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Abstract. A practical and simple stable method for calculating Fourier integrals 

is proposed, effective both at low and at high frequencies. An approach based on 

the fruitful idea of Levin, which allows the use of the collocation method to ap-

proximate the slowly oscillating part of the antiderivative of the desired integral, 

allows reducing the calculation of the integral of a rapidly oscillating function 

(with a linear phase) to solving a system of linear algebraic equations with a tri-

angular or Hermitian matrix. 

The choice of Gauss-Lobatto grid nodes as collocation points let to increasing 

the efficiency of the numerical algorithm for solving the problem. To avoid pos-

sible numerical instability of the algorithm, we proceed to the solution of a nor-

mal system of linear algebraic equations. 

Keywords: Oscillatory integral, Chebyshev interpolation, Numerical stability. 

1 Introduction 

The initial formulation of the method of numerical integration of highly oscillating 

functions by Levin and his followers suggests a possible ambiguity in finding the anti-

derivative: any solution to the differential equation without boundary (initial) condi-

tions can be used to calculate the desired value of the integral.  

Levin's approach [1] to the integration of highly oscillating functions consists in the 

transition to the calculation of the antiderivative function from the integrand using the 

collocation procedure in physical space. In this case, the elements of the degenerate [2] 

differentiation matrix of the collocation method [3] are a function of the coordinates of 

the grid points, the matrix elements are calculated using very simple formulas. In books 

[3,4] various options for the implementation of this method are considered, many ap-

plied problems are solved.  

The method proposed by Levin both in the one-dimensional and in the multidimen-

sional case was published by him in articles [1,9], and then he was thoroughly studied 

in [10]. The method is presented in great detail in the famous monograph [4], which 

describes the evolution of numerical methods for integrating rapidly oscillating func-

tions over the past fifteen years. 
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There are a large number of works using various approaches in order to propose fast 

and stable methods for solving systems of linear algebraic equations (SLAE) that arise 

when implementing the collocation method. However, many of them [5][6][7] encoun-

ter difficulties in solving the corresponding systems of linear equations. 

In particular, the use in specific implementations of the Levin collocation method in 

the physical space of degenerate Chebyshev differentiation matrices, which also have 

eigenvalues differing by orders of magnitude, makes it impossible to construct a stable 

numerical algorithm for solving the resulting SLAEs. The approach to solving the dif-

ferential equation of the Levin method, described in [6][5][8], is based on the approxi-

mation of the solution, as well as the integrand phase and amplitude functions in the 

form of expansion into finite series in Chebyshev polynomials. Moreover, to improve 

the properties of the algorithms, and hence the matrices of the corresponding SLAEs, 

three-term recurrence relations are used that connect the values of Chebyshev polyno-

mials of close orders. However, these improvements are not enough to ensure stable 

calculation of integrals with large matrix dimensions.  

In our work, we consider a method of constructing a primitive, based on the spectral 

representation of the desired function. 

We propose increasing the efficiency of the algorithm by reducing the corresponding 

system of linear equations to a form that is always successfully solved using the LU-

decomposition method with partial selection of the leading element. 

Consider the integral that often occurs in Fourier analysis - in applications related to 

signal processing, digital images, cryptography and many other areas of science and 

technology. 

  𝐼𝜔[𝑓] = ∫ 𝑓(𝑥)𝑒𝑖𝜔𝑔(𝑥)𝑑𝑥
𝑏

𝑎
 (1) 

In accordance with the Levin method, the calculation of this integral reduces to solv-

ing an ordinary differential equation 

  𝑝′(𝑥) + 𝑖𝜔𝑔′(𝑥)𝑝(𝑥) = 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏]  (2) 

As argued in [1], the system (2) has a particular solution which is not rapidly oscil-

latory, and we shall look for an approximation to this particular solution by collocation 

with 'nice' functions, e.g. polynomials. If the unknown function p(x) is a solution of Eq. 

