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Abstract. On shared, wide-area networks (WAN), it can be difficult to
characterise the current traffic. There can be different protocols in use,
by multiple data streams, producing a mix of different traffic signatures.
Furthermore, bottlenecks and protocols can change dynamically. Yet,
if it were possible to determine the protocols (e.g., congestion control
algorithms (CCAs)) or the applications in use by the background traffic,
appropriate optimisations for the foreground traffic might be taken by
operating systems, users, or administrators.
We extend previous work in predicting network protocols via signatures
based on a time-series of round-trip times (RTT). Gathering RTTs is
minimally intrusive and does not require administrative privilege. Al-
though there have been successes in using machine learning (ML) to
classify protocols, the use cases have been relatively simple or have fo-
cused on the foreground traffic. We show that both k-nearest-neighbour
(K-NN) with dynamic time warp (DTW), and multi-layer perceptrons
(MLP), can classify (with useful accuracy) background traffic signatures
with a range of bottleneck bandwidths.

Keywords: Classification · TCP · protocol selection · wide-area net-
works · high-performance network · fairness · shared network

1 Introduction

Knowledge about the state of a data network can be used to achieve high per-
formance. For example, knowledge about the protocols in use by the background
traffic might influence which protocol to choose for a new foreground data trans-
fer. Unfortunately, global knowledge can be difficult to obtain in a dynamic,
distributed system like a wide-area network (WAN).

Previously, we introduced a machine-learning (ML) approach to network per-
formance, called optimization through protocol selection (OPS) [2]. Using local
round-trip time (RTT) time-series data, a classifier predicts the mix of protocols
in current use by the background traffic. Then, a decision process selects the
best protocol to use for the new foreground transfer, so as to maximize through-
put while maintaining fairness. We showed that a protocol oracle would choose
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TCP-BBR [7] for the new foreground traffic if TCP-BBR is already in use in the
background, for proper throughput. Similarly, the protocol oracle would choose
TCP-CUBIC [12] for the new foreground traffic if only TCP-CUBIC is in use in
the background, for fairness.

However, it was unclear if that result would generalize further. For example,
only one bottleneck bandwidth was considered in our first empirical evaluation.
On a real network, the bottleneck bandwidth can change dynamically due to
different network routing and paths.

After gathering more empirical signatures with different bottleneck band-
widths (Fig. 1b), we show that the applicability of k-nearest-neighbour (K-NN)
with dynamic time warping (DTW) remains intact, even with a mix of train-
ing data from different bottlenecks. That result is consistent with the ability of
DTW to abstract out scaling differences in time-series data.

In our previous study [2], K-NN and MLP were comparable in accuracy. We
advocated for the use of K-NN in practice due to the relative simplicity of K-
NNs, and due to the explainability of K-NN’s predictions and mis-predictions.
In other words, if a K-NN makes an incorrect prediction, one can reason about
why K-NN was wrong by examining the training data vectors that were the
nearest neighbours of the query vector (a.k.a. time-series). In contrast, if an
MLP makes an incorrect prediction, it is harder to explain the mistake. MLPs
have a multitude of parameters and weights within the layers and perceptrons
that make explanations more difficult.

This empirical study shows that even with multiple and/or changing bottle-
neck bandwidths (i.e., mixed traffic signatures), OPS continues to be possible
with either K-NN or MLP. In the future, we plan to explore the use of ML,
whether with K-NN, MLP, LSTM, or some other algorithm, to predict other
properties of network traffic. So far, OPS has been about selecting an appropri-
ate CCA at the operating system level. But, if the user had an ML oracle that
correctly predicted other network characteristics, then the user might choose
different application-level strategies (e.g., different video compression algorithm
to make bandwidth-vs-quality trade-offs). Or, in the long term, network admin-
istrators might be able to identify situations in which the best optimisation is
to selectively move some traffic to a different network route (e.g., an overlay
network, or a private network).

