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Abstract. We propose the new models of meme spreading over social
network constructed from Twitter mention relations. Our models com-
bine two groups of diffusion factors relevant for complex contagions: net-
work structure and social constraints. In particular, we study the effect
of perceptive limitations caused by information overexposure. This ef-
fect was not yet measured in the classical models of community-aware
meme spreading. Limiting our study to hashtags acting as specific, con-
cise memes, we propose different ways of reflecting information overexpo-
sure: by limited hashtag usage or global / local increase of hashtag gen-
eration probability. Based on simulations of meme spreading, we provide
quantitative comparison of our models with three other models known
from literature, and additionally, with the ground truth, constructed
from hashtag popularity data retrieved from Twitter. The dynamics of
hashtag propagation is analyzed using frequency charts of adoption dom-
inance and usage dominance measures. We conclude that our models are
closer to real-world dynamics of hashtags for a hashtag occurrence range
up to 104.

Keywords: complex network · information spreading · network dynam-
ics.

1 INTRODUCTION

Spreading memes over social networks became the subject of interdisciplinary
research in many fields of science. From linguistics and sociology to statistical
physics, we observe numerous works analyzing sociolinguistic phenomenon of
virality, trying to explain key mechanisms of meme propagation and predict its
future popularity [18, 3, 15].

In common understanding, meme is a piece of information or a unit of cultural
transmission, which replicates over population. In the context of social media the
meme could be a link, hashtag, phrase, image or video. The viral is defined as
longstanding meme with the high probability of reposting. The process of meme
proliferation, typically different than epidemic spreading, is therefore described
as complex contagion. The deviation from simple epidemic patterns is caused
by multiple social factors and cognitive constraints such as homophily, confir-
mation bias, social reinforcement, triadic closure or echo chambers [17, 15]. In
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this work, we consider spreading of hashtags - specific string-type concise memes
used extensively to tag microblog Twitter posts and decorate them with addi-
tional semantics, personal affect or extended context. The substrate for hashtag
propagation is formed by social network of Twitter users and posts, connected
by three types of relations: follow, retweet and mention.

Modeling meme dynamics is an interesting topic, essential not only in broadly
described marketing and business analysis but also more recently in public se-
curity sector, where the new challenges related to elections manipulation, fake
news, terror attacks or riots were raised [4]. What factors should be considered
in modeling hashtag propagation and recognizing virality? The recent studies
suggest that while the content and related affect seems natural driver of virality,
the social influence [8] and network structure [18, 6] play more important role
in meme diffusion process. This is particularly visible for hashtags, which are
intended to be ultra concise and short.

The impact of network structure on meme dynamics is typically modeled
as a social reinforcement effect, for which the probability of meme adoption
increases with the number of exposures [17]. Motivated by recent blog posts
about overused memes, we argue that social reinforcement mechanism should
be supplemented with negative feedback loop, which reflects that the users can
be annoyed with the meme, when they see it too frequently. We hypothesise,
that by adding overexposure effect to simulation, we will achieve meme dynam-
ics closer to one observed for real tweets. To prove our hypothesis we first, in
Section 2, introduce basic definitions and describe five new models of hashtag
propagation over micro-blog network. These models use the baseline structural
factors known from other works [17, 18, 14], but additionally take into account
that multiple exposures of the meme can have both positive and negative effect
on an adoption. In Section 3, we present how one-day Twitter network dump
with the real hashtags was used for analyzing our models and comparing them
with the classical models described in [17]. The results of experiments, visualiza-
tions and quantitative model comparison are presented in Section 4. The wider
context of meme spreading is described in Section 5, where the overview of re-
lated works is presented. We conclude in Section 6, by presenting summary of
our findings and discussing limitations of our approach.

The key contributions of this work are new models of hashtag spreading,
which take into account not only community structure and social reinforcement
but also meme overexposure. Five different mechanisms of incorporating overex-
posure are proposed. We also perform validation of the new models against the
models described in [17], based on Twitter data.

