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Abstract. Leveraging protein-protein interaction networks to identify groups of 

proteins and their common functionality is an important problem in 

bioinformatics. Systems-level analysis of protein-protein interactions is made 

possible through network science and modeling of high-throughput data. From 

these analyses, small protein complexes are traditionally represented graphically 

as complete graphs or dense clusters of nodes. However, there are certain graph 

theoretic properties that have not been extensively studied in PPI networks, 

especially as they pertain to cluster discovery, such as planarity. Planarity of 

graphs have been used to reflect the physical constraints of real-world systems 

outside of bioinformatics, in areas such as mapping and imaging.  

Here, we investigate the planarity property in network models of protein 

complexes. We hypothesize that complexes represented as PPI subgraphs will 

tend to be planar, reflecting the actual physical interface and limits of components 

in the complex. When testing the planarity of known complex subgraphs in S. 

cerevisiae and selected mammalian PPIs, we find that a majority of validated 

complexes possess this planar property. We discuss the biological motivation of 

planar versus nonplanar subgraphs, observing that planar subgraphs tend to have 

longer protein components. Functional classification of planar versus nonplanar 

complex subgraphs reveals differences in annotation of these groups relating to 

cellular component organization, structural molecule activity, catalytic activity, 

and nucleic acid binding. These results provide a new quantitative and 

biologically motivated measure of real protein complexes in the network model, 

important for the development of future complex-finding algorithms in PPIs. 

Accounting for this property paves the way to new means for discovering new 

protein complexes and uncovering the functionality of unknown or novel 

proteins.  

Keywords: planar graphs, PPI networks, protein complexes, DDI networks 

1 Introduction 

1.1 A Brief History and Motivation 

In the early stages of bioinformatics research, many studies focused on data generation 

approaches along with standard analysis of this data, to take advantage of the rapid 

advancement of biomedical technologies. The lack of data availability in the early days 

of bioinformatics meant that every attempt was made to take full advantage of all 
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available data. These large, aggregated databases make datasets from multiple research 

groups and experiments available but has also led to certain practices that impedes the 

quality of the data if attention is not paid to details of the dataset provenance. Such 

practices include aggregation of data collected under different experimental conditions 

or incorporating relationships obtained via prediction rather than observed experiments.  

Recently, with the massive explosion of available data in the bioscience and medical 

domains, the attention has shifted towards a focus on validation, data quality, and in-

depth data analysis.  To achieve these objectives, there is a need to develop advanced 

validation mechanisms to assess the quality of the large currently available biological 

data.  We posit that an important step in this direction is to study underlying properties 

or features associated with current datasets and use these futures to validate the various 

databases and assess the quality of their data items.  In this work, we explore how 

studying the underlying structural properties of biological networks can lead to a better 

understanding of the nature of the network data. In particular, we look into the impact 

of the physical aspects that are associated with protein interaction networks and how 

the physical restrictions of the interactions enforce certain properties in such networks. 

Our primary hypothesis is that protein complexes are likely to form planar underlying 

structures when represented as a subgraph of a protein-protein interaction network, 

particularly if their domains or subcomponents are large.  Proving such hypothesis will 

open the door to a new direction in utilizing the large amount of data associated with 

biological networks and objectively assess their quality.  

 

1.2 Overview of Network Modeling of PPIs 

Modeling of protein-protein interaction (PPI) networks has grown in popularity since 

1999 with the advancement of open source community databases for sharing PPI data, 

a rapidly growing body research on the link between network models and biological 

functionality (Barabasi & Albert, 1999; Barabasi & Oltvai, 2004; Jeong, H., Mason, 

Barabasi, & Oltvai, 2001), and the development of algorithms and tools for clustering 

proteins to identify common functionality (Barabasi, A. L. & Albert, 1999; Barabasi, 

A. L. & Oltvai, 2004; Jeong, H., Mason, Barabasi, & Oltvai, 2001, Brohee & van 

Helden, 2006). A number of popular algorithms designed specifically for clustering 

proteins from PPI networks are now available, including (but certainly not limited to) 

ClusterONE for finding overlapping protein complexes (Nepusz, Yu, & Paccanaro, 

2012), HC-Pin for functional complex discovery (Wang, Li, Chen, & Pan, 2011), Altaf-

Ul-Amin’s 2006 algorithm for detecting complexes in large PPI networks (Altaf-Ul-

Amin, Shinbo, Mihara, Kurokawa, & Kanaya, 2006), PRODISTIN for prediction of 

cellular function in PPI complexes (Brun, Herrmann, & Guénoche, 2004), as well as 

MCODE (Bader & Hogue, 2003), MINE (Rhrissorrakrai & Gunsalus, 2011), and SPICi 

(Jiang & Singh, 2010). All of these aforementioned approaches are a part of a large 

majority of clustering algorithms built for protein-protein interaction networks that use 

a density measure or function to some extent to identify clusters or complexes within a 

protein-protein interaction network. While nearly all of the aforementioned literature 

notes explicitly in their work that density is not the only factor with weight in clustering 

edges in a protein-protein interaction network, a majority of algorithms can simplify 
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protein complex identification with the justification that complexes are represented as 

densely connected clusters in a PPI network. This is typically done using a hard-

clustering approach (Pu, Vlasblom, Emili, Greenblatt, & Wodak, 2007), but 

performance is mixed.   