2 Experimental Setup

We implemented a controlled testbed to allow us to vary different network config-
urations (Fig. 1). This controlled network extends the testbed from our previous
work at 1 Gb/s speeds [3] by adding 10 Gb/s network interface cards (NICs) and
switches, enabling us to vary between 1 Gb/s and 10 Gb/s for the native link
rate, while keeping the possibility of emulating varying bottleneck bandwidth,
BtlBW, and end-to-end latency, RTT.
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(a) Dumbbell Network Topology (Based on our previous study [3])

Configuration
LAN WAN

BW RTT BW RTT

C1 1 Gb/s v 0 ms 500 Mb/s 65 ms

C2 10 Gb/s v 0 ms 250 Mb/s 65 ms

C3 10 Gb/s v 0 ms 500 Mb/s 65 ms

C4 10 Gb/s v 0 ms 1 Gb/s 65 ms

C5 10 Gb/s v 0 ms 2 Gb/s 65 ms

(b) Testbed Configuration Scenarios

Node(s) CPU (Model/Cores/Freq.) RAM

S1, D1 AMD Opt. 6134 / 8 / 2.30 32 GB

S2, D2 Intel Ci3-6100U / 4 / 2.30 32 GB

S3, D3 Intel Ci3-6100U / 4 / 2.30 32 GB

S4 AMD E2-1800 / 2 / 1.70 8 GB

R1, R2 AMD A8-5545M / 4 / 1.7 8 GB

(c) Nodes Configuration

Fig. 1: Testbed Architecture

2.1 Logical View

Our controlled testbed consists of a dumbbell topology with 7 end-nodes grouped
into 2 virtual LANs, and 2 virtual edge routers (i.e., R1, R2) connected over
an emulated WAN of bandwidth BtlBW and RTT (Fig. 1a). In the literature,
the dumbbell topology is often used as a simplified representation of a shared
network.

For the WAN link, the Dummynet [6] network emulator is used on nodes R1
and R2 to control the desired bandwidth, delay, and router queuing properties.
The emulated configurations we used in this study are summarised in Fig. 1b.
The end-to-end propagation delay (base RTT) for all the scenarios is set to 65
milliseconds for the WAN connection, as found on many medium-to-large WANs;
the RTT for LAN connections is negligible. The LAN link bandwidth is either
1 Gb/s or 10 Gb/s, both native link rates available to the nodes. The bottleneck
shared bandwidth for WAN (BtlBW) varies from 250 Mb/s up to 2 Gb/s.
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The router buffer size at R1 and R2 are fixed at 6 MB. This buffer size
accounts for about 0.5 BDP for the highest BtlBW, and up to 2 BDP for the
lowest BtlBW (BDP=Bottleneck-Bandwidth × Delay (RTT)). Setting the buffer
size to less than 1 BDP, so-called shallow buffering, could result in the under-
utilisation of network bandwidth. In contrast, setting the buffer to large sizes
could result in an effect called buffer-bloat where the users experience extremely
long delays due to long queuing delays at the router. However, the existing
version of the Dummynet software for Linux platform has an internal limitation
that prevents us from setting the buffer to sizes larger than 6 MB. But this fixed
size is sufficiently large to enable senders to saturate the BtlBW for WAN in all
configurations.

2.2 Physical View

The testbed is implemented as an overlay on top of a physical network. All
the nodes in our testbed are physically located in a dedicated cluster, all run-
ning Linux distribution CentOS 6.4 using kernel version 4.12.9-1.el6.elrepo.

x86-64. The hardware configuration of the nodes are provided in Fig. 1c. All
the nodes are equipped with two network interface cards of 1 Gb/s and 10 Gb/s
native rates. There are two network switches connecting all the nodes in parallel,
at 1 Gb/s and 10 Gb/s rates accordingly. There is no interference from other
traffic because the cluster is isolated from other networks.

2.3 Data-Transfer Scenarios

For all experimental scenarios (Fig. 1b), the sender nodes on the left-hand-
side LAN (S1, S2, S3, and S4) act as traffic generators, sending bulk data over
the WAN link. The receiver nodes are on the right-hand-side LAN (nodes D1,
D2, and D3). We run two data-transfer tasks simultaneously, between S1-D1
and between S2-D2. During the transfers, regular network pings (to measure
RTT) are conducted between S3-D3 (§ 5.1). S4 is not normally used for these
experiments. Both streams and the pings must travel across the bottleneck link
R1-R2. The RTT time series are presented in Fig. 5 and form the basis for our
machine-learning experiments in § 5.

Of course, networks often carry multiple streams of traffic, but we start our
evaluation with the simpler case of two streams, to make it easier to control
interactions.