(2), then the result of integration can be obtained according to the formula 

  𝐼𝜔(𝑓, 𝑔) = ∫ (𝑝′(𝑥) + 𝑖𝜔𝑔′(𝑥)𝑝(𝑥))𝑒𝑖𝜔𝑔(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑝(𝑏)𝑒𝑖𝜔𝑔(𝑏) − 𝑝(𝑎)𝑒𝑖𝜔𝑔(𝑎).  (3) 

Below we will consider the special case of integration of a highly oscillating function 

with a linear phase, reduced to the standard form 

  𝐼𝜔[𝑓] = ∫ 𝑓(𝑥)𝑒𝑖𝜔𝑥𝑑𝑥
1

−1
= 𝑝(1)𝑒𝑖𝜔 − 𝑝(−1)𝑒−𝑖𝜔.  (4) 

This can be justified, in particular, by the fact that in many well-known publications 

[7][11][12] stable transformations are discussed in detail, which make it possible to 

proceed from a general integral with a nonlinear phase to an integral in standard form 

(on the interval [-1 , 1]) with a linear phase. 
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In the paper by Levin [1], to automatically exclude the rapidly oscillating component 

𝑐𝑒−𝑖𝜔𝑥 of the general solution  𝑝(𝑥) = 𝑝0(𝑥) + 𝑐𝑒−𝑖𝜔𝑔(𝑥), it is proposed to search for 

a numerical solution (2) based on the collocation method, using its expansion in a basis 

of slowly oscillating functions, rather than using difference schemes (or methods of the 

Runge-Kutta type). 

In this case, the following statement is true [2]: 

Statement.  The solution of Eq. (2) obtained using the Levin collocation method is 

a slowly oscillating function 𝓞(𝝎−𝟏)  for 𝝎 ≫ 𝟏. 

2 Approximation of the antiderivative. Calculation 

method 

Let us consider in more detail the problem of finding the antiderivative integrand, or 

rather, the approximating polynomial 𝑝(𝑥), satisfying condition (2) in a given number 

of points on the interval [-1,1]. Consider the spectral method of finding an approximat-

ing function in the form of expansion in a finite series 

 𝑝(𝑥) = ∑ 𝑐𝑘𝑇𝑘 , 𝑥 ∈ [−1,1]𝑛
𝑘=0   (5) 

in the basis of Chebyshev polynomials of the first kind {𝑇𝑘(𝑥)}𝑘=0
∞ , defined in the Hil-

bert space of functions on the interval [-1,1]. 

The application of the collocation method to solve the problem 𝑝′(𝑥) + 𝑖𝜔𝑝(𝑥) =

𝑓(𝑥) leads to the need to fulfill the following equalities for the desired coeffi-

cients 𝑐𝑘, 𝑘 = 1,… , 𝑛  

 ∑ 𝑐𝑘𝑇𝑘
′(𝑥𝑗)

𝑛
𝑘=0 + 𝑖𝜔 ∑ 𝑐𝑘𝑇𝑘(𝑥𝑗)

𝑛
𝑘=0 = 𝑓(𝑥𝑗), 𝑗 = 0,… , 𝑛  (6) 

at the collocation points {𝑥0, 𝑥1, … , 𝑥𝑛}. 

The last statement is equivalent to the fact that the coefficients 𝑐𝑘 , 𝑘 = 0, … , 𝑛 should 

be a solution to the system of linear algebraic equations of the collocation method: 

 {

𝑝′(𝑥0) + 𝑖𝜔𝑝(𝑥0) = 𝑓(𝑥0),

𝑝′(𝑥1) + 𝑖𝜔𝑝(𝑥1) = 𝑓(𝑥1).…
𝑝′(𝑥𝑛) + 𝑖𝜔𝑝(𝑥𝑛) = 𝑓(𝑥𝑛).

  (7) 

We represent the values of the derivative of the desired function (polynomial) at the 

collocation points in the form of the product 𝑫𝒑 = 𝒑′ of the matrix 𝑫 by the vector of 

values of 𝒑. Recall that the Chebyshev differentiation matrix 𝑫 has the standard repre-

sentation in the physical space [3] 

 𝑫𝒌𝒋 = {

𝑟𝑘

𝑟𝑗
(−1)𝑘+𝑗/(𝑥𝑘 − 𝑥𝑗) 𝑘, 𝑗 = 0,… 𝑛, 𝑘 ≠ 𝑗

−∑ 𝐷𝑘𝑙
𝑛
𝑙=0,𝑙≠𝑘 𝑘 = 𝑗,

   (8) 
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where 𝑟𝑗 = {
2 𝑗 = 0, 𝑛
1 1, … , 𝑛 − 1.