2 SPREADING MODELS

Herein we introduce definitions required in the rest of this work and describe
meme spreading models including five new models combining the influence of
communities and cognitive limitations of individuals.
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2.1 Networks with communities

We define an undirected, static graph as a tuple G = (V,E) where V is a set
of vertices and E = {{v1, v2} : v1, v2 ∈ V } is set of edges. We also define a
community as a subset of vertices Ci ⊆ V, i ∈ {1, ..., n}, where n ∈ IN is a
number of all communities. We assume that the community structure is fixed
in time. The set of all communities C = {Ci} must contain all nodes from the
graph:

⋃
Ci = V,Ci ∈ C. Similarly to [17, 18], we assume that the communities

are disjoint, meaning that one vertex is a member of exactly one community
∀v ∈ V ∃!Ci : v ∈ Ci, or in other words ∀u, v ∈ V ;Ci, Cj ∈ C,Ci 6= Cj : u ∈
Ci ∧ v ∈ Cj ⇒ u 6= v.

2.2 Spreading process

The defined graph is a base network on which the meme spreading processes take
place. Spreading itself can be defined as as an iterative function taking any known
or unknown parameters of the network and returning state of the spreading. This
requires assumption about similar timescales of all spreading processes, which
is not always true - the same number of tweets can be produced really quickly
during an intensive discussion and rather slowly in a marketing campaign. For
our work it is enough to assume that spreading process uses the knowledge about
the topology of the network, community structure and a state of spreading from
the previous iteration.

We borrow the language from epidemiology and define generation of a tweet
as an infection. To be more formal, we define a state of the spreading St at given
time t ∈ T ⊂ IN as a subset of infected nodes St ⊆ V . If the spreading process is
more complex, i.e. there are more possible states of the node, then new disjoint
subsets of nodes must be defined. The spreading process is then defined as a
function fs : St ×G× C → St+1.

For this work we assume that at any given iteration t only one node can
be infected and we can infect the same node multiple times during the process.
We define infected node vt ∈ V as: St = St−1 ∪ {vt}. Then, the spreading
process function can be simplified to a sequence of nodes infected (vt) in each
iteration fs : St−1×G×C → {vt}. For describing spreading processes, we define
neighborhood of a set of nodes as all nodes from its hull that are not in that
set S ⊆ V : N(S) = {v1 : ∃v2 : {v1, v2} ∈ E ∧ v1 /∈ S}. We also define inclusive
neighborhood of a set S ⊆ V as Nincl(S) = N(S) ∪ S.

2.3 Spreading models

In this section, we provide spreading process functions for baseline models (M1
to M4 from [17]) and for five models proposed by us.

Random sampling model (M1) In the random model, at each iteration, we
randomly choose the infected node with a uniform probability. It assumes that
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the network topology does not affect the spreading. This model will be used as
a baseline for calculating spreading metrics.

vt = randt(V ) (1)

Network structure model (M2) Here we assume that the network structure
has an impact on spreading. This effect is reflected by choosing a random, already
infected vertex and then selecting one of its topological neighbors:

vt = rand({v : v ∈ Nincl({u});u = rand(St−1)}) (2)

In addition, with constant probability prestart = 0.15, the process is restarted
from a random node, as in Eq. (1).

Social reinforcement model (M3) At each step of the spreading process,
the node with most infected neighbors is infected. If there is no unique vertex
satisfying this requirement, then a random one (from the all with the same num-
ber of infected neighbors) is selected. The restart process is included similarly
to the model M2.

vt = rand({v : v ∈ Nincl(St−1) ∧ argmaxv(N(v) ∩ St−1)}) (3)

Homophily model (M4) Homophily model uses community structure to de-
fine nodes having similar interests. We choose randomly an already infected
vertex and then, select randomly its neighbor from the same community. The
restart process is included in M2 and M3.

vt = rand({v : v ∈ Nincl({u}) ∧ u, v ∈ Ci;u = rand(St−1)}) (4)