3 Shared Network: Does Background Traffic Matter?

Networks are not always private. Bandwidth-sharing networks are still the com-
mon case for a large number of research and industry users. The workload on
shared networks tends to be highly dynamic. As a result, estimating the network
condition and available resources (bandwidth, etc.) is one of the challenging tasks

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_39

https://dx.doi.org/10.1007/978-3-030-50371-0_39


Learning Mixed Traffic Signatures in Shared Networks 5

in bandwidth-sharing networks. There are a number of studies in this area, in-
vestigating the possibility of estimating the available bandwidth in high-speed
networks [20, 25].

In addition to bandwidth estimation, estimating the network workload and
the type of background traffic on the network could also affect the performance
of data transfer tasks. In one study, the effect of background traffic on distributed
systems has been investigated [23]. Also, in our previous work we have inves-
tigated and shown the counter-intuitive performance of some well-known tools
and protocols depending on the type of background traffic in the network [1, 3,
2]. Hence, obtaining knowledge about the background traffic would allow bet-
ter and more-efficient adjustments of the network configurations, and choosing
appropriate data-transfer tools and protocols.

In this section, we further investigate the impact of background traffic on the
performance of TCP CCAs, as well as on a few high-performance data transfer
tools.

3.1 Case 1: TCP CCAs Interaction as Background Traffic

Here we briefly review the Transmission Control Protocol (TCP) in terms of its
congestion control algorithm (CCA). We review CUBIC and BBR, two popular
CCA schemes. CUBIC [12] is the the default TCP CCA deployed on most Linux-
based hosts. BBR [7] is a newer CCA. Some studies show that both CUBIC and
BBR manifest unfair bandwidth utilisation under various circumstances [18, 19].

To further investigate the interoperability of CUBIC and BBR, as well as
their impact on the other traffic sharing the same bandwidth, we have run an
experiments, using CUBIC and BBR over a shared network. The results are
provided in Fig. 2. Due to space limit we only present resluts for C4 configuration.

For each of two possible background traffic, (1) Constant TCP (Fig. 2a),
(2) Square-wave pattern TCP Stream (Fig. 2b), we run 4 separate data-transfer
tasks as foreground traffic (different bars in Fig. 2):

1. iperf. A single TCP stream using the standard iperf tool.
2. iperf-8. A combination of 8 parallel TCP streams for data transfer.
3. iperf-16. A combination of 16 parallel TCP streams for data transfer.
4. UDT. A well-known UDP-based high-performance data transfer tool.

For both background traffic and foreground data-transfer tasks we have ex-
amined both CUBIC and BBR to study their interaction and impact on each
other. For example, the notation C-C in Fig. 2 specifies that CUBIC is the
CCA for the background traffic, as well CUBIC is the CCA for the foreground
traffic (whether it is iperf, iperf-8, iperf-16, but NOT UDT since UDT is based
on UDP). Similarly, the notation C-B specifies that CUBIC is the CCA for the
background traffic, but BBR is the CCA for the foreground traffic (iperf, iperf-8,
iperf-16, but NOT UDT).

As shown in Fig. 2, for all the possible mixtures of parameter configurations,
there is a significant variation in the observed throughput performance while
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(a) Background Traffic: Constant TCP
Stream

(b) Background Traffic: Square-wave pat-
tern TCP Stream

Fig. 2: Impact of different TCP CCAs as background traffic on each other

each tool runs along with another TCP CCA. Both CUBIC and BBR are able
to utilize available bandwidth while running in isolation. However, BBR has a
significant negative impact on CUBIC in all combinations, regardless of running
as a background or foreground stream. CUBIC stream(s) suffer from extreme
starvation when running along with BBR streams on a shared networks. In
contrast, all-CUBIC and all-BBR scenarios, while not perfect, are considerably
fairer in sharing bandwidth compared to heterogeneous combination of the two
CCAs.

3.2 Case 2: TCP- vs. UDP-based Background Traffic

In last section we investigated the impact of single TCP stream of varying CCA
algorithm on the foreground traffic. In this section, we further expand our obser-
vations for more complicated patterns of background traffic, where background
traffic is either a TCP stream or a UPD-based data transfer task as follows: No
background (no bg), constant TCP (bg const), TCP- and UDP-based square-
wave pattern cycling on and off for 10 seconds (bg tcp1 and bg udp1), and an
UDP-based square-wave traffic generated by RBUDP [14] data transfer tool.
The results are depicted in Fig. 3.

