there is no progress. If |wj |
falls below machine precision, we set it to zero.

Applying the idea of the QR factorization leads to the following result:

d =
(
E−1 −E−1Q̂TC−11 L̂TDXE−1

) (
XTv + Ew

)
=
(
I−E−1Q̂TC−11 L̂TDX

)
·
(
E−1XTv + w

)
.

(20)

One can note that when w is sparse, corresponding diagonal elements are 0. To
avoid unneccessary multiplications by zero, we rewrite product XE−1Q̂T as a
sum of outer products:

XE−1Q̂T =

n∑
j=1

e−1jj x̂j ⊗ q̂j , (21)

where x̂j and q̂j are j-th columns of matrices X and Q̂ respectively. Similar

concept is used when multiplying matrix E−1Q̂T by a vector e.g. z: j-th element
of the result equals e−1jj q̂j · z. We refer to this model as L1-QR.

After obtaining direction d we use backtracking line search1 with sufficient
decrease condition given by Tseng and Yun [19] with one exception: if a unit
step is already decent, we seek for a bigger step to ensure faster convergence.

Application to the `q<1 penalty The idea described above can be directly
applied to the `q<1 “norms” [10] and we call it Lq-QR. Cost function has a form:

L(w) =

m∑
i=1

log(1 + e−yi·
∑n

j=1 xijwj) +
λ

2

n∑
j=1

(
qw2

j

|w′j |2−q
+ (2− q) |w′j |q

)
, (22)

where

E−1 = diag

{
|w1|2−q

λq
, . . . ,

|wn|2−q

λq

}
.

3 Complexity of proposed methods

Cost of each iteration in the ordinary Newton method for logistic regression
equals k ·

(
2n2 + n

)
, where k is the number of conjugate gradient iterations. In

general k ≤ n, so in the worst case its complexity is O
(
n3
)
.

1 In the line search procedure we minimize (2) with P (w) = ‖w‖1.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

Fitting Penalized Logistic Regression Models using QR Factorization 7

Rotationally invariant case QR factorization is done once and its complexity
is O

(
2m2 ·

(
n− m

3

))
= O

(
m2n

)
. Using data transformed to the smaller space,

each step of the Newton procedure is much cheaper and it requires about km2

operations (cost of solving system of linear equations using conjugate gradient,
k ≤ m), what is O

(
m3
)

in general.
As it is shown in the experimental part, this approach dominates other

optimization methods (especially exact second order procedures). Looking at the
above estimations, it is clear that the presented approach is especially attractive
when m� n.

Rotationally variant case In the second case the most dominating operation
comes from computation of the matrix C1 in the eq. (15). Due to dimensionality

of matrices: L̂m×m,Xm×n and Q̂m×n, the complexity of computation C1 is
O(m2n) — cost of inversion of the matrix C1 is less important i.e. O(m3). In
the case of `1 penalty taking sparsity of w into account reduces this complexity
to O(m2 ·#nnz), where #nnz is the number of non-zero coefficients.

Therefore theoretical upper bound on iteration for logistic regression with ro-
tationally variant penalty function is O

(
m2n

)
, what is better than direct Newton

approach. However, looking at (15), we see that the number of multiplications is
large, thus a constant factor in this estimation is large.

4 Experimental Results

In the experimental part we present two cases: 1) learning ordinary logistic
regression model, and 2) learning a 2-layer neural network via extreme learning
paradigm. We use following datasets:

1. Artificial dataset with 100 informative attributes and 1000 redundant at-
tributes, informative part was produced by function make classification

from package scikit-learn and whole set was transformed introducing
correlations.

2. Two micro-array datasets: leukemia [6], prostate cancer [18].
3. Artificial non-linearly separable datasets: chessboard 3× 3 and 4× 4, and

two spirals — used for learning neural network.