 

Substituting 𝒑′ = 𝑫𝒑 into Eq. (7) we reduce it to a system of linear algebraic equa-

tions 

 (𝐃 + iω𝐄)𝐩 = 𝐟.  (9) 

Here E is an identity matrix, 𝐟 is a vector of values of the amplitude function on the 

grid. Denote by 𝑩 the differentiation matrix in the frequency (spectral) space[13], 

whose coefficients are explicitly expressed as  

 𝑩𝒊𝒋 = {
(1/𝑟𝑗)2𝑗 𝑖𝑓 𝑗 > 𝑖, 𝑖 + 𝑗  𝑜𝑑𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (10) 

where 0 ≤ 𝑖, 𝑗 ≤ 𝑛   and  𝑟𝑖 = {
2 𝑖 = 0
1 𝑖 > 0.

 

Denote by 𝑻 the Chebyshev matrix of mapping a point (vector) from the space of 

coefficients to the space of values of the function [14]. Given that 𝐩 = 𝑻𝒄 is the vector 

of values of the desired function (also in physical space), the components of the deriv-

ative vector can be written as 𝑫𝐩 = 𝑻𝑩𝒄.[14] As a result, we obtain the system of linear 

algebraic equations equivalent to system (9), 

 (𝑻𝑩𝒄 + 𝑖𝜔𝐓𝐜) = 𝒇  (11) 

which is valid for an arbitrary grid on the interval [-1,1]. We write equation (11) in 

detail 

 

[
 
 
 
 
𝑇00 𝑇10 𝑇20 ⋮ 𝑇𝑛0

𝑇01 𝑇11 𝑇21 ⋮ 𝑇𝑛1

𝑇02 𝑇12 𝑇22 ⋮ 𝑇𝑛2

… … … ⋱ …
𝑇0𝑛 𝑇1𝑛 𝑇2𝑛 ⋮ 𝑇𝑛𝑛]

 
 
 
 

(

 
 

[
 
 
 
 
0 1 0 3 ⋮
 0 4 0 ⋮
  0 6 ⋮
   ⋱ ⋮
    0]

 
 
 
 

+ 𝑖𝜔𝑬

)

 
 

[
 
 
 
 
𝑐0

𝑐1

𝑐2

…
𝑐𝑛]

 
 
 
 

=

[
 
 
 
 
𝑓0

𝑓1
𝑓2

…
𝑓𝑛]

 
 
 
 

  (12) 

where to reduce the formulas we used the notation 𝑇𝑘𝑗 = 𝑇𝑘(𝑥𝑗), 𝑘, 𝑗 = 0,… , 𝑛. 

The product of a non-degenerate matrix T by a non-degenerate triangular matrix  

𝑩 + 𝑖𝜔𝑬 is a non-degenerate matrix. Therefore, the system of linear algebraic equa-

tions (12) has a unique solution. 

Statement 1.  

The solution of this system of linear algebraic equations with respect to the 

coefficients 𝒄 = (𝑐0, 𝑐1, … , 𝑐𝑛) allows us to approximate the antiderivative function in 

the form of a series (5) and calculate the approximate value of the integral by formula 

(4). 
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3 Modification of the calculation method  

System (12) is valid for an arbitrary grid on the interval [-1,1]. However, considera-

tion of the collocation problem on a Gauss-Lobatto grid allows significant simplifica-

tion of this system of linear algebraic equations. First, we multiply the first and last 

equations from (12) by 1/√2 to obtain an equivalent “modified” system with a new 

matrix �̃� (instead of 𝑻), which is good because it has the property of discrete “orthog-

onality” and, therefore, is non-degenerate. Therefore, multiplying it on the left by its 

transposed one gives the diagonal matrix: 

 �̃�𝑻�̃� =

[
 
 
 
 
𝑛 0 0 ⋮ 0
0 𝑛/2 0 ⋮ 0
0 0 𝑛/2 ⋮ 0
… … … ⋱ …
0 0 0 ⋮ 𝑛]

 
 
 
 

   

We use this property and multiply the reduced (modified) system (12) on the left by 

the transposed matrix �̃�𝑻, thereby reducing it to the upper triangular form. Indeed, the 

matrix of the resulting system is calculated as the product of the diagonal matrix by the 

triangular matrix, which, in turn, is the sum of the Chebyshev differentiation matrix in 

the spectral space and the diagonal matrix. 