Similar to previous section, here we have studied the possible combinations
of CUBIC and BBR where the data transfer tasks are TCP streams. The re-
sults here show that further than TCP CCA, the type of background traffic
being TCP or UDP stream will differently impact the foreground data transfer
performance. While for simple TCP-based background traffic the GridFTP tool
seems to perform better than UDT, when UDP-based streams are added as the
background traffic the UDT performs relatively better than GridFTP.
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(a) BG=CUBIC, FG=BBR (b) BG=BBR, FG=CUBIC

Fig. 3: Impact of various TCP- and UDP-based protocols on TCP CCAs.
BtlBW=1 Gb/s is the bottleneck bandwidth of WAN link. BG and FG are the
CCAs used for TCP-based background and foreground traffic respectively where
applicable. (Listed BG CCA is irrelevant for UDP-based background cases.)

3.3 Case 3: Burstiness of the Background Traffic

In the last section we observed that TCP- and UDP-based background traffic
could imply considerably different performance for the foreground data transfer
tasks. In addition, we have already seen that for TCP-only mixture of traffic,
different CCAs could have different impacts the performance of foreground traf-
fic. In this section we will see that when the background traffic is only formed
of UDP-based streams, there are still more attributes that could impact the
performance of data transfer tasks. For this experiment, we conduct a bursty
UDP stream as background traffic, represented by an square-wave pattern. The
burstiness of the UDP stream is varying from 1-second ON and 1-second OFF
(denoted by bg udp(1,1)), to 1-second ON and 10-seconds OFF (denoted by
bg udp(1,10)). The results are provided in Fig. 4. Again, the burstiness of the
background traffic could significantly impact the performance of data transfer
tasks, where CUBIC is more vulnerable to this burstiness than BBR (Fig. 4a
and Fig. 4b respectively)

4 End-to-End Traffic Probing: Intrusive vs. Non-Intrusive

In § 3 we investigated and shown the impact of background traffic, from several
aspects, on the performance of foreground traffic and data transfer tasks. With
that knowledge, here we will review and discuss the possible network signals that
might be used at end-nodes to probe the shared bandwidth and identify the type
of background traffic. Such a knowledge would later be utilised to decide on an
appropriate set of tools and protocols for transferring data over the network.

Estimating the type and mixture of network traffic is performed from a local,
non-global perspective, viewing the network as a black box. In such scenarios
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(a) Foreground Traffic: TCP CUBIC (b) Foreground Traffic: TCP BBR

Fig. 4: Impact of bursty UDP-based background traffic on CUBIC and BBR
foreground. Background traffic is generated using iperf tool in UDP mode.

one well-known technique is to send probing packets to the network and based
on the received response form a model as a proxy for the global network view.
Ping and TraceRoute are two widely used tools that utilise this technique.

While end-to-end probing is a flexible and user-level approach, depending on
the type of probing to conduct it might face challenges due to its impact on
network performance. Sending probing packets to the network would mean that
part of network resources will become busy processing non-real data packets for
helping an end-node to obtain information about the network. This technique is
historically discouraged or blocked by network administrator and infrastructure
providers. The challenges for TraceRoute tool and it’s numerous variations to
deal with imposed restrictions is an evident example of such discouragement.

The two end of network probing spectrum are Intrusive and Non-Intrusive

network signalling.
Intrusive Probing Intrusive probing consists of sending bursts of data traf-

fic to the network in order to estimate the available bandwidth and resources.
While this probing policy could result in more accurate predictions, it implies
wasting a significant portion of network bandwidth and resources for this probing
process. As such, computer networks usually search for such probing workload
and apply restrictions, using techniques such as traffic policing[11].

Non-Intrusive Probing At the other end of the spectrum, the most ideal
type of network probing does not involve sending any artificial packets to the
network. Instead, the end-node would solely rely on the organic signals it re-
ceive from network as a result of transferring real user traffic on the network.
Despite it benefits and desired behaviour, it is not a practical method for prob-
ing network resources in most scenarios. Firstly, solely relying on the organic
acknowledgement and signals would limit our exposure to the network and only
gives us inconsistent messages which could be very challenging to impossible to
draw any conclusion on them. Secondly, such network signals are usually being
consumed by the lower layers in the networking stack and are being discarded
before handing data over to the user-space. Hence, there is little opportunity to
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utilise non-intrusive signalling techniques for investigating network characteris-
tics, including the type of background traffic.

