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Abstract. The paper presents a modified binary tree in the fast mul-
tipole method (FMM) included into the modified parametric integral
equations system (PIES), called the fast PIES, in solving potential 2D
boundary value problems with complex shapes. The modified binary tree
proposed in this paper is built based on a one-dimensional reference sys-
tem contrary to a quad-tree (based on a two-dimensional reference sys-
tem) which is applied in the fast multipole boundary element method
(FM-BEM). Application of the proposed tree allows reducing the num-
ber of numerical computations performed during its construction and
fast multipole calculations in the fast PIES. The proposed modification
of the tree in the fast PIES allows obtaining accurate solutions in engi-
neering problems with complex shapes on a standard personal computer
in a short time.

Keywords: Parametric integral equations system · Fast multipole method
· Boundary value problems.

1 Introduction

The fast multipole method (FMM) was initially proposed by Rokhlin [1] to ac-
celerate the solution of 2D potential problems using boundary integral equations
(BIE). Its main advantage is the reduction of the computational complexity of
the matrix-vector multiplication from O(N2) to O(N) (where N is the size of
the matrix) combined with an iterative solver. In papers [2, 3], Greengard refined
the algorithm by adding decomposition of the domain using the hierarchical
tree structure. It significantly reduces the utilization of random access memory
(RAM) in computer. The use of the FMM for solving 2D and 3D boundary value
problems (BVPs) is well-documented [4–6], also in application to the boundary
element method (BEM) [7].

Mentioned above BEM together with the finite element method (FEM) [8] are
well-established (might be called classic or conventional) methods of modelling
and solving boundary problems. However, new approaches are also being devel-
oped to eliminate the disadvantages of classical methods (the time-consuming
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discretization of a boundary or a domain resulting in a large number of finite or
boundary elements). That group includes, among others, meshless methods [9]
and still being developed the parametric integral equations system (PIES) [10].

The authors of this paper still working on development and application of
the PIES in modelling and solving BVPs. The PIES has been used to solve
potential [11], elasticity [12] or acoustics problems [13]. The PIES includes in
its mathematical formalism the shape of the boundary of considered problem
[10], therefore it does not require discretization of the domain or the boundary,
contrary to element methods. The shape of the boundary is directly included into
the PIES kernels using well-known functions from computer graphics - curves
for 2D and surface patches for 3D problems. The accuracy of solutions can
be improved by changing the number of collocation points only, without any
interference in the shape of the modelled boundary. The efficiency of modelling
and high accuracy of solutions obtained using the PIES has been confirmed in
previous studies (e.g. [11–13]). The authors of this paper also proposed extensions
of the PIES method for uncertainly defined [14, 15] or transient [16] problems.

Conventional PIES, similarly to the BEM, produces non-symmetrical dense
matrices using O(N2) operations and to solve the problem using direct solver,
it needs another O(N3) operations (where N is the number of system equa-
tions). Therefore, solving engineering problems with complex shapes requires a
lot of RAM and time-consuming computations. Application of OpenMP [17] or
acceleration of solving the PIES using CUDA [18, 19] allows for a significant re-
duction of time of computations. Unfortunately, the problem of limited resources
of RAM in a personal computer (PC) still exists. Therefore, mentioned above
parallelization techniques do not allow for efficient solving of problems on a PC.

The authors of this paper presented a way of including the FMM, based on
a binary tree, into modified PIES in [20]. Application of the FMM increased the
difficulty of implementation of so-called the fast PIES. However, the proposed
approach gives accurate solutions in a short time for examples with a quite simple
shape of the boundary. Some assumptions of the FMM may result in obtaining
incorrect solutions, especially for complex shapes of a boundary. Our research
has shown the need to modify the binary tree and to change the FMM algorithm
to consider assumptions mentioned above for complex shapes of a boundary.

The main goal of this paper is to present the modified binary tree in the FMM
used to accelerate numerical calculations in the PIES and to reduce utilization of
RAM for BVPs with complex shapes of a boundary. The efficiency and accuracy
of the proposed fast PIES are tested on 2D potential BVPs.