As a reference we use solvers that are available in the package scikit-learn

for LogisticRegression model i.e. for `2 penalty we use: LibLinear [4] in two
variants (primal and dual), L-BFGS, L2-NEWTON-CG; For sparse penalty func-
tions we compare our solutions with two solvers available in the scikit-learn:
LibLinear and SAGA.

For the case `2 penalty we provide algorithm L2-QR presented in the section 2.1.
In the “sparse” case we compare three algorithms presented in the section 2.2:
L1-QR-soft, L1-QR and Lq-QR. Our approach L2-QR (Alg. 1) is computationally
equivalent to the L2-NEWTON-CG meaning that we solve an identical optimization
problem (though in the smaller space). In the case of `2 penalty all models

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

8 Jacek Klimaszewski and Marcin Korzeń

50 100 150 200 250 300

10 1

100

CV
 ti

m
e

50 100 150 200 250 300
m

0.50

0.55

0.60

0.65

0.70

au
c

te
st

L2-Liblinear
L2-NewtonCG

L2-QR L2-lbfgs

(a)

50 100 150 200 250 300
100

101

102

CV
 ti

m
e

50 100 150 200 250 300
0.5

0.6

0.7

au
c

te
st

50 100 150 200 250 300
m

102

103

nn
z c

oe
fs

L1-Liblinear
L1-QR

L1-QR-soft
L1-SAGA

Lq-QR,q=0.8

(b)

Fig. 1. Comparison of algorithms for learning `2 (a) and sparse (b) penalized logistic
regressions on the artificial (300× 1100) dataset. Plots present time of cross-validation
procedure (CV time), AUC on test set (auc test), and number of non-zero coefficients
for sparse models (nnz coefs).

should converge theoretically to the same solution, so differences in the final value
of the objective function are caused by numerical issues (like numerical errors,
approximations or exceeding the number of iterations without convergence).
These differences affect the predictions on a test set.

The case of `1 penalty is more complicated to compare. The L1-QR Algorithm
is equivalent to the L1-Liblinear i.e. it minimizes the same cost function.
Algorithm L1-QR-soft uses approximated `1-norm, and algorithm Lq-QR uses a
bit different non-convex cost function which gives similar results to `1 penalized
regression for q ≈ 1. We also should emphasize that SAGA algorithm does not
optimize directly penalized log-likelihood function on the training set, but it is
stochastic optimizer and it gives sometimes qualitatively different models. In
the case L1-QR-soft final solution is sparse only approximately (and depends
on a (16)), whereas other models produce strictly sparse models. The measure
of sparsity is the number of non-zero coefficients. For L1-QR-soft we check the
sparsity with a tolerance of order 10−5.

All algorithms were started with the same parameters: maximum number
of iterations (1000) and tolerance (ε = 10−6), and used the same learning and
testing datasets. All algorithms depend on the regularization parameter C (or
1/λ). This parameter is selected in the cross-validation procedure from the same
range. During experiments with artificial data we change the size of training
subset. Experiments were performed on Intel Xeoen E5-2699v4 machine, in the
one threaded envirovement (with parameters n jobs=1 and MKL NUM THREADS=1).

Learning ordinary logistic regression model In the first experiment, pre-
sented in the Fig. 1, we use an artificial highly correlated dataset (1). We used
training/testing procedure for each size of learning data, and for each classifier
we select optimal value of parameter C = 1/λ using cross-validation. The number
of samples varies from 20 to 300. As we can see, in the case `2 penalty our solu-

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

Fitting Penalized Logistic Regression Models using QR Factorization 9

Table 1. Experimental results for micro-array datasets and `2 penalized logistic regres-
sions. All solvers converge to the same solution, there are only differences in times.