Unique information overexposure model (M5) In meme spreading in so-
cial networks some of hashtags are so unique, that they unlikely appear in mul-
tiple places of the graph but they are still affected by social reinforcement. To
include that effect, we change the M3 model by removing the restart process
and adding a requirement to not infect already infected nodes. To some extent
this is similar to Susceptible-Infected-Resistant (SIR) epidemic model, but it is a
more directed approach, because we are choosing a vertex with the most infected
neighbors. This is an example of simple overexposure, because each node will
not be infected multiple times with the same hashtag.

vt = rand({v : v ∈ N(St−1) ∧ argmaxv(N(v) ∩ St−1)}) (5)

Global increase of generation probability model (M6) One of the cog-
nitive limitations in social interactions is that people get bored, when they see
the same meme too many times. To model such mechanism, we infect a node
with the most exposures, but if a neighbor vertex was infected multiple times,
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we count all of these occurrences as exposures. Secondly, the restart probability
at each step grows linearly from 0 to 1. This means that initially, the spreading
is rapid and not constrained by community structure. After a period of time,
when the members of a community are overexposed, new random vertices out
of a community are likely to be infected.

This definition requires setting maximum number of iterations, for which
the spreading occurs. Similarly to choosing prestart, this is strictly connected to
finding timescale of a process. In this model, we assume that the spreading lasts
as long as the longest spreading time observed in the real data, noted as Tmax.
We define a number of exposures for a given node v at iteration t as:

nexp(v, t) = |{u : u ∈ N(v) ∧ u = vτ , τ < t}|. (6)

Then, selection of the currently infected node can be represented as:

vt = rand({v : argmaxv(nexp(v, t))}). (7)

The restart probability is:

prestart =
t

Tmax
. (8)

Local increase of generation probability model (M7) Similarly to M6,
we increase the restart probability linearly but it is set to 0 after each restart.

vt = rand({v : argmaxv(nexp(v, t))}) (9)

The restart probability is:

prestart =
i

Tmax
, (10)

where i is the number of iterations since last restart.

Inverse exposure model (M8) This is a more complex overexposure model,
where the exposures are counted separately for all nodes. Then, the infected node
is selected randomly, with the probability inversely proportional to the number
of its exposures:

vt = randipe(Ni(St−1)), (11)

where randipe is function choosing a node with probability inversely proportional
to the number of exposures for each node. Restart has a constant probability of

prestart = 0.15. (12)

Inverse exposure model with no restarts (M9) Similar to M8 model but
without a restart mechanism. Choosing the next infected node is described using
the same function from Eq. (11).
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2.4 Spreading metrics

To compare different models, we calculate the following metrics. Most of them
are taken from [17].

Intra- and inter-community activity The patterns of within- and between-
community meme activity are reflecting the influence of these sub-structures
on diffusion process and can be used to quantify overall spreading dynamics.
In models M2 and M4 the meme transfer happens between a source node (u
- infected in one of the previous iterations) and a destination node (vt). If the
nodes belong to the same community u, vt ∈ Ci, the transition is classified
as intra-community activity (aintra). If they belong to different communities
u ∈ Ci ∧ vt ∈ Cj ∧ i 6= j, it is called inter-community activity (ainter). To
be able to compare these metrics between different networks we normalize it
by dividing them by the number of all inter- (edgesinter) and intra-community
edges (edgesintra) in the network.

aintra =
cintra

edgesintra
(13)

ainter =
cinter

edgesinter
(14)

Here cintra, cinter are the numbers of spreading events occurring within the same
and between the different communities.

Usage dominance We define usage dominant community as a community with
the biggest number of spreading events: Cd = maxCi

∑Tmax

t=0 |{vt ∈ Ci}| and a

number of spreading events produced in this community as TCd
=

∑Tmax

t=0 |{vt ∈
Cd}|. Then usage dominance is defined as

Du =
|TCd
|

Tmax
. (15)

The high values of usage dominance indicate that the meme was trapped mostly
within one community and its dynamics is more local. The probability of be-
coming the viral is low.