2 Formulation of the fast PIES method

Conventional PIES for 2D potential problems is presented by the following for-
mula [10]:

1

2
ul(s) =

n
∑

j=1

sj
∫

sj−1

U
∗

lj(s, s)pj(s)Jj(s)ds−
n
∑

j=1

sj
∫

sj−1

P
∗

lj(s, s)uj(s)Jj(s)ds, (1)
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where: l = 1, 2, ..., n, sl−1 ≤ s ≤ sl, sj−1 ≤ s ≤ sj , sl−1 and sj−1 correspond
to the beginning of l-th and j-th segment, while sl and sj to their ends, Jj(s) is
the Jacobian, n is the number of parametric segments that creates boundary of
domain in parametric reference system s and s (presented in Fig. 1).
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Fig. 1. Defining the shape of the boundary in the PIES on a straight line in parametric
reference system s, s

Integrands U
∗

lj(s, s) and P
∗

lj(s, s) in (1) are presented in the following form:

U
∗

lj(s, s) =
1

2π
ln

1
√

(

S(1)
)2

+
(

S(2)
)2

,

P
∗

lj(s, s) =
1

2π

S(1)n
(1)
j (s) + S(2) · n(2)

j (s)
(

S(1)
)2

+
(

S(2)
)2 ,

(2)

where: S(1) = S
(1)
l (s)−S

(1)
j (s) and S(2) = S

(2)
l (s)−S

(2)
j (s), n

(k)
j (s) (k = {1, 2})

are the components of normal vector to segment j. Expressions S
(i)
k (sn) {i =

1, 2}, {k = j, l}, sn = {s, s} are parametric functions (curves or lines), which
describe particular segments of a boundary (j or l), i is the number of coordinate
in Cartesian reference system.

Boundary functions uj(s) and pj(s) in (1) are approximated by the following
series:

uj(s) =
N
∑

k=0

u
(k)
j L

(k)
j (s), pj(s) =

N
∑

k=0

p
(k)
j L

(k)
j (s), (3)

where u
(k)
j and p

(k)
j are unknown or given values of boundary functions in defined

points of the segment j, N - is the number of terms in series, L
(k)
j (s) - are the

base functions (Lagrange polynomials).
The pseudospectral method was applied to solve the PIES (1). Therefore,

the PIES is transformed into the system of algebraic equations Ax = b. The
oldest implementation of the PIES uses Gaussian elimination with pivot to solve
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the system. Newer version, as well as the fast PIES, uses very fast and popular
iterative solver based on the generalized minimal residual method (GMRES)
[21]. Application of the FMM allows reducing computational time of matrix-
vector multiplication (frequently used by GMRES solver) from order O(N2) to
O(N). There is also no need to store in the RAM entire matrix [6].

2.1 The fast PIES procedures

The FMM in the fast PIES is composed of two main steps: the upward and the
downward pass (a full description is presented in [20]). The upward pass uses
procedures of kernels expansion and moment-to-moment translation, while in
the downward pass moment-to-local and local-to-local translations are applied.
The most important information about these procedures are described below.

Kernels expansion and multipole moments. The first procedure of the
fast PIES is an expansion of kernels in Taylor series. The direct inclusion of
the FMM [1] into the PIES is problematic due to the calculation of subsequent
derivatives of kernels (2) for the Taylor series approximation. In the paper [20],
the authors presented a modification of the PIES kernels by complex analysis.
The PIES with modified kernels have the following form [20]:

1

2
ul(s) =

n
∑

j=1

ℜ
{ sj

∫

sj−1

U
∗(c)

lj (τ , τ) pj (s) Jj (s)ds

}

−

−
n
∑

j=1

ℜ
{ sj

∫

sj−1

P
∗(c)

lj (τ , τ)uj (s) Jj (s)ds

}

,

(4)

where: ℜ - is the real part of complex number, the parametric functions, which
describe the shape of the boundary in the PIES, can be defined in complex

notation as τ = S
(c)
l (s) = S

(1)
l (s) + iS

(2)
l (s), τ = S

(c)
j (s) = S

(1)
j (s) + iS

(2)
j (s), (c)

- means complex variable and an indeterminate (the imaginary unit) i =
√
−1.

