
Eigen-AD: Algorithmic Differentiation of the
Eigen Library

Patrick Peltzer, Johannes Lotz, and Uwe Naumann

Informatik 12: Software and Tools for Computational Engineering, RWTH Aachen
University, 52056 Aachen, Germany; Email: info@stce.rwth-aachen.de

Abstract. In this work we present useful techniques and possible en-
hancements when applying an Algorithmic Differentiation (AD) tool to
the linear algebra library Eigen using our in-house AD by overloading
(AD-O) tool dco/c++ as a case study. After outlining performance and
feasibility issues when calculating derivatives for the official Eigen re-
lease, we propose Eigen-AD, which enables different optimization options
for an AD-O tool by providing add-on modules for Eigen. The range of
features includes a better handling of expression templates for general
performance improvements as well as implementations of symbolically
derived expressions for calculating derivatives of certain core operations.
The software design allows an AD-O tool to provide specializations to
automatically include symbolic operations and thereby keep the look
and feel of plain AD by overloading. As a showcase, dco/c++ is provided
with such a module and its significant performance improvements are
validated by benchmarks.
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1 Introduction

In this work, the C++ linear algebra library Eigen1 is used as a base software
implementing linear algebra operations for which derivatives are to be com-
puted using Algorithmic Differentiation (AD) [6,10] by overloading. Derivatives
of computer programs can be of interest, e.g. when performing uncertainty quan-
tification [18], sensitivity analysis [1] or shape optimization [4]. AD enables the
computation of derivatives of the output of such programs with respect to their
inputs. This is done using the tangent model in tangent mode or the adjoint
model in adjoint mode, where the latter is also known as adjoint AD (AAD).
In AAD, the program is first executed in the augmented primal run, where re-
quired data for later use is stored. Derivative information is then propagated
through the tape in the adjoint run. For both, tangent and adjoint, the underly-
ing original code is called the primal, and the used floating point data type and
its variables are called passive. Vice versa, code where derivatives are computed
and its respective data type and variables are called active.

1 http://eigen.tuxfamily.org
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A wide collection of AD tools can be found on the community website2. In
general, one can divide the available software into source transformation and
operator overloading tools. While source transformation essentially has the po-
tential to create more efficient code, supporting complex language features like
they are available in C++ is connected to higher expense for the tool authors.
AD by overloading (AD-O) on the other hand can be applied to arbitrary code
as long as operator overloading is supported by the programming language. In
terms of AD-O, the recorded data in the augmented primal run is referred to as
the tape, and creating the tape is called taping. The propagation in the adjoint
run is known as interpreting the tape.

Applying an AD-O tool to dedicated libraries poses a significant issue, as by
principle they require the usage of an extended floating point data type (from
now referred to as the custom AD data type). This change in data type is often
impractical and breaks hand tuned performance gains [3]. Therefore, software
combining AD-O and linear algebra has been realized with, e.g. Adept [7] or the
Stan Math Library [2], where the latter makes heavy use of Eigen. Eigen allows
the direct utilization of AD-O tools due to its extensive use of C++ templates.
At a later point in this paper, concrete implementations and benchmarks for
AD-O in Eigen will be presented using dco/c++, which is an AD-O tool actively
developed by NAG Ltd.3 in collaboration with RWTH Aachen University.

To our best knowledge, there has not been a work focusing on the application
of an AD-O tool to Eigen while preserving the philosophy of plain AD-O. The
goal is that the AD-O tool user benefits from optimizations without explicitly
being aware of them. Swapping the data type of Eigen and using the AD-O tool
as usual should be all that is required to compute derivatives. However, several
problems concerning performance and feasibility of the derivative computation
will arise from this concept. This work proposes approaches and solutions to
overcome them.

The next section provides more background on AD-O and also introduces
the concept of symbolic derivatives. Section 3 presents Eigen-AD which is a fork
of Eigen. It contains several optimizations and improvements for the application
of an AD-O tool, which are demonstrated and benchmarked using dco/c++ in
Section 4. Section 5 summarizes the results and suggests possible future works.

Note than an extended version of this work exists [13]; refer to it for further
details.

2 Using AD-O and Symbolic Derivatives

Most of the performance improvements presented at a later point in this paper
are based on symbolic differentiation (SD), in which derivatives are evaluated
analytically at a higher level than with AD. This section demonstrates the dif-
ferences between evaluating derivatives symbolically and with AD-O by using
the matrix-matrix product C = AB with A,B ∈ R2×2 as an example.