Since the matrix �̃�𝑻 is non-degenerate, the new system of linear algebraic equations  

is equivalent to system (12) and has a unique solution. 

Taking into account the specific values of the Chebyshev polynomials on the Gauss-

Lobatto grid [15], simplifies the system, bringing it to the form 

 𝐀𝐜 =

[
 
 
 
 
 
𝑖𝜔 1 0 3 ⋮ 𝑛 = 1
0 𝑖𝜔 2 0 ⋮ 0
0 0 𝑖𝜔 3 ⋮ 𝑛 − 1
0 0 0 𝑖𝜔 ⋮ 0
… … … … ⋱ 𝑛 − 1
0 0 0 0 ⋮ 𝑖𝜔 ]

 
 
 
 
 

[
 
 
 
 
 
𝑐0

𝑐1

𝑐2

𝑐3

…
𝑐𝑛]

 
 
 
 
 

=

[
 
 
 
 
 
 
𝑓0/2

𝑓1
𝑓2

𝑓3

…
𝑓𝑛/2]

 
 
 
 
 
 

  (13) 

where 𝑓𝑗 =
1

𝑛
∑ 𝑇𝑗(𝑥𝑘)𝑓(𝑥𝑘)

′′
𝑘=0,𝑛 , 𝑗 = 0, … , 𝑛 and symbol Σ′′ denotes a sum in which 

the first and last terms are additionally multiplied by 1/2. 

By the Kronecker-Capelli theorem, the system of linear algebraic equations (13) 

with a square matrix and a non-zero determinant is not only solvable for any vector of 

the right-hand side, but also has a unique solution. 

Statement 2. For |𝜔| > 2𝑛 the SLAE (13) has a stable solution.  

Statement 3. To solve system (13), no more than (~𝑛2/4) operations of addition/sub-

traction and multiplication/division with a floating point are required. 
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4 Efficient method for solving the problem 

Algorithms for solving systems of linear equations such as the Gauss method or the 

LU-decomposition work well when the matrix of the system has the property of diago-

nal dominance. Otherwise, standard solution methods lead to the accumulation of 

rounding errors.  

A stable solution to the system may be provided by the LU-decomposition method 

with a partial choice of a leading element. For the triangular matrix (13), there is no 

forward pass (in which the leading element is selected) of the LU-decomposition, and 

the back pass of the method is always implemented without the selection of leading 

element.  

A solution to system (13) can still be unstable in the case when |𝑖𝜔| ≤ 2𝑛. Passing 

to the solution of the normal system, that is, to the problem of minimizing the residual 

‖𝐀𝐜 − �̃�‖
2
, multiplying the system of equations (13) on the left by the Hermitian con-

jugate matrix 

 𝐀∗𝐀𝐜 = 𝐀∗�̃�  (14) 

we transform the matrix of the system (13) to the Hermitian form. 

Although the system of linear equations became more filled, since instead of upper 

triangle three-diagonal matrix a system of linear equations with all matrix elements 

filled appeared, its computational properties are cardinally improved. The resulting ma-

trix of a system of linear algebraic equations is Hermitian, its eigenvalues are real, and 

the eigenvectors form an orthonormal system. The method of LU-decomposition with 

a partial choice of the leading element, due to the properties of the resulting matrix, 

provides [17] the stability of the numerical algorithm for finding the only solution to 

the system. 

5 Description of the algorithm 

Let us describe the sequence of operations of the presented algorithm for calculating 

the integral of a rapidly oscillating function of the form (1) with a linear phase. 

Input data preprocessing.  

1. If the integral is given on the interval [𝑎, 𝑏], we pass to the standard domain 

of integration [−1,1] by changing the variables 𝑥 =
𝑏−𝑎

2
𝑡 +

𝑏+𝑎

2
, 𝑡 ∈ [−1,1]. 