Adoption dominance We define adoption dominant community (Ca) as a
community with the biggest number of vertices infected by spreading. Note that
it is different than Cd for which we count all spreading events, here we count
only unique vertices: Ca = maxCi |STmax ∩Ci|. The adoption dominance can be
defined as:

Da =
|Ca|
|STmax

|
. (16)
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3 SIMULATION DETAILS

Each model was run at least twice on the network recreated from real tweets.
Ground truth data were obtained from the same set of tweets and analyzed on
the same network, to obtain metrics reflecting real-world spreading dynamics.

3.1 Recreated network

We gathered 2 045 413 tweets using public Twitter API. From that, we selected
only the ones containing mention relation, which involves at least two users: one
source and possibly multiple targets. Each source-target pair was treated as an
undirected edge e ∈ E, to form initial graph G. Then, the largest connected
component of G was extracted. In our case it consisted of 710 195 vertices and
919 022 edges. This was the base graph, on which the simulations were run. In
Table 1, the details of recreated networks are summarised. The visualisation of
the graph using IVGA, a fast force-directed method from [5], is presented in
Fig. 1.

Fig. 1: Visualization of the giant component of sampled Twitter network (mention relation) using
IVGA algorithm [5]. The color of the node represents the community.

Table 1: Recreated network details.
|V | |E| edgesintra edgesinter |C| Max. degree Triangles

710 195 919 022 782 244 136 778 32 948 391 48 115

Static networks do not completely model temporal relationships occurring
between nodes in real networks. In our case the timescales of spreading are
much lower than the changes in relationships between users which is why we
can assume that they do not change over time. We are using mentions relation
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because in its nature it is bidirectional: the user mentioning another user is
aware of the message content as its creator and the mentioned user is notified
about that message as well. This is why we can assume that our base network
is undirected.

Community detection We used INFOMAP algorithm to obtain partitioning
of the nodes into communities C. Its main advantage is linear time complexity
O(|E|), which is practical for large graphs. Secondly, it does not require the
number of expected communities as an input. This is not achievable, e.g., for
Label Propagation algorithm.

The network was split into 32 948 communities, with the smallest commu-
nities consisting of just two nodes and the largest containing 5394 nodes. The
distribution of communities is presented in Fig. 2. We also ran simulations on
the same network with community structure created using label propagation al-
gorithm. The results were similar but we do not present them here because of
space constraints.

(a) Community sizes distribution (b) Hashtag popularity histogram

Fig. 2: The frequencies of community sizes detected using INFOMAP algorithm on sampled Twitter
network (a) and Hashtag popularity (defined as number of occurrences) distribution (b) in logarith-
mic scale. Broader distribution is visible for highly popular hashtags. It is caused by insufficient time
to spread more. With the time passing most of these points would update the trend upwards.

3.2 Ground truth data

From all the tweets, we filtered out the ones without a hashtag or with at least
one vertex not present in the largest component. For each unique hashtag, the
list of tweets using it was extracted and sorted by the tweet’s time t ∈ T . To
form the ground truth for measuring and comparing hashtag spreading models,
we simulated meme propagation on the sample Twitter network by infecting
nodes according to their order in that list. The case when two consecutive nodes
are not connected is modeled by the restart mechanism described in Section 2.
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The distribution of hashtag popularity does not completely follow the power
law as presented in Fig. 2. Because of the large number of hashtags (41 356) we
calculated spreading metrics only for a subset of them. It was chosen so that,
the hashtags were distributed evenly in the spreading popularity bins. For our
calculations of usage dominance and adoption dominance we used data for 280
unique hashtags spread across 54578 iterations in total.

4 RESULTS

Based on simulation results, we learned that our models M5-M9 follow the real-
world hashtag spreading dynamics more accurately than models M2-M4 (both
for unpopular and viral hashtags). For metric calculation, we define hashtags
with low aintra as those having its value lower than average. Analogously, we
define hashtags with high aintra as those with the value higher than average.