The complex form of kernels is as follows [20]:

U
∗(c)

lj (τ , τ) = − 1

2π
ln (τ − τ) , P

∗(c)

lj (τ , τ) =
1

2π

n(c)

τ − τ
, (5)

where n(c) = n(1) + in(2) - the complex notation of normal vector to the curve
created segment j.

We assume that the point sc (corresponding to the complex point τc) is close
to the observation point sob and the point sel (corresponding to the complex
point τel) is close to the collocation point scol (presented in Fig. 2). If |sob−sc| ≪
|scol−sc| and |τob−τc| ≪ |τcol−τc|, then kernels (5) can be expanded about the
point τc using the Taylor series expansion. Therefore, we obtained the multipole
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moments Mk (τc) and Nk (τc) [20]:

Mk(τc) =

sj
∫

sj−1

(τ − τc)
k

k!
pj (s) Jj (s)ds,

Nk (τc) =

sj
∫

sj−1

(τ − τc)
k−1

(k − 1)!
n(c)uj (s) Jj (s) ds

(6)

and the following form of approximated equation (4) [20]:

1

2
ul(s) =

n
∑

j=1

ℜ
{

1

2π

∞
∑

k=0

Uk (τ , τc)Mk (τc)

}

−

−
n
∑

j=1

ℜ
{

1

2π

∞
∑

k=1

Pk (τ , τc)Nk (τc)

}

,

(7)

where:

Uk (τ , τc) =

{

− ln (τ − τc) for k = 0
(k−1)!

(τ−τc)
k for k ≥ 1

, Pk (τ , τc) =
(k − 1)!

(τ − τc)
k

for k ≥ 1.

Moments are calculated once only and they are independent of τ (that is also
from s).

0

s'el scscol sob s,s

s1 s2 s3 snsk+i

sel s'c

sk.  .  . .  .  . .  .  .

M2ML2L M2L

Fig. 2. Location of specific FMM points in the parametric reference system

Moment-to-moment translation (M2M). Moments (6) can be very ef-
ficiently recalculated for new point s′c (corresponding to the complex point τ ′c)
close to the point sc (presented in Fig. 2) without reuse of integration. For this
purpose, moment-to-moment translation was used [20]:

Mk(τ ′c) =

k
∑

m=0

(τc − τ ′c)
(k−m)

(k −m)!
Mm(τc),

Nk(τ ′c) =

k
∑

m=0

(τc − τ ′c)
(k−m)

(k −m)!
Nm(τc).

(8)

Moment-to-local translation (M2L) and local expansion. The next
step of the fast PIES is local expansion around the point sel (corresponding
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to the complex point τel) (presented in Fig. 2). If |scol − sel| ≪ |sc − sel| and
|τcol − τel| ≪ |τc − τel|, then Uk and Pk in (7) can be expanded about the point
τel using the Taylor series expansion, hence [20]:

1

2
ul(s) =

n
∑

j=1

ℜ
{

1

2π

∞
∑

l=0

LU
l (τel, τc)

(τcol − τel)
l

l!

}

−

−
n
∑

j=1

ℜ
{

1

2π

∞
∑

l=0

LP
l (τel, τc)

(τcol − τel)
l

l!

}

,

(9)

where:

LU
l (τel, τc) =

{

− ln (τel − τc)M0(τc) +
∑

∞

k=1
(k−1)!·Mk(τc)

(τel−τc)
k for l = 0

(−1)l
∑

∞

k=0
(k+l−1)!·Mk(τc)

(τel−τc)
k+l for l ≥ 1,

LP
l (τel, τc) = (−1)l

∞
∑

k=1

(k + l − 1)! ·Nk(τc)

(τel − τc)
k+l

for l ≥ 1.

This procedure allows the transformation of moments collected at a point sc
(τc) to a local expansion point sel (τel) and is called moment-to-local translation
(M2L) [20].