2. Fill by columns the Chebyshev transformation matrix 𝑻 from (12) using only 

one pass of the recursive method for calculating the values of Chebyshev 

polynomials of the first kind of the n-th order. 

Antiderivative algorithm 

3. Calculate the vector of the right-hand side of system (13) 
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4. Fill in the elements of the sparse matrix (13), which depend only on the di-

mension n and the phase value ω. 

5. If |𝜔| > 2𝑛, then go to step 6. Otherwise go to step 7. 

6. The matrix of system (13) is a matrix with a diagonal dominance and can be 

stably solved. The solution values at the boundary points are used to deter-

mine the desired antiderivative values. Go to step 8. 

7. Multiply relation (13) on the left by the conjugate matrix to obtain a Hermit-

ian matrix (14) with diagonal dominance. In this case, to determine the val-

ues of the antiderivative at the boundary points the normal solution is stably 

determined using the LU-decomposition with a partial choice of the leading 

element. 

8. We calculate the values of the antiderivative at the ends of the interval using 

the formulas 𝑝(1) = ∑ 𝑐𝑗
𝑛
𝑗=0 ,  and 𝑝(−1) = ∑ 𝑐𝑗

𝑛
𝑗=0,𝑗−𝑒𝑣𝑒𝑛 − ∑ 𝑐𝑗

𝑛
𝑗=0,𝑗−𝑜𝑑𝑑 . 

The desired value of the integral is obtained using the formula 𝐼(𝑓, 𝜔) =

𝑝(1)𝑒𝑖𝜔 − 𝑝(−1)𝑒−𝑖𝜔. 

6 Numerical examples. 

Example 1 

We give an example of calculating the integral when, for a good polynomial approx-

imation of a slowly oscillating factor of the integrand, it is necessary to use polynomials 

of high degrees.  

 𝐼𝜔 [
1

𝑥+2
] = ∫

1

𝑥+2
𝑒𝑖𝜔𝑥𝑑𝑥

1

−1
  (15) 

This integral is given by Olver ([16], p. 6) as an example of the fact that the GMRES 

method allows one to calculate the integral much more accurately than the Levin col-

location method. However, in his article, solving the resulting system of linear algebraic 

equations requires 𝒪(𝑛3) operations, as in the Levin collocation method using the 

Gaussian elimination algorithm. 

Table 1. The following table shows the values of the integral calculated by us for various val-

ues of the parameter ω with an accuracy of 17 significant digits. 

ω Real part Image 

ω=1 0.9113301035062809891 -0.1775799622517861791 

ω=10 -0.07854759997855625023 -0.04871911238563061052 

ω=50 -0.00665013790168713 0.0129677770647216 

ω=100 -0.00667389328931381 0.00580336592710437 
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Fig. 1. The error in approximating integral (15) for n= 10-40 and for different choices of ω 

A comparison of our results at 40 interpolation points with the results of [16] 

shows a significant gain in accuracy: the deviation from the exact solution is of the 

order of 10−17 compared with the deviation of the order of 10-7 in Olver's article. The 

proposed algorithm to achieve an accuracy of 10-13 in the calculation of the integral 

uses no more than 30 points (𝑛 ≤ 30)  for ω=1,…, 100. 

Example 2. As a second example, we consider the integral 

 ∫
1

𝑥2+1
𝑒𝑖𝜔sin (𝑥+1/4)𝑑𝑥

1

−1
  (16) 

from [16], where the results of calculating the integrals depending on the number of 

approximation points are illustrated on Fig 1 [16]. 

To reduce this integral to the (standard form of the Fourier integral) form of integral 

with the linear phase, we change the variables 𝑦 = sin (𝑥 +
1

4
). Then 𝑑𝑥 =

1

√1−𝑦2
𝑑𝑦, 

𝑥 = arcsin(𝑦) − 1/4, the integration limits are changed to −sin (
3

4
) , sin (

5

4
) and the 

integral can be written as: 

 ∫
1

√1−𝑦2((arcsin(𝑦)−
1

4
)2+1)

𝑒𝑖𝜔𝑦
sin (

5

4
)

−sin (
3

4
)

𝑑𝑦  (17) 

Let us consider the calculation of this integral for various values of the parameter ω 

using an algorithm that takes into account the linearity of the phase function.  