(a) Adoption dominance (b) Usage dominance

Fig. 3: Adoption (a) and usage dominance values for models M4-M9. Each line represents changes
in proportions of hashtags produced inside adoption (Ca) and usage dominant communities (Cd)
to number of all hashtags produced in the network. The results are averaged across 30 logarithmic
bins and normalized by the random sampling model (M1). ground truth represents ground truth
spreading including all hashtags. The series: ground truth small intra and ground truth high intra
show the results for hashtags with aintra lower and higher than average, accordingly. The standard
error slightly exceeds 2% only for one model. For the rest of the models, as well as for the ground
truth, its value is below 1%.

The usage dominance and adoption dominance measures are normalized by
dividing them by the values obtained for random sampling model (M1) under
the same conditions, similarly to [17]. As our intention was to analyze multi-
use memes, rather than rare memes, we removed hashtags with the number of
adoptions lower than 10. This also prevents including artifacts like tweets start-
ing to become popular just before end of data collection. Next, we aggregated
dominance metrics into 30 logarithmic bins. The results of simulation quantified
using adoption dominance and usage dominance are shown in Fig. 3. Overall,
inverse exposure (M9), unique information overexposure (M5) and local increase
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Table 2: Correlation of non normalized and root mean square error of normalized adoption domi-
nance Da. Highlighted entries represent the best two values in each column.

ground truth high aintra low aintra
model corr p-val rmse corr p-val rmse corr p-val rmse

M2 0.82 <0.01 24.32 -0.37 0.06 59.63 0.93 <0.01 12.14
M3 0.8 <0.01 25.96 -0.37 0.05 61.11 0.92 <0.01 13.51
M4 0.91 <0.01 22.27 -0.48 0.01 57.81 0.91 <0.01 10.72
M5 0.92 <0.01 9.7 -0.58 <0.01 44.57 0.91 <0.01 9.33
M6 0.89 <0.01 23.4 -0.6 0.11 56.72 0.87 <0.01 18.44
M7 0.91 <0.01 18.99 -0.62 0.01 50.97 0.86 <0.01 17.9
M8 0.87 <0.01 23.7 -0.45 0.02 59.08 0.91 <0.01 11.64
M9 0.94 <0.01 16.52 -0.61 <0.01 51.33 0.87 <0.01 11.59

Table 3: Correlation of non normalized and root mean square error of normalized usage dominance
Du. Highlighted entries represent the best two values in each column.

ground truth high aintra low aintra
model corr p-val rmse corr p-val rmse corr p-val rmse

M2 0.84 <0.01 23.76 -0.58 <0.01 60.01 0.94 <0.01 11.6
M3 0.86 <0.01 22.69 -0.6 <0.01 58.97 0.93 <0.01 10.45
M4 0.88 <0.01 21.08 -0.71 <0.01 57.44 0.84 <0.01 10.34
M5 0.91 <0.01 10.08 -0.7 <0.01 45.8 0.92 <0.01 9.23
M6 0.91 <0.01 20.11 -0.79 <0.01 52.79 0.83 <0.01 19.02
M7 0.92 <0.01 16.85 -0.78 <0.01 46.7 0.84 <0.01 20.47
M8 0.88 <0.01 19.66 -0,67 <0.01 55.77 0.9 <0.01 10.98
M9 0.92 <0.01 24.85 -0.77 <0.01 45.46 0.84 <0.01 31.75

of generation probability (M7) models are performing the best when comparing
to all hashtag ground truth results (ground truth). This is confirmed by both the
highest correlation and the lowest error, as shown in Table 2 and Table 3. There
is one exception - large error for M9 model in usage dominance, which we discuss
below. Our models adapting different overexposure mechanisms (especially M7),
have generally better results than the baseline M2-M4 models from literature
[17]. The critical value used for testing statistical significance of correlation is
0.05. We performed additional tests to verify how well the models reflect dynam-
ics of hashtags divided into two groups: high intra-community activity (specific,
trapped memes) and low intra-community activity (generic, viral-candidates).

Comparing the results of spreading with the ground truth below-average
aintra (ground truth small intra), we see that existing models slightly outperform
our overexposure models when it comes to correlation. This is visible mostly for
M2 (correlation 0.93 and 0.94), based on the plots, we observe that this is mostly
due to the initial phase of spreading. Errors are still much lower for our models
(especially M5). It is worth noting, that correlation and errors are almost on the
same level for M5 and M8 models.