During modelling complex shapes of the boundary, fulfilment of the condi-
tion |τcol − τel| ≪ |τc − τel| might be not possible to meet for some cells. The
results obtained in this case are subject to large errors. The authors of this paper
proposed the way of elimination such cases - in the FMM algorithm they are con-
sidered as neighbouring cells (a more detailed description of the neighbourhood
of the cell is described in section 2.3).

Local-to-local translation (L2L). Similarly to the M2M, moments at a
point sel (τel) can be efficiently recalculated for a nearby point s′el (corresponding
to the complex point τ ′el) (presented in Fig. 2). For this purpose, a transformation
called local-to-local (L2L) translation (similar to M2M) is used [20]:

LU
l (τ ′el, τc) = (−1)l

{

∞
∑

k=0

∞
∑

m=l

(k + m− 1)! ·Mk(τc)

(τel − τc)
k+m

· (τ ′el − τel)
m−l

(m− l)!

}

,

LP
l (τ ′el, τc) = (−1)l ·

{

∞
∑

k=1

∞
∑

m=l

(k + m− 1)! ·Nk(τc)

(τel − τc)
k+m

· (τ ′el − τel)
m−l

(m− l)!

}

.

(10)

2.2 Tree structure in the fast PIES

In classic FMM, the binary tree for 1D, quad-tree for 2D and octa-tree for 3D
problems are applied. In this paper, 2D problems are discussed, hence in classic
FMM implementation quad-tree presented in Fig. 3 [6] is used.

A square surrounding the entire domain of the problem (Fig. 3a) is called
level 0 cell. This cell is the parent of four cells of level 1 (so-called children cells)
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Fig. 3. a) Constructing the FMM tree in the FM-BEM, b) structure of obtained quad-
tree for 2D problem

obtained as a result of dividing the parent cell into four identical squares. Only
the cell crossing the boundary of the problem is considered to be a child cell.
The parent cell of level l (l ≥ 0) is divided into children cells of a level l + 1.
The division is performed until a predetermined number of elements are inside
a cell (in the example in Fig. 3a - max. 2 elements whose centre is marked as
a collocation point) or the assumed maximum level l has been reached. A cell
without a child is called a leaf. The quad-tree presented in Fig. 3b is obtained
in the described way. The presented method of the FMM tree construction is
applied, among others, in the FM-BEM [6].

In the PIES applied for the 2D problems, it is possible to implement a suit-
ably modified and improved binary tree. The improvement is related to the way
of defining problems in the PIES - the boundary of the problem is defined in
the 1D parametric reference system (presented in Fig. 1). It is a different way
of modelling the shape of a boundary than in the BEM. Also, the number of
segments describing the boundary in the PIES is smaller than the number of
elements in the BEM (see Fig. 4). It is connected with the way of defining the
shape of the boundary in the PIES [10].
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Fig. 4. a) Constructing the FMM tree in the PIES, b) classic binary tree for the 1D
problem, c) modified binary tree in the PIES for the 2D problem

The proposed binary tree structure assumes that the boundary is described
in the 1D reference system. A level 0 cell covers the entire boundary of the
problem (presented in Fig. 4a). This cell is the parent of two children cells of
level 1 obtained as a result of dividing the parent cell into two identical segments.
The parent cell of level l (l ≥ 0) is divided into children cells of a level l + 1.
The division is performed until a predetermined number of segments are inside
a cell (in the example in Fig. 4a - max. 2 segments) or the assumed maximum
level l has been reached. In the classic FMM, the binary tree for 1D problems
has the form presented in Fig. 4b. However, in the PIES 2D problem is reduced
to the 1D parametric reference system, hence the first and the last boundary
segment are very close to each other. Therefore, we propose to close the binary
tree in the form presented in Fig. 4c. For all levels, the first and the last cells
are treated as adjacent.

2.3 Algorithm of solving the fast PIES

The algorithm of the PIES with modified kernels proceeds in several steps (flow
chart presented in Fig 5). The first step after initialization of the algorithm is
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to determine the structure of the modified binary tree. Then right-hand sided
vector b is computed and GMRES is called to find solution of Ax=b. These
procedures uses the modified fast multipole algorithm presented in Alg.1. At the
end of algorithm results are presented on the screen and written to the output
file.