 

1.3 3D Structure of Protein Complexes in vivo 

Inherently, any clustering algorithm that uses density as a major component of its 

algorithm makes an assumption that a denser subgraph is the desired outcome, which 

may not always be the case. As a protein complex grows in size (in length of protein 

complex components and/or number of interaction partners), it becomes more and more 

unlikely that all components of a protein complex will have space to physically 

interface with one another. Inherently, a protein chain in its tertiary or quaternary form 

can typically only be bound to one partner per interface at a time (Keskin, Gursoy, Ma, 

& Nussinov, 2008). It is known that the stability of protein-protein interactions can be 

measured by affinity as transient or permanent if they are part of a non-obligate PPI 

complex (Acuner Ozbabacan, Engin, Gursoy, & Keskin, 2011). Further information is 

known about the stability and permanence of protein-protein interactions; for example, 

interactions between homodimeric proteins tend to be more stable in their PPI interfaces 

than heterodimers (Jones & Thornton, 1996) and also tend to be easier to predict 

(Keskin et al., 2008). One reasoning behind this is that the interfaces of heterodimers 

tend to be flatter than homodimers (Jones & Thornton, 1996). 

Note that a PPI network is only a model. For example, due to the nature of the 

techniques used to infer PPIs at the systems level (such as tandem affinity purification, 

mass spectrometry, or older techniques such as the Y2H experimental system,), a 

protein complex as it is found within its quaternary form in the cellular machine may 

not necessarily be accurately represented by the PPI network. Many of these techniques 

present a protein of interest (bait) and determine through affinity which other proteins 

(prey) interact with it outside of their normal functioning in the cell, meaning that the 

PPIs measured represent physical interactions but not their spatial arrangement or 

temporal stability (Uetz et al., 2000). Therefore, a number of factors, such as protein 

interactor length, binding affinity, experimental system used to determine the 

interaction, and stability of the interaction may or may not be represented in a PPI 

network.  

1.4 Planarity in graph theory 

The term “planar graph” denotes a well-known graph theoretic property indicating that 

a graph is planar if it can be embedded on a plane without having its edges cross. This 

notion differs from “planarity” that has been used to describe shape and size of a 

protein’s interface with another within its 3D structure (Janin, Bahadur, & Chakrabarti, 

2008; Jones & Thornton, 1996). Henceforth ,when referring to planarity or planar 

graphs, we refer to the graph theoretic definition, as in Definition 1 below.  

Definition 1. A graph G = (V,E) has a planar embedding if it can be drawn on a 

plane without crossing any of its edges. A graph is planar if it has at least one planar 

embedding (West, 1996).  
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In this paper, we assume complexes are represented within PPI networks as an 

induced subgraph G = (V,E) where G is a simple graph, meaning it contains neither 

self-loops nor multiple edges, and edges representing interaction relationships are 

binary (0 = does not exist, 1 = exists). Subgraphs are not required to be connected 

graphs. (See the example given in Figure 1). 

Interestingly, there appears to be no prior research into the planarity of subgraphs 

representing protein complexes mined from protein-protein interaction networks. A 

2010 model submitted to arXiv notes that while some interactions are too complex to 

be reliably represented in the “protein – edge – protein” format of the PPI, it is possible 

to  model the relationship between PPI network topology and relative protein 

abundance on the assumptions that there exists a subset of protein interactions tend to 

be flat, stable, and ordered (Heo, Maslov, & Shakhnovich, 2010). However, a search 

for applications of planar graphs reveals no prior research in biological networks. 

1.5 Characterizing a graph as planar 

There exist several algorithms for testing whether a given graph is planar. The most 

well-known ones use a direct application of Kuratowski’s basic planarity theorem 

which states that a graph is planar if and only if it does not contain K5, K3,3, or any of 

their subdivisions as an induced subgraph. Note that K5 denotes a complete graph 

(clique) of five vertices and K3,3 denotes a complete bipartite graph of six vertices with 

three vertices in each set. However, Kuratowski’s method is expensive to test in 

practice, particularly for large graphs. Linear time planarity testing algorithms include 

expanding a smaller planar graph by adding paths (path addition, Hopcroft & Tarjan, 

1974), vertices (vertex addition, Even & Tarjan, 1976) or edge (edge addition, Boyer 

& Myrvold, 2004). Parallel algorithms for planarity testing have also been developed 

 
Figure 1. Three examples of 3D protein structures and a dummy graph model of their PPI 

representation. The top row shows a given protein complex with its different protein 

components highlighted with a different color; the bottom row provides an example of how 

that complex might be represented graphically. Note that interactions/edges in the graphical 

model are drawn where there is a physical interface within the 3D protein structure. In the 

middle, we provide dummy examples of measures of number of nodes, edges, and density, 

as well as planarity and completeness of each complex. 
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(Klein & Reif, 1988). Several graph softwares such as the Boost Graph Library (Siek, 

Lumsdaine, & Lee, 2002) and Library of Efficient Data Types (LEDA) (Mehlhorn & 

Näher, 1989) include algorithms for testing the planarity of graphs.  