TIMEFIT [s] Cost Fcn. AUCTEST ACCTEST
dataset classifier

golub L2-Newton-CG 0.0520 1.17e+11 0.8571 0.8824
(38× 7129) L2-QR 0.0065 1.17e+11 0.8571 0.8824

SAG 1.2560 1.17e+11 0.8571 0.8824
Liblinear L2 0.0280 1.17e+11 0.8571 0.8824
Liblinear L2 dual 0.0737 1.17e+11 0.8571 0.8824
L-BFGS 0.0341 1.17e+11 0.8571 0.8824

singh L2-Newton-CG 0.6038 5.14e+11 0.9735 0.9706
(102× 12600) L2-QR 0.0418 5.14e+11 0.9735 0.9706

SAG 5.2822 5.13e+11 0.9735 0.9706
Liblinear L2 0.1991 5.14e+11 0.9735 0.9706
Liblinear L2 dual 0.6083 5.14e+11 0.9735 0.9706
L-BFGS 0.1192 5.14e+11 0.9735 0.9706

102 103 104 105 106

10 2

10 1

100

fit
_t

im
e

102 103 104 105 106

0.6

0.8

1.0

AU
C_

te
st L2-NEWTON-CG

L2-QR
SAG
Liblinear
Liblinear-dual
lbfgs

DATA : golub, # of (samples, attributes): (38, 7129)

102 103 104 105 106

10 1

100

101

fit
_t

im
e

102 103 104 105 106

0.6

0.8

1.0

AU
C_

te
st L2-NEWTON-CG

L2-QR
SAG
Liblinear
Liblinear-dual
lbfgs

DATA : singh, # of (samples, attributes): (102, 12600)

Fig. 2. Comparison of algorithms learning `2 penalized logistic regression on micro-array
datasets for a sequence of λs; mean values are presented in the Tab. 1.

101 102 103 104

10 2

10 1

100

101

fit
_t

im
e

101 102 103 104

103

105

107

L(
w

)+
|w

| 1

101 102 103 104

0.6

0.8

1.0

AU
C_

te
st

101 102 103 104
100

101

102

NN
Z_

co
ef

s

L1-QR-soft
Lq = 0.9 QR
L1-QR
L1 Liblinear
SAGA

DATA : golub, # of (samples, attributes): (38, 7129)

101 102 103 104

10 1

100

101

fit
_t

im
e

101 102 103 104

103

105

107

L(
w

)+
|w

| 1

101 102 103 104
0.5

0.6

0.7

0.8

0.9

AU
C_

te
st

101 102 103 104
100

101

102

NN
Z_

co
ef

s

L1-QR-soft
Lq = 0.9 QR
L1-QR
Liblinear
SAGE

DATA : singh, # of (samples, attributes): (102, 12600)

Fig. 3. Detailed comparison of algorithms learning `1 penalized logistic regression on
micro-array datasets for a sequence of λs. Mean values for this case are presented in
the Tab. 2.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

10 Jacek Klimaszewski and Marcin Korzeń

Table 2. Experimental results for micro-array datasets and `1 penalized logistic re-
gressions. L1-QR solver converges to the same solution as L1-Liblinear, there are only
difference in times. SAGA and L1-QR-soft gives different solution.

TIMEFIT [s] Cost Fcn. AUCTEST ACCTEST NNZ coefs.
dataset classifier

golub L1-QR-soft 8.121 2.74e+07 0.8929 0.9118 90.1
Lq=0.9-QR 0.544 2.80e+07 0.9393 0.95 9.1
L1-QR 1.062 2.28e+07 0.8679 0.8912 10.2
Liblinear 0.042 2.28e+07 0.8679 0.8912 10.4
SAGA 4.532 2.78e+07 0.8857 0.9059 46.7

singh L1-QR-soft 51.042 6.74e+07 0.8753 0.8794 91.2
Lq=0.9-QR 3.941 8.65e+07 0.8893 0.9 13.4
L1-QR 6.716 6.52e+07 0.8976 0.8912 20.1
Liblinear 0.225 6.52e+07 0.8976 0.8912 20.2
SAGA 21.251 7.11e+07 0.8869 0.8912 65.9

tion using QR decomposition L2-QR gives better times of fitting than ordinary
solvers available in the scikit-learn and all algorithms work nearly the same,
only L2-lbfgs gives slightly different results. In the case of sparse penalty our
algorithm L1-QR works faster than L1-Liblinear and obtains comparable but
not identical results. For sparse case L1-SAGA gives best predictions (about 1-2%
better than other sparse algorithms), but it produces the most dense solutions
similarly like L1-QR-soft.