START:
read in

input data

The modi�ed
tree

construc�on

Right-hand
sided vector b
computa�on

Find solu�on
of Ax=b

by GMRES

Output
results:
STOP

upward pass

downward pass

upward pass

downward pass

Fig. 5. Flow chart for the fast PIES

The first run of the fast multipole procedure is used for calculating the right-
hand sided vector b. The fast multipole procedure is composed of two steps: the
upward pass and the downward pass. At the upward pass, all moments in leaves
are calculated (line 4 in Alg.1) for the level lev. Then, tracing the tree structure
upward, moments in all parent cells are calculated up to level 2 using M2M (line
6).

In the downward pass, we trace the tree structure downward, and previously
calculated moments are used in calculations. First of all, we should remind cells
neighbourhood to clarify this step [20]. Two cells are adjacent at level i, if they
have a common end at level i. Two cells are well − separated at level i, if they
are not adjacent at level i, but their parent cells are adjacent at level i− 1. The
interaction list of cell K−th is the list of cells well−separated from cell K−th

at level i. At last, two cells are far cells, if their parent cells are not adjacent.

In modelling complex shapes of the boundary, we should modify the FMM
algorithm described in [20] due to the possibility of too small distance between
cells with τc and τel points, hence the assumption of |τcol − τel| ≪ |τc − τel|
used for the M2L translation is not fulfilled. The authors of this work propose to
modify the algorithm by marking such cells as adjacent and not to enter them
on interaction list (calculations are performed as in the case of adjacent cells).
Including this modification to the fast PIES, solutions with the same accuracy
as in conventional PIES are obtained.

Starting from level 2 and tracing the tree structure downward to all leaves co-
efficients of local expansion (the line 24 in the Alg. 1) are computed. Coefficients
at cell K − th at level i are computed as the sum of two elements: contributions
from all far cells (computed using L2L - the line 13) and from the cells in the
interaction list of cell K − th (computed using M2L - the line 20). There are no
far cells to a cell K at level 2, therefore only M2L is used to compute coefficients.
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Algorithm 1 Modified fast multipole procedure

Require:

lev - the number of tree levels
min ci - the lowest number of a cell on the level i
max ci - the highest number of a cell on the level i
//upward pass

1: for i← lev to 2 do

2: for icell← min ci to max ci do

3: if i == lev then

4: multipole moments(icell)
5: else

6: moment expansion(icell)
7: end if

8: end for

9: end for

//downward pass
10: for i← lev to 2 do

11: for icell← min ci to max ci do

12: if i 6= 2 then

13: local to local(icell)
14: end if

15: for jcell← min ci to max ci do

16: if parent(icell) & parent(jcell) are neighbours then

17: if (cell(icell) & cell(jcell) are neighbours) || !(|τcol − τjcell| ≪ |τicell −
τjcell|) then

18: direct(icell, jcell)
19: else

20: moment to local(icell, jcell)
21: end if

22: end if

23: end for

24: local expansion(icell)
25: end for

26: end for

Contributions from adjacent cells of leaf K at the lowest level are computed di-
rectly (line 18), as in conventional PIES. Finally, the FMM procedure produces
a right-hand vector b.

To solve the system of algebraic equations Ax=b, iterative GMRES solver
is used. The method requires the application of multiplication of the matrix A
by the vector of unknowns x, therefore the solver can be directly integrated with
the fast PIES. The FMM in GMRES is performed in the same way as for vector
b.
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3 Tests of the fast PIES with modified binary tree

In the paper [20], the authors presented preliminary results of the fast PIES
solutions. However, solving the problem presented in this paper by the fast PIES
without modification of the binary tree gives unsatisfactory results. Obtained
solutions were far from expected.