2 Results 

In this work we investigate the planarity of known protein complexes as represented by 

induced subgraph in the well-characterized model organism S. cerevisiae and other 

mammalian model organisms. We provide evidence that a large portion of these 

complexes are planar in our datasets. To highlight our work, we provide the following 

results and their supporting evidence for two manually curated datasets with a 

combined total of 808 known complexes in S. cerevisiae, CYC2008 (n = 408) and 

YHTP2008 (n = 400), and other mammalian complexes from the Comprehensive 

Resource of Mammalian Protein Compleses (CORUM) dataset (See Methods for more 

detailed information). Briefly, we extracted the induced subgraph for each complex 

from the PPI network by pulling all intra-protein interactions available from the 

Biological General Repository for Interaction Datasets (BioGRID) database for all 

proteins in the complex lists provided by the datasets. Only interactions that are 

classified as “physical” were analyzed to reflect the spatial nature of the interaction, so 

only “physical” experimental system edges were kept.  

Table 1. The average lengths in amino acid (AA) residues for all proteins in planar and nonplanar 

subgraphs in S. cerevisiae datasets CYC2008 and YHTP2008 is given below. This table also 

includes the absolute value of difference () in averages between planar and nonplanar protein 

lengths. An unpaired Wilcoxon Rank Test was performed on the lengths of the proteins in each 

dataset (planar vs. nonplanar) and the averages are significantly different (p-value<<<0.001). 

 Avg. Protein Length (AA)   

Dataset Planar Non- planar  (AA) P-value 

CYC2008 546.62 463.39 83.24 1.17 E-07 

YHTP2008 598.90 520.72 78.18 2.13 E-06 
 

2.1 Protein complexes as a graph tend to be planar 

We applied a planarity checking algorithm (see Methods) to the 3,129 validated 

complex subgraphs from yeast and other model organisms to characterize each one as 

either “planar” or “nonplanar”. We find that 2,619 (83.6%) were planar graphs, and the 

remaining 510 subgraphs (16.3%) were nonplanar. Further, for each subgraph in our 

dataset, 100 random graphs with the same number of nodes (n) and edges (m) were also 

evaluated for planarity. Interestingly, we observe that 99.38% of planar subgraphs 

maintained their planar quality even when edges were randomly shuffled within their 

structure. This consistency would imply that the planar nature of the subgraphs is 

primarily a result of size and density. We hypothesize that this relationship between 

planarity of an induced subgraph and complex size may be a result of the inherent 

properties of the interactors in the complex.  
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The length of a protein involved in a planar subgraph is longer on average than the 

length of a protein involved in a nonplanar complex. Each subgraph used is made up of 

a list of ORF ids and interactions. There were 506 planar ORFs and 1,415 nonplanar 

ORFs in the CYC2008 dataset, and 854 planar ORFs and 1,223 nonplanar ORFs in the 

YHTP2008 dataset. Lengths in AA residues for proteins involved in both planar and 

nonplanar subgraphs were retrieved from the Saccharomyces Genome Database using 

their ORF IDs. Lengths of these proteins were compared, and on average, proteins in 

planar subgraphs tended to be ~78 to 83 AA longer than proteins involved in nonplanar 

subgraphs (in the YHTP2008 and CYC2008, respectively) as shown in Table 1. The 

differences in means were found to be significant (p-value <0.001) in both datasets 

using a Wilcoxon Rank unpaired test. However, it can be argued that any subgraph with 

n = 4 proteins or less will automatically be planar as there is a planar embedding for all 

iterations and subgraphs of a K4 graph. When we examine the planarity of only 

subgraphs with 5 or more nodes in all datasets we find that only 31.22% of subgraphs 

total are planar (combined dataset, n = 236), and the remaining subgraphs (n = 520, 

68.78%) are not planar, as shown in Table 2. Unfortunately, this result is not significant 

by a paired t-test (p-value > 0.01) and so does not provide sufficient evidence to 

speculate on the biological motivation, if any, versus circumstantial or coincidental 

planar quality of subgraphs. We can speculate, however, that as subgraph size (by node 

count) grows, it is likely that a subgraph will lose its planar quality, further investigated 

“Density in validated protein subgraphs in S. cerevisiae” section. 

Table 2. Count of valid planar and nonplanar subgraphs in the datasets where the number of 

nodes is greater than or equal to 5. Planar/nonplanar column refers to those subgraphs labeled as 

such by our algorithm. Each column has a count for the number of subgraphs characterized as 

such, and the percent of the total that it represents for that dataset. 