A Practical Trade-off: Minimally Intrusive Probing As a practical
trade-off between intrusive and non-intrusive methods, we aim to use a minimally
intrusive probing method. Such a method would enable us to develop sufficient
insight about the network, and at the same time would impose minimum impact
on the network resources and so will be more probable to be allowed to be
carried over and across the networks. In this study, we use RTT as our main
network probing facility, studying it variation over time as a potential signature
to identify the mixture of background traffic on the network. In particular, in the
following section we periodically probe the end-to-end RTT using the ping tool
to form time-series of RTT values over time. We then use these RTT time-series
as a proxy for predicting the mixture of traffic on the network.

5 Learnability of TCP-based Traffic Signatures

In this section, we investigate the feasibility of building classification models
to predict the type of background traffic using end-to-end probed RTT time-
series. As a proof-of-concept, for this study we investigate the learnability of a
mixture of TCP-only traffic on the network (§ 3.1). In particular, we consider
the following 6 distinct classes of TCP-based traffic mix to be represented by
the prediction model:

1. No Traffic (B0-C0). No active data communication on the network.
2. Single CUBIC (B0-C1). A single TCP CUBIC stream running on the

network.
3. Single BBR (B1-C0). A single TCP BBR stream running on the network.
4. Double CUBIC (C1-C1). Two TCP CUBIC streams running on the net-

work.
5. Double BBR (B1-B1). Two TCP BBR streams running on the network.
6. CUBIC and BBR (B1-C1). Two TCP streams running on the network:

one CUBIC and one BBR.

Intuitively, for the RTT time-series to be used as the input for prediction,
they should hold two qualities:

1. Distinct Patterns between traffic signatures: the RTT time-series for different
traffic mixtures should be reasonably distinct in order to be trainable with
a reasonable accuracy.

2. Repetitive Pattern within each time-series: in order to be able to train a
classifier to generalise well to unseen cases of RTT time-series, repetitive
patterns should exist in each traffic mixture signature over time.

We have conducted a series of experiments running the above six classes
of traffic mixtures, probing end-to-end RTT in the periods of one second. The
sample signature of RTT time-series are provided in Fig. 5. The provided sam-
ples, intuitively, hold both desired qualities of interclass distinctive patterns and
intraclass repetitive patterns.
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Fig. 5: A Sample of RTT Time-Series Data

In what follows we review the process of building training dataset, training
prediction models, and studying the accuracy and usability of the trained models.

5.1 Building a Training Dataset of RTT Time-series

Using our controlled experimental setup presented in § 2, we gathered RTT time-
series, with a 1-second sampling rate, over a one hour period of time. To smooth
out the possible noise in the measured RTT value, each probing step consists
of sending 10 ping requests to the other end-host, with 1 milliseconds delay in
between, and the average value is recorded as the RTT value for that second. We
repeated this experiment for the six traffic classes listed above. In addition, to
further investigate how well the time-series prediction generalises across varying
bottleneck bandwidth configurations, we repeated the same experiment for all
the configurations listed in Fig. 1b.

For each probing scenario, we conducted the corresponding CUBIC or BBR
traffic stream between pairs of (S1,D1) and (S2,D2) pair of nodes; at the same
time, we used the (S3,D3) node pair to conduct the periodic RTT probing and
form the RTT time-series for that particular class.

For all data-transfer tasks, we used the iperf tool (http://software.es.
net/iperf/) for generating TCP traffic of the desired CCA.

To prepare the gathered data for training process, we partition the one-hour
RTT time-series into smaller chunks. For this purpose we re-used the partitioning
software we developed as part of our previous study [2], partitioning the data
based on a given parameter w, representing the RTT time-series length.