The problem of temperature distribution (modelled by Laplace’s equation)
in heat-sink is considered. The shape of the boundary and boundary conditions
are shown in Fig. 6. The boundary is composed of 716 linear segments. The
same number of collocation points (from 4 to 8) is defined on each segment,
and finally, we should solve the system of 2864 to 5728 algebraic equations. The
problem is solved by conventional and fast PIES. PC based on Intel Core i5-
4590S with 8 GB RAM and g++ 7.4.0 compiler with -O2 optimization on 64-bit
Linux operation system (Ubuntu, kernel 5.0.0) and LAPACK 3.10.3 library is
used during tests.

Fig. 6. The shape of considered heat-sink

First of all, a comparison of CPU time and RAM utilization between a differ-
ent number of the modified tree levels in the fast PIES is performed to find the
optimal value of tree levels. Taylor series composed of 25 terms approximated the
fast PIES kernels. The value of tolerance (convergence criterion) of the GMRES
was equal to 10−8.

As can be seen from Figure 7, both CPU time and memory utilization de-
crease with the growing number of tree levels reaching the minimum value for a
tree with 5-6 levels regardless of the number of collocation points. In our studies,
the tree with 6 levels is adopted.

The research involved a comparison of the speed and RAM utilization be-
tween conventional, the fast PIES and the fast multipole BEM (application from
[6]). In the fast multipole BEM two meshes are used: 2864 and 5728 elements.
The value of tolerance (convergence criterion) of the GMRES and the number
of terms in Taylor series are the same as previous, i.e. 10−8 and 25 respectively.
Solutions are presented for two versions of conventional PIES (PIESd with direct
solver (Gaussian elimination method) and PIESi with iterative solver GMRES),
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Fig. 7. Influence of the number of tree levels on a) computational time, b) RAM
utilization of the fast PIES

the fast PIES (fPIES) and the fast multipole BEM (the fmBEM). The accuracy
of the solutions is calculated as the mean square error (MSE) between the results
of conventional (PIESd) and the fast PIES (P-P) and the fast PIES and the fast
multipole BEM (P-B).

Table 1. Comparison of computational time and RAM utilization between the fast
multipole BEM, conventional and the fast PIES with modified binary tree.

Number of CPU time [s] RAM utilization [MB] MSE

col. pts eqs fPIES PIESd PIESi fmBEM fPIES PIESd PIESi fmBEM P-P P-B

4 2864 4.63 30.10 27.82 9.56 40.96 254 175 105.9 2.31e-10 0.051
5 3580 7.28 53.58 45.07 - 58.25 395 207 - 1.54e-10 -
6 4296 10.43 94.17 67.20 - 78.08 567 297 - 2.04e-10 -
7 5012 14.44 140.94 98.49 - 98 770 398 - 2.29e-10 -
8 5728 19.69 214.57 128.66 46.18 124 1005 517 107.5 2.18e-10 0.063

As can be seen from Tab. 1, the fast PIES is significantly faster than both
versions of conventional PIES and about 2 times faster than the fast multipole
BEM. The fast PIES also needs up to 4 times less RAM than the PIESi and
about 8 times less than the PIESd. Obtained solutions are practically the same
as in conventional versions of the PIES - MSE between the PIESd and the fast
PIES does not exceed 2.31 ·10−10. The MSE between the fast PIES and the fast
multipole BEM has higher value. However, our previous studies proved that the
PIES is more accurate than the BEM.

Graphical comparison of CPU time and RAM utilization between all the
PIES methods is presented in Fig. 8.

4 Conclusions

The paper presents the fast PIES based on the FMM with the modified binary
tree in solving potential BVPs with complex shapes. The proposed modified
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Fig. 8. Comparison of a) CPU time, b) RAM utilization between conventional and the
fast PIES

binary tree is built based on the 1D parametric reference system. Such mod-
ification of the tree in the fast PIES allows obtaining very accurate solutions
for engineering problems with complex shapes on standard PC in a short com-
putational time. It also allows solving problems in which the condition of the
appropriate distance between the centres of the leaves is not fulfilled.

The numerical test shows a reduction of the computation time and RAM
utilization of the fast PIES compared to conventional ones as well as the fast
multipole BEM. The speed-up of computations between the fast and conven-
tional PIES increases with the size of solving problem, while the accuracy of
solutions is almost the same.
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