2 http://www.autodiff.org/
3 https://www.nag.co.uk/
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Let this specific product kernel be implemented using Eigen as follows:

1 template<typename T>
2 void matmul ( const Matrix<T,2,2>& A, const Matrix<T,2,2>& B,

Matrix<T,2,2>& C) {
3 f o r ( i n t i =0; i <2; i++)
4 f o r ( i n t j =0; j <2; j++)
5 f o r ( i n t k=0; k<2; k++)
6 C( i , j ) += A( i , k ) ∗B(k , j ) ;
7 }

Listing 1.1. 2× 2 matrix-matrix multiplication kernel.

The primal code is called using the passive data type double as template argu-
ment T. For an active evaluation, the function must be called using the custom
AD data type of an AD-O tool as T. As mentioned in the previous section, the
AD-O tool first performs the augmented primal run when in adjoint mode. Both,
the += and the ∗ operators in line 6, are overloaded by the tool and act as the
entry points for taping. The tape is an implementation dependent representa-
tion of the computational graph of the program, which contains all performed
computations and their corresponding partial derivatives. Fig. 1 displays the
computational graph of the matrix-matrix multiplication kernel in Listing 1.1.
Vertices represent variables accessed in the augmented primal run, including
temporary instantiations from the ∗ operator in line 6 (denoted as z). The edge
weights are the partial derivatives of the respective computations. In the ad-
joint run, the graph is traversed in reverse order, propagating the adjoint value
of the output towards the inputs. This is done by multiplying subsequent edge
weights and adding parallel edge weights. Effectively, the loops of Listing 1.1 are
executed in reverse order; derivatives are computed on scalar level.

In contrast to the differentiation of all occurring scalar computations, it may
also be possible to rewrite the derivative using matrix expressions so that deriva-
tives are computed on matrix level. Staying with the example above, the adjoint
propagation on the computational graph in Fig. 1 can be written as follows:

Ā0,0 = C̄0,0B0,0 + C̄0,1B0,1

Ā0,1 = C̄0,0B1,0 + C̄0,1B1,1

Ā1,0 = C̄1,0B0,0 + C̄1,1B0,1

Ā1,1 = C̄1,0B1,0 + C̄1,1B1,1

⇒ Ā = C̄BT (1)

B̄0,0 = C̄0,0A0,0 + C̄1,0A1,0

B̄0,1 = C̄0,1A0,0 + C̄1,1A1,0

B̄1,0 = C̄0,0A0,1 + C̄1,0A1,1

B̄1,1 = C̄0,1A0,1 + C̄1,1A1,1

⇒ B̄ = AT C̄ (2)

Adjoint values are denoted with a bar. Equations (1) and (2) compute the ad-
joints of the input data using matrix-matrix multiplications. Using these equa-
tions, it is not necessary to tape any computations in Listing 1.1. Instead, the
adjoints can directly be computed in the adjoint run on matrix level as long as
the values of the input data are available.
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Fig. 1. Computational graph for the 2 × 2 matrix product kernel displayed in
Listing 1.1: Vertices represent variables accessed in the augmented primal run,
edges define computation operands and edge weights are the respective partial
derivatives. Temporaries z storing the results of the ∗ operator in line 6 may be
optimized away by an AD-O tool when taping.

3 Eigen-AD

Applying an AD-O tool to Eigen will lead to severe limitations sooner or later.
Eigen comes with optimized kernels, e.g. for 8-byte double precision data. Tradi-
tionally, custom AD data types are larger and these optimizations do not work
anymore. Regarding AAD application, the complexity of many frequently used
linear algebra operations scales cubically with the input dimension. This is the
case for, e.g. matrix decompositions or matrix products. Since the memory re-
quired by the tape scales roughly linearly with the number of operations required
by an algorithm, the tape size can quickly exceed the amount of available RAM
and therefore makes an evaluation of the derivatives not feasible at all.

To overcome these issues, the Eigen source code has been adjusted and ex-
tended to help optimize the application of AD-O tools. The resulting software
has been named Eigen-AD. All source code changes are generically written and
do not modify the original Eigen API, but provide entry points which can be
used by additional modules. Based on that, we have added a generic Eigen-AD
base module which provides a clean interface for developers to control and im-
plement optimized operations in their tool specific AD-O tool module. Refer to
Fig. 2 for the package architecture.