The correlations of spreading pattern ground truth high intra (higher than
average aintra) with all the simulated trends are either statistically insignificant
or negative. Nevertheless, based only on the error value, we can see that the
overexposure models are mimicking real world spreading more precisely. Much
higher absolute values of the errors suggest that this type of spreading is hard
to be modeled by all frameworks M1-M9.

A significant difference is observed between usage and adoption dominance
measures for model M9 for initial phase of spreading. As visible in high and
similar correlation values (0.94 and 0.92 accordingly), the shape of the function
is preserved but the error value is much higher for usage dominance, especially
for low aintra. The effect is also present in the ground truth data, but with a
much smaller amplitude. Most likely this is because the probability of tweeting
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the same hashtag by the same user is lower in real life compared to the models.
The M9 model is more susceptible to that, because it can spread more freely
inside a community. This is validated by comparing it with M5, which is a more
directed spreading model demonstrating almost no difference between the values
of usage and adoption dominance.

Table 4: Correlation of non normalized and root mean square error of normalized usage dominance
Du for highly popular tweets (popularity>500). Highlighted entries represent the best two values in
each column.

ground truth high aintra low aintra
model corr p-val rmse corr p-val rmse corr p-val rmse

M2 0.79 0.01 33.66 -0.5 0.17 89.51 0.76 0.02 18.31
M3 0.79 0.01 32.03 -0.49 0.18 87.92 0.73 0.02 16.68
M4 0.8 0.01 31.39 -0.5 0.17 87.32 0.78 0.01 16.04
M5 0.85 <0.01 15.38 -0.58 0.10 71.26 0.77 0.02 1.83
M6 0.72 0.03 28.7 -0.35 0.36 84.73 0.65 0.06 13.54
M7 0.79 0.01 19.35 -0.49 0.18 75.21 0.78 0.01 6.71
M8 0.75 0.02 30.14 -0.44 0.23 86.07 0.69 0.04 14.83
M9 0.78 0.01 16.38 -0.44 0.23 72.16 0.72 0.03 5.89

Because viral or really popular hashtags are the most important in our anal-
ysis, in Table 4, we also present adoption dominance Da results for hashtags
with more than 500 spreading events. Good results for M5 model show, that
it is the most robust framework presented in this article. Interestingly, highly
popular hashtags with lower than average aintra are modeled much better with
the inclusion of overexposure. This is visible in low error and high correlation
values for models M5, M7 and M9. From the baseline models from literature,
M4 has the best results.

5 RELATED WORKS

In the broad literature of the subject we find the works focusing on different
aspects of meme popularity. These can be grouped into four major categories:
content, social influence, time characteristics and network structure. Content
appeal is typically analyzed for longer posts, for which sentiment, affect or emo-
tional load can be established. In [7], the authors present the study of sam-
ple tweets and based on news / non-news classification and sentiment analysis
conclude that negative sentiment for news messages and positive sentiment for
non-news improves retweetability. The influence of psychological arousal (emo-
tions resulting from a content) on information diffusion was analyzed in [2]. The
authors provide evidence of perceptive claim that the high-arousal content trig-
gers significant activation of users and boosts meme proliferation. Exhaustive
sociolinguistic analysis of social media communication presented in [15] reveals
important observations regarding meme lifecycle and virality. The authors em-
phasize the importance of phatic communication in maintaining vitality of so-
cial network. This type of communication does not transport quality content or
meaning but still enables emergence of convivality, understood as a production
of social engagement, based on temporal and elastic collectives consuming virals.
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Simple interactions and networking seem more important drivers of social net-
work dynamics than sharing valuable information. The comprehensive approach
for meme bursts prediction is presented in [1], where features based on content,
network and time are used to determine future meme popularity. The interesting
method of meme identification based on content and time was presented in [13].
The authors represent the content stream dumps in a form of Graph-of-Words
and use k-core decomposition algorithm to identify viral memes.