Table 2 Planar NonPlanar   

Dataset Count % Count % Total 

CYC2008 11 10.48% 94 89.52% 105 

YHTP2008 18 20.69% 69 79.31% 87 

Bovine 1 100.00% 0 0.00% 1 

Dog 0 0.00% 0 0.00% 0 

Human 156 30.83% 350 69.17% 506 

Mouse 36 85.71% 6 14.29% 42 

Rabbit 0 0.00% 0 0.00% 0 

Rat 14 93.33% 1 6.67% 15 

Total 236 31.22% 520 68.78% 756 

 

2.2 Function of proteins involved in planar & nonplanar subgraphs in yeast 

A measured difference in planar versus nonplanar subgraphs leads one to question if 

the planar quality of subgraphs in these S. cerevisiae datasets is biologically motivated, 

circumstantial, or coincidental. To further probe this question, we annotated the planar 

and nonplanar datasets for CYC2008 and YHTP2008 using the PANTHER Functional 

Classification Tool for the GO Biological Process tree, the GO Molecular Function tree, 

and the PANTHER Protein Class ontology. Here, we report those annotations with a 
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strong representation (>5% of hit against input) and/or annotations which differed (not 

necessarily significantly) between planar and nonplanar subgraphs. The goal of this 

exercise was to determine if there were biologically motivated differences on a broader 

level between proteins involved in planar versus nonplanar subgraphs. We observed 

that there were specific annotations within each classification that showed differences 

between planar and nonplanar graphs (Figure 2). 
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Specifically, we observe differences in the GO Biological Process result for cellular 

component organization or biogenesis, where planar-involved proteins have a lower 

representation than nonplanar involved proteins. We also see a minor difference in the 

GO Biological Process result for response to stimulus (GO:0005198), where planar-

involved proteins have a higher annotation rate than non-planar-involved proteins. 

When examining the GO Molecular Function result, there is a larger difference between 

planar proteins (3.4% and 5.4% for CYC2008 and YHTP2008, respectively) and 

nonplanar proteins (14.9% and 12.9% for CYC2008 and YHTP2008, respectively) in 

 
 

 
 

 
 

Figure 2. Selected PANTHER functional classification results for GO Biological Process (top), 

GO Molecular Function (middle), and PANTHER Protein Class (bottom). The x-axis represents 

the annotation label or name given, and the y-axis represents the % of input against hit, or 

effectively the number of proteins in the given dataset labeled with that annotation versus the 

total number of proteins in the dataset. 
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the structural molecule activity annotation. Per the Gene Ontology website, this 

annotation is defined as “the action of [the] molecule contributes to the structural 

integrity of a complex or its assembly within or outside of a cell.” Interestingly, this 

would imply that proteins found in nonplanar subgraphs in yeast are more likely to play 

a role in structural molecule activity. We also observe a higher rate of planar proteins 

annotated with the GO term catalytic activity (GO:0003824), (35.5% and 42.0% in 

planar CYC2008 and YHTP2008 versus 26.2% and 22.9% in nonplanar CYC2008 and 

YHTP2008, respectively). This annotation is typically given to molecules that catalyze 

biochemical reactions. Finally, we observe a difference in annotation rates in the 

PANTHER Protein Class annotation for nucleic acid binding (PC00171), with rates of 

17.5% and 14.5% for planar CYC2008 and YHTP2008, respectively, compared to 

31.1% and 31.6% for nonplanar CYC2008 and YHTP2008. This annotation designates 

molecules that bind to nucleic acids (i.e. DNA or RNA), which would imply that 

proteins involved in planar subgraphs are less likely to engage DNA or RNA binding 

compared to their nonplanar counterparts. 

2.3 Density in validated protein subgraphs in S. cerevisiae 

When comparing the relative size of each complex, we find that there appears to be a 

natural boundary for planar subgraphs in terms of node size. In Figure 3, we plot the 

number of nodes (x-axis) against the edge density (y-axis) for each cluster and include 

planar and nonplanar labels. Although the number of planar subgraphs far outweighs 

the number of nonplanar subgraphs, it is apparent in both datasets that the more nodes 

a subgraph has, the less likely it is to be planar. In both datasets, there are no subgraphs 

 
Figure 3. Scatterplots of node count (x-axis) versus edge density (y-axis) of planar and 

nonplanar complexes for all S. cerevisiae and CORUM complexes combined. The plots do not 

reflect the volume of planar complexes (there are far more planar complexes than nonplanar, 

but they all have similar node size and density and as such overlap in the graph). Both plots 

show that the majority of complexes are small - there are no planar complexes beyond n = 16 

nodes. 
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with more than n = 16 nodes that are planar. The average edge densities for all 

subgraphs with enough entries to measure statistical significance and n > 4 nodes is 

reported in Table 3. We also observe that for both planar and nonplanar subgraphs, 

there are a not-insignificant number of known, validated subgraphs that have lower than 

average edge density, which furthers the argument while density should certainly play 

a role determining complex membership when performing clustering on PPI networks, 

using it alone will exclude some portion of real complexes in the data. 