The existing Eigen test system has been extended so that every Eigen test
can also be performed for an AD-O tool’s tangent and adjoint data types. Com-
piling and running the tests successfully ensures compatibility of the AD-O tool
with all of the tested Eigen functions. The philosophy is that an AD-O tool
is able to determine derivatives of all Eigen operations algorithmically, while
selected operations are provided with optimized computations for their deriva-
tives. Another aim is to keep the look and feel of AD-O, i.e. optimizations and
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Fig. 2. Eigen-AD package architecture: Authors can implement an AD-O tool
module for their AD-O tool.

improvements shall not require a separate interface but be used automatically
whenever the AD-O tool is applied.

The next sections present optimization approaches realized in Eigen-AD.

3.1 Nesting Expression Templates

The concept of expression templates was originally proposed to eliminate tem-
poraries when evaluating vector and matrix expressions and to be able to pass
algebraic expressions as arguments to functions [16]. The first aspect, also known
as lazy evaluation, has been complemented by the concept of Smart Expression
Templates [8] which both are implemented in Eigen.

In the context of AD, using expression templates is especially relevant, since
every temporary contributes to the computational graph as it was also demon-
strated in Fig. 1 in Section 2. In the AAD case, the computational graph needs to
be stored in memory and is then traversed in the reverse run, increasing memory
and run time requirements with each additional temporary. This can be avoided
by constructing expression templates for the right hand side of the assignment
and evaluate them altogether. Therefore, some AD-O tools also implement an
expression template mechanism, e.g. dco/c++ or Adept [12,7].

When applying such an AD-O tool to Eigen, both expression template en-
gines are nested, where the AD-O tool layer is accessed by the scalar operations
of Eigen. This is not an intended use case for Eigen, and therefore Eigen is not
aware that it may receive template expressions. The returned template expres-
sion is then implicitly casted back to the custom AD data type, resulting in a
temporary which must be considered for the derivative evaluation. This destroys
the gains originally made by using expression templates in the AD-O tool.

As an example, consider the unary minus operator, implemented in Eigen as a
functor named scalar opposite op. Its class template parameter Scalar corresponds
to the custom AD data type and it is also used in the parenthesis operator as
the in- and output types. An assignment of the form A = −B, where A and
B are Eigen 1 × 1 matrices containing a single scalar of the adjoint data type,
will result in an additional vertex in the computational graph, analogous to the
temporaries z of the computational graph in Fig. 1.

When looking at the way the Eigen functors are used, it is not necessary to
explicitly prescribe what types they return. Due to Eigen’s generic design and
as long as the occurring types are compatible – meaning the required casts/spe-
cializations/overloads are available – there is no need to force the scalar type
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at this level. This is a fitting case to use the C++-14 feature of auto return type
deduction which allows a function to deduce the return type from the operand
of its return statement. Therefore, replacing the return type of the functors with
the auto keyword allows the passing of expression types from the AD-O tool
to the Eigen internals. Besides that, it must be ensured that the functors al-
low arbitrary input types, as they can now be called with expression types as
parameters as well.

Evaluating the modified scalar opposite op functor will avoid the additional
vertex in the computational graph. This optimization can be applied to all Eigen
scalar functors and also to several Eigen math functions like sin or exp which
are supported by the AD-O tool’s expression templates.

3.2 Symbolic Derivatives

As introduced in Section 2, mathematical insight can be exploited to evaluate a
derivative symbolically. Such an evaluation can be superior to the AD-O solution
in terms of performance, run time-wise and also memory-wise in the adjoint case.
This observation motivates the inclusion of symbolic derivatives for certain linear
algebra routines, yielding a hybrid implementation [9].

The Eigen-AD base module provides an interface for AD-O tool developers
to implement symbolic derivatives. At the moment, entry points for products as
well as for any computation concerning a dense solver are supported. Refer to
the Eigen-AD base module technical guide for further information. In the next
sections, equations for symbolic adjoints of selected operations are introduced.

SD Dense System Solver Consider the system of linear equations:

Ax = b (3)

where A ∈ Rn×n is the system matrix, b ∈ Rn is the right hand side vector and
x ∈ Rn is the solution vector. There exists a wide variety of approaches to solve
the problem shown in Equation (3) which make use of decomposing the matrix
A into a product of other matrices, e.g. the LU decomposition. Eigen offers one
dense solver class for each decomposition type.

AAD for the solution of a system of linear equation includes the taping and
the interpretation of the decomposition, which yields a run time and memory
overhead of O(n3). However, when evaluating the adjoints symbolically using
Equations (4)-(5) as presented in [5], the decomposition is completely excluded
from taping and interpreting.