In the second experiment we used micro-array data with an original train
and test sets. For those datasets quotients (samples/attributes) are fixed (about
0.005–0.01). The results are shown in Tab. 1 (`2 case) and in Tab. 2 (`1 case).
Tables present mean values of times and cost functions, averaged over λs. Whole
traces over λs are presented in the Fig. 2 and Fig. 3. For the case of `2 penalty
we notice that all tested algorithms give identical results looking at the quality
of prediction and the cost function. However, time of fitting differs and the best
algorithm is that, which uses QR factorization.

For the case of sparse penalty functions only algorithms L1-Liblinear and
L1-QR give quantitatively the same results, however L1-Liblinear works about
ten times faster. Other models give qualitatively different results. Algorithm
Lq-OR obtained the best sparsity and the best accuracy in prediction and was
also slightly faster than L1-QR. Looking at the cost function with `1 penalty
we see that L1-Liblinear and L1-QR are the same, SAGA obtains worse cost
function than even L1-QR-soft. We want to stress that scikit-learn provides
only solvers for `2 and `1 penalty, not for general case `q.

Application to extreme learning and RVFL networks Random Vector
Functional-link (RVFL) network is a method of learning two (or more) layer
neural networks in two separate steps. In the first step coefficients for hidden
neurons are chosen randomly and are fixed, and then in the second step learning

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

Fitting Penalized Logistic Regression Models using QR Factorization 11

algorithm is used only for the output layer. The second step is equivalent to
learning the logistic regression model (a linear model with the sigmoid output
function). Recently, this approach is also known as “extreme learning” (see: [20]
for more references).

The output of neural network with a single hidden layer is given by:

y(x;W1, b1,w2, b2) = ϕ

(Z∑
j=1

w
(2)
i ϕ(x;W1(:, j), b1(j)) + b2

)
, (23)

where: Z is the number of hidden neurons, ϕ(x;w, b) = tanh
(∑n

k=1 wkxk + b
)

is
the activation function.

In this experiment we choose randomly hidden layer coefficients W1 and b1,
with number of hidden neurons Z = 1000 and next we learn the coefficients of
the output layer: w2 and b2 using the new transformed data matrix:

Φm×Z = ϕ
(
X(i, :);W1(j, :), b1(j)

)
.

For experiments we prepared the class ExtremeClassier (in scikit-learn

paradigm) which depends on the number of hidden neurons Z, the kind of linear
output classifier and its parameters. In the fitting part we ensure the same random
part of classifier. In this experiment we also added a new model — multi-layer
perceptron with two layers and with Z hidden neurons fitted in the standard
way using L-BFGS algorithm (MLP-lbfgs).

Results of the experiment are presented in the Fig. 4. For each size of learning
data and for each classifier we select optimal value of parameter C = 1/λ using
cross-validation. The number of samples varies from 20 to 300. As we can see, in
both cases (`2 and sparse penalties) our solution using QR decomposition gives
always better times of fitting than ordinary solvers available in the scikit-learn.
Time of fitting of L1-QR is 2–5 times shorter than L1-Liblinear, especially for
the case chessboard 4× 4 and two spirals. Looking at quality we see that sparse
models are similar, but slightly different. For two spirals the best one is Lq-QR and
it is also the sparsest model. Generally sparse models are better for two spirals
and chessboard 4 × 4. The MLP model has the worst quality and comparable
time of fitting to sparse regressions.