 

Table 3. The average edge density of complexes in all evaluated datasets where there are enough 

complexes to measure statistical significance. Average edge density in complex subgraphs with 

n = 5 nodes or more only is reported, with associated p-value for a Student’s T-test of unequal 

variance between means between planar and nonplanar complex subgraphs.  

 

       Average Edge Density of  

            Complex Subgraphs 

Dataset Non-Planar Planar P-value 

CYC2008 89.72% 77.10% 0.0175 

Human (CORUM) 79.33% 49.18% 8.3326E-33 

Mouse (CORUM) 72.88% 26.26% 0.0021 

YHTP2008 77.86% 63.57% 0.0168 

 

Table 4. Count of valid planar and nonplanar subgraphs in the 3did DDI datasets, where a 

subgraph consists of individual protein complexes, nodes represent domains with a protein, and 

edges represent interactions between domains. Each column has a count for the number of 

subgraphs characterized as such, and the percent of the total that it represents for that dataset 

 Planar NonPlanar  

 Count % Count % Totals 

All complexes 733 84.64% 133 15.36% 866 

Complexes with >4 DDIs 231 63.46% 133 36.54% 364 

 

2.4 Planarity of domain-domain interactions 

It could be argued that the planarity or lack thereof in protein subgraphs can be 

attributed to the domain-domain interactions of the proteins themselves, not the entirety 

of the protein. Domain-domain interactions (DDIs) are the physical contact points for 

protein-protein interactions, where one protein component of a complex may have 

many interactions, and the domains of a protein are where proteins physically interface 

with themselves and other subcomponents. Therefore, we captured all known and 

validated DDIs for S. cerevisiae from the 3did dataset (https://3did.irbbarcelona.org/) 

and examined the planarity of known DDI’s within a validated RSCB PDB protein 

complex. We find that regardless of inclusion of ‘small’ complexes (<=4 DDIs or less), 

the majority of complexes have DDIs that form planar subgraphs, the opposite of what 

is found with examining PPI complexes ( 

Table 4).  

     We re-examined complex subgraphs from S. cerevisiae at the DDI level, identifying 

352 PSCB PDB complexes with known DDIs and their corresponding planarity. In this 
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work, the length of the DDI in amino acid residues is measured, and the results show 

that planar complexes have a longer physically interacting regions (35.4 AA residues 

on average, n = 173) than nonplanar ones (29.9 AA residues on average, n = 176). The 

difference between the means is statistically significant (p<0.0005 using an unpaired 

Student's t-test with unequal variance). These results suggest that on average, planar 

interactions at the complex level correspond with longer DDI interactions. 

3 Methods 

3.1 Data download and pre-processing 

We chose to begin our study of planarity in PPI networks in Saccharomyces cerevisiae 

due to the extensive body of research on PPIs in the organism itself (Fields & Song, 

1989; Ho et al., 2002; Krogan et al., 2006; Schwikowski, Uetz, & Fields, 2000; Uetz et 

al., 2000; Von Mering et al., 2002a; Von Mering et al., 2002b), including the sentinel 

paper by Jeong et al. in 2001 examining centrality and essentiality in yeast PPIs (Jeong, 

Hawoong, Mason, Barabási, & Oltvai, 2001). We used two datasets of protein 

complexes described by Pu et al 2007, curated through a multi-step procedure of 

clustering densely connected subunits of the yeast PPI network, and mapping to a high-

quality consolidated PPI network (Pu et al., 2007). The result of this work is two 

catalogs of protein complexes in yeast, the first focusing on literature-validated, 

heteromeric protein complexes derived from small-scale experimentation (CYC2008, 

n = 408) and the second focusing on complexes derived from high-throughput assays 

(YHTP2008, n = 400) with interactions supported by literature(Pu, Wong, Turner, Cho, 

& Wodak, 2008). These complexes and their components given as ORF id numbers are 

available as node lists from http://wodaklab.org/cyc2008 in multiple file formats and 

were downloaded in September 2018. We also included the Comprehensive Resource 

of Mammalian Protein Complexes (CORUM) non-redundant complex dataset 

downloaded on June 27, 2019 from their website  https://mips.helmholtz-

muenchen.de/corum/#download. This website contains over 4,000 validated protein 

complexes from H. sapiens, B. Taurus (bovine), C. familiaris (dog), M. musculus 

(mouse), R. norvegicus (rat), and O. cuniculus (rabbit). The complexes from the Wodak 

and CORUM datasets were then mapped to their respective protein-protein interaction 

networks downloaded from BioGRID’s August 2018 release (3.4.164,file BIOGRID- 

ORGANISM-3.4.164.tab.zip) to elucidate their network structure. One subgraph of this 

PPI was generated for each S. cerevisiae protein complex in the YHTP2008 and 

CYC2008 datasets, and the same was performed for all H. sapiens datasets in the H. 

sapiens BioGRID PPI, for the C. familiaris (dog) dataset and the C. familiaris PPI, and 

so on. Complex subgraphs were generated in the following manner: First, the set of the 

proteins involved in each individual complex were extracted from the two complex 

datasets. Then, for each set of proteins, the interaction network was searched for edges 

such that both nodes coincident with the edge were in the given complex. Duplicate 

edges and self-loops were removed from this network before evaluation of planar 

structure. Edges are undirected. Edges and nodes not explicitly named in the PPI 

catalogs were removed. The resulting simple subgraph induced by this process was then 
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extracted and stored for further analysis. The result was a total of 3,129 protein 

subgraphs (as separate connected network components) with nodes and edges as they 

exist in PPI format.   