AT · b̄ = x̄ (4)

Ā = −b̄ · xT (5)

As it can be seen, the adjoint values of the right hand side vector b can be
determined by solving an additional linear system. By saving the computed
decomposition of A in the augmented primal run, it can then be reused in the
adjoint run. This reduces the run time and memory overhead for differentiating
to O(n2) [11].
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Symbolic Inverse Inverting a matrix, i.e. computing

C = A−1 (6)

is implemented in Eigen as a member function of a dense solver. Corresponding
adjoints can be computed using Equation (7) [5].

Ā = −CT C̄CT (7)

Compared to AAD, the memory overhead is reduced to O(n2); however, the
adjoint run still has a run time overhead of O(n3) due to the matrix multiplica-
tions.

Symbolic Log-Abs-Determinant Another member function of the dense
solvers is the computation of x ∈ R using the log-abs-determinant of a ma-
trix A ∈ Rn×n as shown in Equation (8). Such a computation is relevant for,
e.g. computing the log-likelihood of a multivariate normal distribution.

x = log |det(A)| (8)

Ā = A−T x̄ (9)

Equation (8) is implemented in Eigen for the QR dense solvers, and adjoints can
be computed according to Equation (9) [14]. The inverse can be computed by
reusing the decomposition which was kept in memory for the adjoint run. While
the run time overhead is still O(n3), the symbolic implementation improves the
memory overhead to O(n2).

Symbolic Matrix-Matrix Product For A ∈ Rn×m, B ∈ Rm×p, C ∈ Rn×p,
the adjoints of the matrix-matrix product in Equation (10) can be computed
using Equations (11)-(12) according to [5].

C = AB (10)

Ā = C̄BT (11)

B̄ = AT C̄ (12)

Note that this matches the results derived in Section 2 for the 2 × 2 matrix-
matrix product. While differentiating the matrix-matrix product with AAD has
a run time and memory complexity of O(nmp), utilizing the symbolic evaluation
reduces the memory overhead to O(nm+mp). The input matrices A and B must
be saved in the augmented primal run and then be multiplied with the adjoint
values of the output according to Equations (11)-(12) in the adjoint run. Note
that the run time complexity can not be improved using the symbolic evaluation.
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Fig. 3. Tape size comparison between AD and SD solvers: All new symbolic
implementations have a memory complexity of O(n2) compared to O(n3) of the
algorithmic versions.

4 Benchmarks

As mentioned in the beginning of this paper, an Eigen-AD tool module has
been implemented for dco/c++. In order to verify the implementation, extensive
measurements were made. They were performed using a single thread on an i7-
6700K CPU running at 4 GHz with AVX2 enabled and 64 GB RAM available for
the tape recording, using the g++ 7.4 compiler on Ubuntu 18.04. The respec-
tive linear algebra operations were performed for increasing matrix size n using
dynamic-sized quadratic matrices Rn×n and one evaluation of the first-order ad-
joint model was computed with all output adjoints set to 1. The inverse () results
shown here use the underlying PartialPivLU, the logAbsDeterminant() function the
FullPivHouseholderQR solver. From now on, the dco/c++ Eigen module is referred
to as dco/c++/eigen, and computations which are not using symbolic implemen-
tations but only plain overloading are denoted as algorithmic or as AD.

4.1 dco/c++/eigen benchmarks

In this section, the theoretical considerations from Section 3.2 are validated with
benchmarks. To emphasize the improvements, reference measurements for the
corresponding algorithmic computations without the dco/c++/eigen module are
given where appropriate.

Memory consumption All symbolic evaluations introduced in Section 3.2
lower the memory overhead introduced by an AD-O tool to O(n2). In order to
visualize this effect, the tape size of dco/c++ has been measured for the algorith-
mic and for the symbolic implementations and is displayed in Fig. 3. For clarity
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Fig. 4. Total run times and run times of the adjoint run of the new symbolic
operations: As described in Section 3.2, the symbolic solve(b) function improves
the run time complexity of the adjoint run to O(n2) and effectively cancels the
AD overhead compared to the O(n3) primal run time complexity. The other
symbolic operations still have the same run time complexity of the adjoint run
as the primal code, but are noticeably faster.

reasons, only selected dense solvers are shown in Fig. 3a, but similar patterns
were measured for the other solvers as well. The symbolic implementations keep
a complete primal solver in memory which is accounted with a n× n matrix on
the tape. Since the symbolic logAbsDeterminant() function does not require any
additional data, it has the same memory usage as its corresponding solver. The
symbolic inverse () function additionally saves the transposed input matrix, the
symbolic matrix-matrix product stores the two input matrices.