The experiment shows that use of QR factorization can effectively implement
learning of RVFL network with different regularization terms. Moreover, we
confirm that such learning works more stable than ordinary neural network
learning algorithms, especially for the large number of hidden neurons. Exemplary
decision boundaries, sparsity and found hidden neurons are shown in the Fig. 5.

5 Conclusion

In this paper we presented application of the QR matrix factorization to improve
the Newton procedure for learning logistic regression models with different kind
of penalties. We presented two approaches: rotationally invariant case with `2

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

12 Jacek Klimaszewski and Marcin Korzeń

100 200 300
10 1

100

101

102
CV

 ti
m

e
chessboard3

100 200 300
10 1

100

101

102

chessboard4

100 200 300
10 1

100

101

102

spirals

100 200 300

10 2

100

102

fit
 ti

m
e

100 200 300

10 2

100

102

100 200 300

10 2

100

102

100 200 300

0.7

0.8

0.9

au
c

te
st

100 200 300

0.6

0.8

100 200 300

0.6

0.8

100 200 300
m

102

103

nn
z c

oe
fs

5

100 200 300
m

101

102

103

100 200 300
m

101

102

103

L1-QR
L1-liblinear

L1-soft
L2-NewtonCG

L2-QR
L2-liblinear

Lq-OR,q=0.8
MLP-lbfgs

Fig. 4. Experimental results for the extreme learning. Comparison on artificial datasets.
CV time is the time of cross-validation procedure, fit time is the time of fitting for the
best λ, auc test is the area under ROC on test dataset, and nnz coefs5 is the number of
non-zero coefficients.

penalty, and general convex rotationally variant case with sparse penalty functions.
Generally speaking, there is a strong evidence that use of QR factorization in
the rotational invariant case can improve classical Newton-CG algorithm when
m < n. The most expensive operation in this approach is QR factorization itself,
which is performed once at the beginning. Our experiments showed also that this
approach, for m� n surpasses also other algorithms approximating Hessian like
L-BFGS and truncated Newton method (used in Liblinear). In this case we have
shown that theoretical upper bound on cost of Newton iteration is O

(
m3
)
.

We showed also that using QR decomposition and Shermann-Morrison-
Woodbury formula we can solve a problem of learning the regression model
with different sparse penalty functions. Actually, improvement in this case is
not as strong as in the case of `2 penalty, however we proved that using QR
factorization we obtain theoretical upper bound significantly better than for
general Newton-CG procedure. In fact, the Newton iterations in this case have
the same cost as the initial cost of the QR decomposition i.e. O

(
m2n

)
. Numerical

experiments revealed that for more difficult and correlated data (e.g. for extreme

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

Fitting Penalized Logistic Regression Models using QR Factorization 13

ch
es
sb
oa
rd

4
×

4
da
ta
se
t

`2 penalty soft `1 penalty

2 1 0 1 2
2

1

0

1

2
1st layer, non-zero coefs.=993

2 1 0 1 2
2

1

0

1

2
decision boundry

2 1 0 1 2
2

1

0

1

2
1st layer, non-zero coefs.=922

2 1 0 1 2
2

1

0

1

2
decision boundry

`q penalty, q = 0.8 strict `1 penalty

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
1st layer, non-zero coefs.=34

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
decision boundry

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
1st layer, non-zero coefs.=45

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
decision boundry

tw
o
sp
ir
al
s
da
ta
se
t

`2 penalty soft `1 penalty

10 0 10

10

5

0

5

10

1st layer, non-zero coefs.=996

10 0 10

10

5

0

5

10

decision boundry

10 0 10

10

5

0

5

10

1st layer, non-zero coefs.=244

10 0 10

10

5

0

5

10

decision boundry

`q penalty, q = 0.8 strict `1 penalty

10 5 0 5 10

10

5

0

5

10

1st layer, non-zero coefs.=32

10 5 0 5 10

10

5

0

5

10

decision boundry

10 5 0 5 10

10

5

0

5

10

1st layer, non-zero coefs.=47

10 5 0 5 10

10

5

0

5

10

decision boundry

Fig. 5. Exemplary decision boundaries for different penalty functions (`2, `1 with a
smooth approximation of the absolute value function, `q=0.8, `1) on used datasets. In
the figure there are coefficients of the first layer of the neural network represented as
lines — intensity and color represents magnitude and sign of the particular coefficient.