The notion of social network influencer is widely spread in mass culture and
affects modern online marketing strategies causing emergence of semi-professional
content producers on Twitter or Instagram. The importance of seed agents re-
sponsible for initiating information spread over social network was studied in
many works including [16, 10]. Cognitive constraints caused by heavy informa-
tion flows such as limited attention or confirmation bias, forces individuals to
aggressively filter content and optimize evaluation time by adapting options of
others [9]. The high authority of peer providing information and multiple ex-
posure increases the probability of meme adoption (retweet, mention). From
structural perspective, the influence can be quantified using vertex centrality
measures such as degree, betweenness centrality, clustering coefficient or Page
Rank. Nevertheless, the more complete model of meme propagation should also
include non-structural external knowledge such as forwarding activity and inter-
ests.

Temporal patterns of meme diffusion were also analyzed in the context of pro-
cess modeling and virality prediction. In [19], the authors used wavelet transform
and trajectory clustering techniques to discover six major types of growth-decay
characteristics of user attention curves. Different types of time series were iden-
tified for professional blogging, micro-blogging or news agencies. Long-term time
variations in Twitter hashtag exposure and adoption was studied in [11]. The au-
thors found that timing characteristics highly depend on the topic and frequency
of hashtag exposure. The features extracted from the time series of first tweet
adopters were used in [18] for classification-based virality prediction. It was also
shown, that structural features of social network are more discriminative than
time-based features.

The structure of social network was identified as a key component of meme
spreading dynamics [6, 14, 12, 3]. In particular, community structures can trap
information flows and transform simple epidemic spreading to complex conta-
gion, affected additionally by social mechanisms of homophily, reinforcement or
overexposure. Inter-community concentration of early meme adopters is one of
the most important features in predicting virality [17, 18]. Surprisingly, as pre-
sented in [14], the local structural properties of communities are less important
than mesoscopic community view. In the context of hashtag propagation over
Twitter network, it was shown that spreading of less popular hashstags should
be described as complex contagion, subject to homophily and social reinforce-
ment, while virals propagate similar to diseases [17]. Apart from communities,
the structure of subgraphs induced by early adopters is also crucial in modeling
future meme dynamics. In [3], the authors perform extensive feature engineering
for hashtag virality prediction and build classification model, which uses sub-
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graph conductance as one of the most discriminative features. More recently, in
[6], the authors analyze structural properties of meme adoption graphs (MAGs)
and formulate MAG-based, generic framework for spreading models comparison.

In our work we were inspired by structural models taking into account social
reinforcement and homophily [17, 18], but we decided to additionally include
negative feedback loop related to overused memes.

6 CONCLUSION

We demonstrated that hashtag spreading is a complex process, which cannot
be accurately modeled based on the network structure only. Many factors like
intra-community activity or popularity play an important role. In general, our
models taking into account meme overexposure follow the dynamics of hashtag
spreading more precisely, especially, when compared to the models from other
works. Unique information overexposure model (M5) is performing the best when
compared to the ground truth dynamics obtained from all hashtags.

The good results obtained for M9 model should also be emphasised. This
model takes into account overexposure constraint by generating tweet with the
probability inversely proportional to the number of exposures. This is the most
apparent proof, that the negative feedback loop for the social reinforcement
should be considered, when modeling meme spreading.

As visible in large error values and negative or insignificant correlations,
hashtags with the higher than average intra-community activity are the hard-
est to reproduce. Interestingly, overexposure models have smaller rmse errors
compared to social-reinforcement and homophily ones. Spreading with the lower
than average intra-community activity values is overall best described by the ho-
mophily model (M4). This is mostly due to its accuracy for unpopular hashtags.
For virals, defined as having popularity greater than 500 spreading events, the
M5 and M7 (the local increase of generation probability model) are much more
precise. The accuracy of M5 model is the order of magnitude better than one
obtained for M2-M4 models.

To have more complete overview of hashtag dynamics, the further work
should focus on analysing the timescale of spreading and the stability of so-
lutions when working with missing data.
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