   We also collected domain-domain interactions for proteins for which high-resolution 

three-dimensional structures are known in S. cerevisiae using the 3did database. We 

downloaded all 4,451 PDB IDs for complexes in yeast on January 16, 2020. The DDI’s 

contained in the 3did dataset were mapped to their PDB ID using Pfam domains. Each 

PDB ID represented one complex with domains represented as nodes and domain-

domain interactions mined from 3did represented edges. These complex subgraphs 

were then analyzed for planarity by our algorithm implementation. 

 

3.2 Planarity testing 

 The planarity of the subgraphs was tested using the Boyer and Myrvold planarity test 

(Boyer et al. 2004), an O(n) planarity test based on embeddings via edge addition and 

Kuratowski subdivisions. This algorithm returns a result of “True” if the graph G given 

as input is planar and “False” if it is not. In addition to the testing of the planarity of the 

subgraphs themselves, for each individual subgraph a series of 100 random graphs with 

the same number of nodes (n) and edges (m) were also evaluated for planarity. These 

random graphs were created by generating m random edges where the endpoints of each 

edge were randomly chosen from the set of all n nodes. The generated edges were 

filtered to prevent duplicate edges and self-loops, resulting in m unique, unordered pairs 

of distinct nodes. Our code for checking the planarity of subgraphs has been made 

available at https://github.com/ndcornelius/complex-graphs.  

 

3.3 Validation for nonplanar subgraphs 

The complete interaction datasets for the model organism datasets were downloaded 

from BioGrid on May 20, 2019  from the version 3.5.172 release archive. ORF ids were 

used to identify nodes and all other data included was stored as node or edge attributes. 

We only wanted to investigate physical interactions so we removed any “genetic” 

Experimental System types. As an example, the S. cerevisiae network as downloaded, 

after removal of genetic interactions,  self-loops, multiple edges, and direction, included 

6,313 nodes and 110,596 edges (0.56% edge density). There was a total of 17 different 

types of physical experimental systems included in the BIOGRID filtered network that 

resulted, and all 17 measure a physical interaction of protein to protein or RNA with 

varying levels of quality based on experimental system (types available upon request).  

 

3.4 Functional analysis of S. cerevisiae subgraphs with >4 nodes 

The four sets of ORF ids from both datasets (CYC2008, planar and nonplanar as well 

as YHTP2008, planar and nonplanar) was analyzed to characterize functionality with 

the online PANTHER Classification system (version 14.1) using their functional 

classification tool using the S. cerevisiae reference genome. This tool reports a number 

of measures, including an annotation label or name according to the ontology being 

used, the accession number of that annotation, and the “% hit against input”, or the  

number of IDs in the input against the total number of IDs in the input. We performed 
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functional classification of all four subsets across five ontologies: GO Biological 

Process, GO Molecular Function, GO Cellular Component, PANTHER Protein Class, 

and PANTHER Pathway. In this work, we report those annotations with a strong 

representation (>5% of hit against input) and/or annotations which differed (not 

necessarily significantly) from planar to nonplanar subgraphs. The goal of this exercise 

was to identify any broad functional differences between planar/non-planar complexes 

quantitatively . 

3.5 Comparison of protein length in planar vs. nonplanar subgraphs 

Subgraphs were sorted into two types (planar and nonplanar) and gene lists (using ORF 

as an id) for each complex were generated using in-house Python scripts. Thus, we were 

able to compile a list of all ORF ids for proteins involved in planar and nonplanar 

subgraphs for both the CYC2008 and YHTP2008 datasets. We used the Saccharomyces 

Genome Database (www.yeastgenome.org) to pull protein lengths for all ORF ids in 

planar and nonplanar subgraphs. Average protein lengths (in AA residues) for each 

group were calculated, and within datasets, length of proteins involved in planar and 

nonplanar subgraphs were compared using an unpaired Wilcoxon rank-sum test. 

4 Discussion 

Bioinformatics as a scientific discipline has gone through various stages of maturity in 

the last few decades. In its next stage, it is anticipated that rigorous validation and 

verification studies will play significant roles in solidifying major Bioinformatics 

findings and will increase their impact in advancing biomedical research. The reported 

work of this paper represents a step in this direction by employing biologically 

motivated concepts to analyze and measure of the quality of the widely-used biological 

networks.   