Table 2. The table shows the values of the integral for various values of the parameter ω.  

ω Re Int Im Int 

ω=0.1 1.5687504317409 0.0337582105322438 

ω=1 1.3745907842843 0.305184104407599 

1.E-20

1.E-18

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

10 15 20 25 30 35 40

R
es

id
u

al
s,

 lo
g 

sc
al

e
Number of points

ω=1

ω=10

ω=50

ω=100
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ω=3 0.311077689499021 0.339612459676631 

ω=10 0.00266714972608754 0.180595659138141 

ω=30 0.00706973992290492 0.0455774930833239 

ω=50 -0.00620005944852318 0.0155933115982172 

ω=100 0.00460104072965418 -0.00790563176002816 

The proposed algorithm to achieve an accuracy of 10−16 when calculating the inte-

gral uses no more than 90 points (n≤90) with ω=0.1,…100. A significant gain in the 

number of addition/subtraction and multiplication/division operations is achieved when 

the frequency value is greater than the number n, which ensures the diagonal dominance 

of the system of linear algebraic equations in the matrix (13). 

 

Fig. 2. The figure shows the absolute error in approximating integral (17) for n= 10 - 90 and for 

different choices of 𝜔: 0.1, 1, 3, 10, 30, 50, 100. 

It is useful to compare the algorithm we developed for finding the integrals of rapidly 

oscillating functions with the results of [5], which presents various and carefully se-

lected numerical examples for various classes of amplitude functions. 

Example 3.  

Consider the calculation of the integral with an exponential function as the amplitude 

  𝐼(𝛼, 𝜔) = ∫ 𝑒α (𝑥−1)𝑒𝑖𝜔𝑥𝑑𝑥
1

−1
, 𝛼 = 16,64;   𝜔 = 20,1000. (18) 

The exact value of the integral can be calculated by the formula 𝐼(𝛼, 𝜔) =
2∗𝑒−𝛼sinh (𝛼+𝑖𝜔)

(𝛼+𝑖𝜔)
 [5]. The plot of the deviation of the integral calculated by us from the 

exact one depending on the number of collocation points (absolute error) is shown in 

Fig 3. 

Comparison with the results of [5] shows that the accuracy of calculating the inte-

grals practically coincides with that of [5]. Our advantage is the much simpler form of 
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the matrix of a system of linear equations. In the best case, when |ω|>n matrix of the 

system is a triangular matrix with a dominant main diagonal. If n>|ω|, then the transition 

to the search for a normal solution to a system with a positively defined Hermitian 

matrix allows us to create a numerically stable solution scheme. 

 

Fig. 3. Plot of the absolute error of the approximation of the integral (18) with α=16.64; at 

ω=20 and ω=1000 depending on the number of nodes of the collocation method. Logarithmic 

scale. 

Example 4. 

In this example [5], the rapidly oscillating function 𝑒𝑖2𝜋𝛼𝑥 is considered as the am-

plitude one. It is clear that in this case, to achieve the same accuracy in calculating the 

integral as in the previous example, a larger number of collocation points will be re-

quired. 

 𝐼(𝛼, 𝜔) = ∫ 𝑒𝑖2𝜋𝛼𝑥𝑒𝑖𝜔𝑥𝑑𝑥
1

−1
, 𝛼 = 5,10;   𝜔 = 20,1000.  (19) 
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Fig. 4. The graph of the absolute error of the approximation of the integral (19) with 𝛼 =
5,10;   𝜔 = 20, 1000 depending on the number of nodes of the collocation method. Logarith-

mic scale. 

Example 5.  

The example demonstrates the calculation of the integral in the case when the am-

plitude function is the generating function of the Chebyshev polynomials of the first 

kind. 

 𝐼(𝛼, 𝜔) = ∫
1−𝛼2

1−2𝛼𝑥+𝛼2 𝑒𝑖𝜔𝑥𝑑𝑥
1

−1
, 𝛼 = 0.8,0.9;   𝜔 = 20,1000.  (20) 

The behaviour of the amplitude function should lead to an almost linear dependence 

of the approximation accuracy on the number of points for various values of the param-

eters α and ω. Numerical experiments carried out confirm this assertion. 