learning) such approach may work faster than L1-Liblinear. However, we should
admit that in a typical and simpler cases L1-Liblinear may be faster.

References

1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York, NY, USA (2004)

2. Dai, Y.H.: On the Nonmonotone Line Search. Journal of Optimization Theory and
Applications 112(2), 315–330 (Feb 2002)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

14 Jacek Klimaszewski and Marcin Korzeń

3. Fan, J., Li, R.: Variable Selection via Nonconcave Penalized Likelihood and its
Oracle Properties. Journal of the American Statistical Association 96(456), 1348–
1360 (2001)

4. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library
for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (Jun 2008)

5. Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences, Johns Hopkins University Press (2013)

6. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., P., M.J.,
Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander,
E.S.: Molecular classification of cancer: Class discovery and class prediction by gene
expression monitoring. Science 286(5439), 531–537 (1999)

7. Green, P.J.: Iteratively reweighted least squares for maximum likelihood estimation,
and some robust and resistant alternatives (with discussion). Journal of the Royal
Statistical Society, Series B, Methodological 46, 149–192 (1984)

8. Hastie, T., Tibshirani, R.: Expression arrays and the p� n problem (2003)
9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.

Springer Series in Statistics, Springer New York Inc., New York, NY, USA (2001)
10. Kabán, A., Durrant, R.J.: Learning with Lq<1 vs L1-Norm Regularisation with

Exponentially Many Irrelevant Features. In: Daelemans, W., Goethals, B., Morik,
K. (eds.) Machine Learning and Knowledge Discovery in Databases. pp. 580–596.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

11. Krishnapuram, B., Carin, L., Figueiredo, M.A.T., Hartemink, A.: Sparse Multi-
nomial Logistic Regression: Fast Algorithms and Generalization Bounds. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(6), 957–968 (June
2005)

12. Lee, Y.J., Mangasarian, O.: SSVM: A Smooth Support Vector Machine for Classifi-
cation. Computational Optimization and Applications 20, 5–22 (2001)

13. Lin, C.J., Weng, R.C., Keerthi, S.S.: Trust Region Newton Method for Logistic
Regression. Journal of Machine Learning Research 9, 627–650 (2008)

14. Minka, T.P.: A comparison of numerical optimizers for logistic regression (2003),
https://tminka.github.io/papers/logreg/minka-logreg.pdf

15. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT Press, Cambridge,
Mass. [u.a.] (2013)

16. Ng, A.Y.: Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance.
In: Proceedings of the Twenty-first International Conference on Machine Learning.
pp. 78–85. ICML ’04, ACM, New York, NY, USA (2004)

17. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

18. Singh, S., Skanda, S., Scott, S., Arie, B., Sujata, P., Gurmit, S.: Overexpression
of vimentin: Role in the invasive phenotype in an androgen-independent model of
prostate cancer. Cancer Research 63(9), 2306–2311 (2003)

19. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming 117, 387–423 (2009)

20. Wang, L.P., Wan, C.R.: Comments on “The Extreme Learning Machine”. IEEE
Transactions on Neural Networks 19(8), 1494–1495 (Aug 2008)

21. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran
Subroutines for Large-scale Bound-constrained Optimization. ACM Trans. Math.
Softw. 23(4), 550–560 (Dec 1997)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50417-5_4

https://dx.doi.org/10.1007/978-3-030-50417-5_4