Subgraph density has long been a measure of importance when determining the 

functional potential of a network structure in protein-protein interaction networks. 

While there is no doubt that density plays a role in finding complexes in protein-protein 

interaction networks, there are other underlying physical properties of proteins in 

complex that can be revealed with application of more advanced graph theoretic 

concepts. In this work, we have applied a planarity checking algorithm to 2 datasets of 

known PPI complexes in S. cerevisiae and found that a majority of protein subgraphs 

possess this planar property. We have identified a relationship between this planar 

property that may be linked to physical and spatial constraints of protein interactions at 

the cellular level and should be investigated with further studies. In the reported results, 

we find that in the broad majority of planar subgraphs, the planar embedding is not 

random. We also find that proteins in planar subgraphs tend to be 78-83 amino acid 

residues longer than proteins in nonplanar subgraphs. We do identify some functional 

properties of these subgraphs that differ between planar and nonplanar proteins. 

However, this is a preliminary study and we do realize that further work is needed to 

determine if this difference is significant.  In the future, we plan to expand our research 

to more high confidence PPI datasets and more model organisms to further confirm our 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_48

http://www.yeastgenome.org/
https://dx.doi.org/10.1007/978-3-030-50371-0_48


14 

original hypothesis, that due to the physical nature of protein interactions, protein 

subgraphs are likely to form planar underlying structures, particularly if their domains 

or subcomponents are large.  

This research is important for the study of protein-protein interaction networks for 

several reasons. First, it offers a new structural measure that is readily identifiable from 

the network structure, without any biological annotation or input. This could allow for 

the improvement or development of protein complex finding algorithms by uncovering 

subgraphs that were previously undiscoverable because they were not necessarily dense 

(for example, having 40% edge density versus 75%), but have this planar component. 

Secondly, it opens the door to further analysis of structure of domain-domain 

interactions, a subfield of protein-protein interaction research; we preliminarily find 

that DDI networks in yeast also maintain this planar component, perhaps even more 

stringently. Thirdly, it allows for the re-use and re-analysis of existing PPI datasets with 

the justification that this planar property may reveal previously unknown or partially 

known protein complexes, opening the door for discovery from our existing community 

databases. We look forward to expanding our proposed work and investigating further 

this interesting planar property in PPI networks.  

Acknowledgements: Bhowmick's research was supported by NSF CFF #1916084 

References 

1. Acuner Ozbabacan, S. E., Engin, H. B., Gursoy, A., & Keskin, O. (2011). Transient protein–

protein interactions. Protein Engineering, Design and Selection, 24(9), 635-648.  

2. Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., & Kanaya, S. (2006). Development 

and implementation of an algorithm for detection of protein complexes in large interaction 

networks. BMC Bioinformatics, 7(1), 207.  

3. Bader, G. D., & Hogue, C. W. (2003). An automated method for finding molecular complexes 

in large protein interaction networks. BMC Bioinformatics, 4, 2.  

4. Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science (New 

York, N.Y.), 286(5439), 509-512. doi:7898 [pii] 

5. Barabasi, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell's functional 

organization. Nature Reviews.Genetics, 5(2), 101-113. doi:10.1038/nrg1272 

6. Boyer, J. M., & Myrvold, W. J. (2004). On the cutting edge: Simplified O (n) planarity by edge 

addition. J.Graph Algorithms Appl., 8(2), 241-273.  

7. Brohee, S., & van Helden, J. (2006). Evaluation of clustering algorithms for protein-protein 

interaction networks. BMC Bioinformatics, 7, 488. doi:10.1186/1471-2105-7-488 

8. Brun, C., Herrmann, C., & Guénoche, A. (2004). Clustering proteins from interaction networks 

for the prediction of cellular functions. BMC Bioinformatics, 5(1), 95.  

9. Even, S, & Tarjan, RE (1976). Computing an st-numbering. Theoret Comp Sci, 2(3), 339-344.  

10. Fields, S., & Song, O. (1989). A novel genetic system to detect protein–protein interactions. 

Nature, 340(6230), 245.  

11. Heo, M., Maslov, S., & Shakhnovich, E. I. (2010). Protein abundances and interactions 

coevolve to promote functional complexes while suppressing non-specific binding. arXiv 

Preprint arXiv:1007.2668,  

12. Ho, Y., Gruhler, A., Heilbut, A., … Boutilier, K. (2002). Systematic identification of protein 

complexes in saccharomyces cerevisiae by mass spectrometry. Nature, 415(6868), 180.  

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_48

https://dx.doi.org/10.1007/978-3-030-50371-0_48


15 

13. Hopcroft, J., & Tarjan, R. (1974). Efficient planarity testing. Journal of the ACM (JACM), 

21(4), 549-568.  

14. Janin, J., Bahadur, R. P., & Chakrabarti, P. (2008). Protein–protein interaction and quaternary 

structure. Quarterly Reviews of Biophysics, 41(2), 133-180.  