As it was expected, all new implementations have a memory complexity of
O(n2), while the algorithmic versions display a cubic behaviour and quickly
exceed the amount of available RAM.

Run time analysis Fig. 4 visualizes the run time measurements for the sym-
bolic operations, split into total execution time and run time of the adjoint
section. As stated in Section 3.2, solving a system of linear equations reduces
the adjoint run time to O(n2), which is confirmed by the measured run times
in Fig. 4a. All other symbolic evaluations do not lower the complexity, since
a matrix-matrix product or an inverse must be computed in the adjoint run.
However, as it can be inferred from the gap between total and adjoint run times
in Fig. 4b, the overhead introduced by the adjoint run is rather moderate.

Comparison to primal operations To put the symbolic run times into per-
spective, the primal run times have been recorded as well. Comparing them both
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Fig. 5. Run time relation symbolic to primal operations: The run time overhead
for the symbolic solve(b) implementation vanishes for larger matrices as all fac-
tors converge towards 1. For the other symbolic operations, the overhead does
not vanish but still appealing factors are achieved.

by computing the factor between the respective run times is a good measure to
assess the performance of the derivative computation. The results are displayed
in Fig. 5.

In contrast to the previous run time analysis, we now compare to the pri-
mal code which is highly optimized. Beside the overhead introduced by the AD
adjoint section, additional copy instructions are performed in the augmented
primal run by the symbolic operations. Due to the convenient fact that the sym-
bolic solve(b) evaluation reduces the run time overhead to O(n2), all solvers will
converge towards a factor of 1 with increasing matrix size, since the ratio is
dominated by the O(n3) primal code. However, as it can be seen in Fig. 5a, the
conversion rate depends on the specific solver. For the other symbolic operations,
the run time complexity of the adjoint run can not be improved, which makes a
factor of 1 impossible. Instead, the factor depends on the additional computa-
tions performed in the adjoint run. For the presented symbolic evaluations, an
obtainable factor between 2 and 3 is reasonable. Fig. 5b shows a corresponding
convergence pattern.

Generically speaking, for very fast primal operations – like the optimized
Cholesky LLT solver or the matrix-matrix product – it is hard to achieve good
factors for smaller input dimensions due to the additional copy overhead in-
troduced by the symbolic implementation. In contrast to that, operations with
higher computational costs – like the JacobiSVD decomposition or the logAbsDet()

function – are dominated by the primal code run time-wise and no significant
overhead from the AAD code can be measured even for small matrices.
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4.2 Comparison to other AD-O tools

To put the above given measurements into perspective, it is reasonable to com-
pare them to results from other AD-O tools. The following tools were considered:

– Adept[7]

– ADOL-C[17]

– CoDiPack[15]

– FADBAD++ 2.04

– Stan Math Library [2]

All tools evaluate a matrix-matrix product of two randomly filled Rn×n matrices.
One evaluation of the first order adjoint model is performed using plain AD-O
of the Eigen library or using the tool’s special API if available. Since Stan only
provides a grad() function, its benchmark was modified to compute the scalar
value z = (A∗B).sum() and the corresponding gradient of z. All of the following
results were produced using Eigen-AD. However, internal benchmarks have not
shown a considerable difference to the standard Eigen version.

It must be said that the shown run times do not imply the feasibility of the
tools in general, since they are all designed with different use cases and restric-
tions in mind. They were utilized to our best knowledge, but no tool specific
experts were involved in these measurements. While dco/c++/eigen provides its
best performance with this setup, we believe that other tools can be optimized by
their developers to get similar results. Therefore, the given results only represent
the current situation and are likely to change in the future.

The measured run times are displayed in Fig. 6. Note that the notion dco/c++
refers to plain overloading, and the remark auto only describes the usage of the
dco/c++/eigen module without any symbolic implementations, i.e. only with
the optimization from Section 3.1 in place. In contrast to that, full names the
default behaviour when using the module, with the auto return type deduction
and symbolic implementations enabled.