5.2 Training Classification Models

For this study, for training classifiers we use k-nearest-neighbours (K-NN), and
a multi-layer perceptron (MLP) neural network [13, 5]. As for K-NN, we use
it along with the well-known dynamic time warping (DTW) distance metric,
for the time-series data. DTW was originally used for speech recognition. It
was then proposed to be used for pattern finding in time-series data, where
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Fig. 6: Learnability of TCP-based Traffic Signatures. Accuracy of K-NN w/
DTW and MLP models

Euclidean distance results in a poor accuracy due to possible time-shifts in the
time-series [4, 15]. For MLP, we use a network with 2 dense hidden layers of
w ∗ 1.5 and w nodes, both with ReLU activation function. The output layer
applies SoftMax activation function. To avoid overfitting Dropout technique is
uniformly applied through the layers.

To make an appropriate decision about the parameter value w, length of RTT
time-series entries, we did a parameter-sweep experiment where we calculated
the classification accuracy for all the classifiers, varying parameter w from 5
seconds to 60 seconds, with a 5 second step.

To better estimate accuracy while avoiding overfitting, we use five-fold cross-
validation. The reported results are the average accuracy over the five folds on
the cross-validation scheme. Fig. 6 represents the average accuracy per window
size w (in seconds), calculated for three variations of K-NN and MLP models.

Fig. 6a presents prediction accuracy for the models trained for a single net-
work configuration. Fig. 6b shows the prediction accuracy when the models are
trained using the mixed traffic signatures of all configurations.

For both single-configuration and mixed-configuration scenarios, K-NN with
DTW yields a better accuracy in most cases. Since K-NN compares against real
data points, it is very efficient in making more accurate prediction on average.
1-NN in particular offers the highest accuracy between tested K-NN variations.
In contrast, MLP shows variable accuracy, highly sensitive to the parameter w.
On the one hand, in Fig. 6a, MLP has lower accuracy than K-NN across different
values of w. On the other hand, in Fig. 6b, MLP has the highest accuracy for w
below 25 seconds, but MLP becomes less accurate than K-NN for larger values
of w. Recall that, given our methodology, the number of training data instances
decreases as w increases.

Although the preference of K-NN vs. MLP depends on the choice of w, the
experiment does show that a ML classifier is capable of being accurate in the
range of 0.75 to 0.85 for mixed traffic signatures. This accuracy level, being
achieved using our relatively simple classification models, confirms our hypoth-
esis on learnability of end-to-end TCP-based traffic signatures using RTT time-
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series. According to our other study, this level of accuracy is sufficient to improve
on the throughput and fairness of the TCP-based data transfers on a shared net-
work, running a mixture of CUBIC and BBR CCAs [2]. Further studying the
extensibility of this approach to other mixtures of TCP- and non-TCP-based
traffic, as well as adopting more sophisticated classification models such as RNN
and LSTM deep neural networks [16], form the next steps of this study to be
pursued in the future work.

6 Other Related Work

ML techniques have been used for designing or optimising network protocols. Re-
myCC uses simulation and ML to create a new TCP CCA, via a decentralised
partially-observable Markov decision process (dec-POMDP) [24]. Performance-
oriented Congestion Control (PCC) is another recent study where an online
learning approach is incorporated into the structure of the TCP CCA. [9]. On-
line convex optimisation is applied to design a rate-control algorithm for TCP,
called Vivace [10]. Another recent approach has been to apply deep reinforcement
learning techniques for constructing CCA algorithms [17].

Another line of work includes applying ML techniques to discover network
properties. Estimating the available bandwidth in high-speed networks [20, 25],
identifying TCP CCA in traffic traces [21, 8], and predicting TCP unique be-
haviours and behaviour anomalies [22] are among the topics in this category.

7 Concluding Remarks

We investigated the learnability of traffic signatures of background traffic in
shared networks. Currently, the signatures are RTT time-series data based on
minimally intrusive end-to-end probing. We gathered a labelled training dataset
of 6 different classes of TCP-based background traffic, on a testbed that emulates
a shared WAN. Different classifier models were trained, using the signatures. We
performed a simple parameter sweep of the available bandwidth of the bottleneck
in the testbed. Such prediction models could prove useful for a variety of use-case
scenarios, including protocol selection for a data transfer, and network tuning
and optimisation.

For future work, we will consider adding more complex traffic mixes, includ-
ing UDP-based traffic, high-performance data transfer tools (e.g., GridFTP),
bursty traffic, and more. We hypothesise that by having sufficiently large train-
ing datasets, more sophisticated classification algorithms such as deep neural
networks and LSTM might be used.

Acknowledgement: Thank you to Jesse Huard for the original implemena-
tion of MLP.
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