15. Jeong, H., Mason, S. P., Barabasi, A. L., & Oltvai, Z. N. (2001). Lethality and centrality in 

protein networks. Nature, 411(6833), 41-42. doi:10.1038/35075138 [doi] 

16. Jiang, P., & Singh, M. (2010). SPICi: A fast clustering algorithm for large biological networks. 

Bioinformatics (Oxford, England), 26(8), 1105-1111. doi:10.1093/bioinformatics/btq078 [doi] 

17. Jones, S., & Thornton, J. M. (1996). Principles of protein-protein interactions. Proceedings of 

the National Academy of Sciences, 93(1), 13-20.  

18. Keskin, O., Gursoy, A., Ma, B., & Nussinov, R. (2008). Principles of protein−protein 

interactions: What are the preferred ways for proteins to interact? Chemical Revs, 108(4), 1225-

1244.  

19. Klein, P. N., & Reif, J. H. (1988). An efficient parallel algorithm for planarity. Journal of 

Computer and System Sciences, 37(2), 190-246.  

20. Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Tikuisis, A. P. (2006). 

Global landscape of protein complexes in the yeast S. cerevisiae. Nature, 440(7084), 637.  

21. Mehlhorn, K., & Näher, S. (1989). LEDA a library of efficient data types and algorithms. Paper 

presented at the Int’l Symposium on Mathematical Foundations of Computer Science, 88-106.  

22. Nepusz, T., Yu, H., & Paccanaro, A. (2012). Detecting overlapping protein complexes in 

protein-protein interaction networks. Nature Methods, 9(5), 471.  

23. Pu, S., Vlasblom, J., Emili, A., Greenblatt, J., & Wodak, S. J. (2007). Identifying functional 

modules in the physical interactome of saccharomyces cerevisiae. Proteomics, 7(6), 944-960.  

24. Pu, S., Wong, J., Turner, B., Cho, E., & Wodak, S. J. (2008). Up-to-date catalogues of yeast 

protein complexes. Nucleic Acids Research, 37(3), 825-831.  

25. Rhrissorrakrai, K., & Gunsalus, K. C. (2011). MINE: Module identification in networks. BMC 

Bioinformatics, 12, 192. doi:10.1186/1471-2105-12-192; 10.1186/1471-2105-12-192 

26. Schwikowski, B., Uetz, P., & Fields, S. (2000). A network of protein–protein interactions in 

yeast. Nature Biotechnology, 18(12), 1257.  

27. Siek, J., Lumsdaine, A., & Lee, L. (2002). The boost graph library Addison-Wesley. 

28. Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., … Pochart, P. (2000). A 

comprehensive analysis of protein–protein interactions in S. cerevisiae. Nature, 403(6770), 

623.  

29. Voevodski, K., Teng, S., & Xia, Y. (2009). Finding local communities in protein networks. 

BMC Bioinformatics, 10(1), 297.  

30. Von Mering, C., Krause, R., Snel, B., Cornell, M., … Bork, P. (2002a). Comparative 

assessment of large-scale data sets of protein–protein interactions. Nature, 417(6887), 399.  

31. Wang, J., Li, M., Chen, J., & Pan, Y. (2011). A fast hierarchical clustering algorithm for 

functional modules discovery in protein interaction networks. IEEE/ACM Transactions on 

Computational Biology and Bioinformatics (TCBB), 8(3), 607-620.  

32. West, D. B. (1996). Introduction to graph theory Prentice hall Upper Saddle River, NJ. 

33. Fig 1. Image of 1AXC (Gulbis, J. M., Kelman, Z., … Kuriyan, J. (1996). Structure of the C-

terminal region of p21WAF1/CIP1 complexed with human PCNA. Cell, 87(2), 297-306) 

created with Protein Workshop (J.L. Moreland, A. Gramada, … P.E. Bourne (2005) The 

Molecular Biology Toolkit (MBT). BMC Bioinformatics 6:21). 

34. Fig 1. Image of 2HHB (Fermi, G., Perutz, M. F., Shaanan, B., & Fourme, R. (1984). The crystal 

structure of human deoxyhaemoglobin at 1.74 Å resolution. Journal of molecular 

biology, 175(2), 159-174.) created with Protein Workshop (J.L. Moreland, A. Gramada, … P.E. 

Bourne (2005) The Molecular Biology Toolkit (MBT). BMC Bioinformatics 6:21). 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_48

https://dx.doi.org/10.1007/978-3-030-50371-0_48


16 

35. Fig. 1 Image of 2HHB (Robinson, R. C., Turbedsky, K., Kaiser, D. A., Marchand, J. B., Higgs, 

H. N., Choe, S., & Pollard, T. D. (2001). Crystal structure of Arp2/3 

complex. science, 294(5547), 1679-1684.) created with Protein Workshop (J.L. Moreland, A. 

Gramada, … P.E. Bourne (2005) The Molecular Biology Toolkit (MBT). BMC 

Bioinformatics 6:21). 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_48

https://dx.doi.org/10.1007/978-3-030-50371-0_48