All non-specialized tools show the same computational complexity. Differ-
ences are non-negligible, though. The feasibility of the auto return type de-
duction of dco/c++/eigen introduced in Section 3.1 can be observed, since the
smaller amount of temporaries speeds up the computation. In contrast to the
other general purpose AD-O tools, Adept also allows the computation of a
matrix-matrix product using the matmul function from its API. In this case,
no Eigen is used but instead the storage types defined by Adept. As it can be
expected, this specially designed feature from Adept is faster than the general
AD-O tool approach. This also applies to Stan, although in this case it really
is plain AD-O using Eigen storage types. Stan specializes a few Eigen functions
such that it internally evaluates optimized matrix-vector products for matrix-
matrix products.

4 http://www.fadbad.com/fadbad.html
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Fig. 6. Run time comparison of different AD-O tools for the matrix-matrix
product: Besides plain algorithmic overloading versions, Adept and Stan also
offer optimized functions via their API (denoted by parenthesis).
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Fig. 7. Algorithmic and sym-
bolic solve(b): Due to saving of
the whole decomposition object,
dco/c++/eigen achieves a faster
run time than Stan.

Referring to the insight gained in Sec-
tion 3.2, symbolic evaluations have the po-
tential to drastically improve the perfor-
mance of AD application. In the case of the
matrix-matrix product, actual computations
are made using the passive data type and
profit from all optimizations in Eigen, while
only two additional matrix-matrix products
need to be evaluated in the adjoint run. This
explains why dco/c++/eigen as well as the im-
plementation in the multiply function of Stan
drastically outperform all other tools.

Since Stan provides optimized linear al-
gebra functions using Eigen, another bench-
mark was performed for solving a dense sys-
tem. Stan offers a mdivide left(A,b) function to
solve a system of linear equations which inter-
nally will always use the ColPivHouseholderQR

decomposition. Therefore, the algorithmic
and the dco/c++/eigen measurements dis-
played in Fig. 7 also utilize this solver class.
While Stan uses the same symbolic eval-
uation from Equations (4)-(5), it performs
another decomposition in the adjoint run.
dco/c++/eigen on the other hand keeps the decomposition from the augmented
primal run in memory and reuses it later. While Stan keeps the AAD run time
overhead dco/c++/eigen at O(n3), the implementation in dco/c++/eigen im-
proves it to O(n2).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_51

https://dx.doi.org/10.1007/978-3-030-50371-0_51


Eigen-AD: Algorithmic Differentiation of the Eigen Library 13

5 Conclusion & Outlook

In this work, we have have outlined challenges which occur when calculating
derivatives for linear algebra operations using an AD-O tool with the Eigen
library. To overcome these issues, the modified library fork Eigen-AD was devel-
oped, aimed at authors of AD-O tools to help them improve the performance of
their software when applying it to Eigen. Changes to the Eigen source code were
kept generic and entry points are provided for a general Eigen-AD base mod-
ule which can be utilized by an individual AD-O tool module via a dedicated
API. Care was taken to realize the improvements via C++ specializations, which
keep the look and feel of plain AD-O. General performance improvements were
made regarding the usage of expression templates by the AD-O tool and specific
operations can now be reimplemented conveniently by an AD-O tool module in
order to provide symbolic implementations.

As a showcase, such a module has been implemented for the AD-O tool
dco/c++, where important linear algebra operations like the matrix-matrix prod-
uct or solving of a linear system are differentiated symbolically. Benchmarks
have validated the theoretical considerations and underlined the improvements in
computational complexity regarding run time and memory usage. It was shown
that AD-O tool modules can cancel the AAD overhead for dense solvers with
a corresponding implementation and comparisons with other AD-O tools were
made to put the produced results into context which further confirmed the im-
provements.

Eigen-AD is publicly available5 and other AD software authors are welcome
to provide a module for their AD-O tool which can be included in the fork as
well as participate in the future development. Investigation into more parts of
Eigen are planned in order to extend the Eigen-AD API. Furthermore, there
has been communication with the Eigen development team and best efforts were
made to keep changes to the Eigen source as general as possible. In combination
with the modular setup regarding the Eigen-AD base module and individual tool
modules, a partial integration of the changes into future Eigen versions should
be discussed.

All in all, this work has shown the potential of adjusting a linear algebra
library to optimize the evaluation of derivatives using an AD-O tool. In the
case of Eigen, relatively small changes to its source code allow to provide a
general API which can be utilized by other AD-O tools and provide a superior
performance compared to ordinary AD-O.

5 https://gitlab.stce.rwth-aachen.de/stce/eigen-ad
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