 

Fig. 5. The plot of the absolute error of approximation of the integral (22) with α=0.8,0.9;  

ω=20,1000  depending on the number of nodes of the collocation method. Logarithmic scale. 

Moreover, the accuracy of calculating the integrals is not inferior to the accuracy of 

the methods of [5] 

Example 6 

Amplitude is a bell-shaped function 

 𝐼(𝛼, 𝜔) = ∫
1

𝑥2+𝛼2 𝑒𝑖𝜔𝑥𝑑𝑥
1

−1
, 𝛼 = 1/4,1/8;   𝜔 = 20,1000.  (21) 

The example is rather complicated for interpolation by Chebyshev polynomials. To 

achieve acceptable accuracy (10−18), the deviation of the calculated value of the inte-

gral from the exact one requires about 300 approximation points both for small values 

of 𝜔 = 20 and for large 𝜔 = 1000. 
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Fig. 6. Plot of the absolute error of approximation of the integral (21) with α=1/4,1/8;   

ω=20,1000 depending on the number of nodes of the collocation method. Logarithmic scale. 

Example 7.  

We give an example of integration when the amplitude function has second-order 

singularities at both ends of the integration interval 

 𝐼(𝜔) = ∫ (1 − 𝑡2)3/2𝑒𝑖𝜔𝑥𝑑𝑥
1

−1
, 𝜔 = 20,1000.  (22) 

The value of this integral can be calculated in an analytical form: 𝑓(𝜔) =
3𝜋𝐽2(𝜔)/𝜔2. We present the numerical values of the integral for various values of 

the frequency: 𝐼(20) = −0.00377795409950960, 𝐼(1000) =
−2.33519886790130 × 10−7 
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Fig. 7. The plot of the absolute error of the approximation of the integral (22) with 𝜔 =
20, 1000 depending on the number of nodes of the collocation method. Logarithmic scale. 

Similar to the previous example, to achieve good accuracy in calculating the integral, 

it is necessary to consider a large number of collocation points. However, for this type 

of amplitude functions, the method presented in the article works reliably both in the 

case of low and high frequencies. 

The given examples demonstrate that the dependence of the solution on the number 

of approximation points is similar to the dependence demonstrated in Olver [17] and 

Hasegawa [5]. The advantage of our approach is the simplicity of the algorithm and the 

high speed of solving the resulting very simple system of linear algebraic equations. If 

it is necessary to repeatedly integrate various amplitude functions at a constant fre-

quency, multiple gains are possible due to the use of the same LU-decomposition back-

tracking procedure. 

Conclusion.  

A simple, effective, and stable method for calculating the integrals of highly oscil-

lating functions with a linear phase is proposed. It is based on Levin's brilliant idea, 

which allows the use of the collocation method to approximate the antiderivative of the 

desired integral. Using the expansion in slowly oscillating polynomials provides a 

slowly changing solution of the differential equation. 

The transition from a solution in physical space to a solution in spectral space makes 

it possible to effectively use the discrete orthogonality property of the Chebyshev map-

ping matrix on a Gauss-Lobatto grid. With this transformation, the uniqueness of the 

solution of the studied system is preserved, and its structure from a computational point 

of view becomes easier. 

There are a large number of works using various approaches aimed to offer fast and 

effective methods for solving SLAEs that arise when implementing the collocation 

method. However, many methods [5] [6] encounter instability when solving the corre-

sponding systems of linear equations. When using Chebyshev differentiation matrices 

in physical space, instability is explained primarily by the degeneracy of these matrices 

and the huge spread of eigenvalues of the matrix of the collocation method system. The 

approach to solving the differential equation based on the representation of the solution, 

as well as the phase and amplitude functions, in the form of expansion in finite series 

by Chebyshev polynomials and the use of three-term recurrence relations [5] [6][8] also 

does not provide a stable calculation for n> | ω |. To overcome instability, various meth-

ods of regularizing the systems under study are proposed. 

In our work, we propose a new method for improving computational properties by 

preconditioning of the system in the spectral representation and by searching for its 

pseudo-normal solution. The proposed method has been reduced to solving a SLAE 

with a Hermitian matrix. A number of numerical examples demonstrates the advantages 

of the proposed effective stable numerical method for integrating rapidly oscillating 

functions with a linear phase. 
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