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Abstract. The paper introduces a new randomized sampling-based
method of motion planning suitable for the problem of narrow passages.
The proposed method was inspired by the method of exit points for cav-
ities in protein models and is based on the Rapidly Exploring Random
Tree (RRT). Unlike other methods, it can also provide locations of the
exact positions of narrow passages. This information is extremely im-
portant as it helps to solve this part of space in more detail and even
to decide whether a path through this bottleneck exists or not. For data
with narrow passages, the proposed method finds more paths in a shorter
time, for data without narrow passages, the proposed method is slower
but still provides correct paths.

1 Introduction

A fast and reliable solution of the motion planning problem - to find a collision-
free path for an agent (an abstraction of a moving object) between at least
two spots in an environment filled with obstacles is needed in many areas
(e.g. robotics, autonomous vehicle navigation, computational biology, etc.). For
simple-shaped agents it is possible to use geometrical methods (e.g., Voronoi di-
agrams to compute centerlines). However, when the navigation of more complex
or even a flexible agent is necessary, the geometric methods on themselves are
not strong enough any more.

The concept of configuration space is used to interpret motion planning. The
configuration space is a set of all existing configurations, where one configura-
tion represents the specific position and rotation of the agent. These properties
together form degrees of freedom. As the number of degrees of freedom increases,
the dimension of the problem to be solved as well as its complexity increase. For
example, the agent configuration in 3D space may be a six-dimensional vector
describing its position (3 vector components) and rotation (3 vector components)
in the configuration space. A configuration space then contains a huge number
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of configurations that cannot be processed in a reasonable time, and, therefore,
randomized sampling-based methods are used.

Randomized sampling-based methods [7] [10] randomly select configurations
to subsequently test for collisions. If the tested configuration is collision-free,
it is added to a path-finding structure (roadmap). Otherwise, the configuration
is rejected and the method creates a new random configuration. The roadmap
approximates the free regions of the configuration space and enables to search
a path with graph-based path planning methods. In many cases, this is a very
effective way to find a passage through the environment in a reasonable time.
However, the randomized sampling-based algorithms have problems with narrow
passages; since the methods randomly sample space, it is very difficult to hit a
sample inside a narrow passage.

This article proposes a solution to the narrow passage problem, based on
the combination of Voronoi diagrams and randomization, using the idea of so-
called exit areas [12]. Exit areas (exit regions) were originally proposed in the
context of protein molecular models. They show the exits from deeply buried
empty cavities. However, the same idea can be used in other motion planning
applications as well. In general, exit areas capture the exact positions of the
narrow passages, which greatly contributes to eliminating the biggest weakness of
randomized sampling-based algorithms. Thanks to this knowledge, it is possible
to sample the position of the narrow passage in detail and it is even possible to
decide whether there is a passage through the narrow passage or not.

The paper has the following structure. Section 2 contains a description of ex-
isting motion planning methods that are useful for navigating an agent through
the configuration space. Section 3 focuses on a detailed description of the pro-
posed solution for motion planning in narrow passages. It also includes an algo-
rithm description and improvement for the sample based algorithms to increase
its acceptance of samples. Section 4 presents experiments and results on the real
biomolecular data and artificially generated data. Section 5 concludes the paper.

2 Related Work

The widely used randomized sampling-based algorithms can be divided into two
groups - algorithms based on Probabilistic Roadmaps (PRM) [7] and Rapidly Ex-
ploring Random Tree (RRT) [10]. The original PRM algorithm [8] builds a graph
over the explored parts of the environment. This approach has two phases. First
the random samples are generated and tested for collisions. The second phase
tries to connect the close samples with an edge if possible. The possibilities of
implementing these procedures are stated in [5] which also compares these pro-
cedures in detail. A sufficient input for the PRM algorithm is a set of obstacles.
The knowledge of the start and the goal configuration is not required by the
algorithm itself, but their knowledge can be used in some sampling heuristics.

There are two problems in the PRM algorithm. The first one is called bound-
ary value problem, when it is necessary to solve whether the movement of the
agent from the first state to another is possible. It rises up when connecting the
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two given configurations. This problem can be difficult to solve under motion
constraints, so PRM is primarily used in motion planning without motion con-
straints. The second problem is the already mentioned narrow passage problem.
It can be solved (or at least approximated) by generating random samples close
to obstacles or around medial axis of the environment [9] for low-dimensional
configuration spaces.

sPRM [7] is a simplified version of the Probabilistic Roadmaps algorithm.
Rather than for practical use it is used for the analysis of follow-up algorithms.
On the other hand, unlike the previous method, the sPRM finds the path asymp-
totically optimal. PRM* [6] is another possible variant which uses a heuristic
function to minimise roadmap lengths. This is an algorithm based on sPRM
with the only difference that potential samples for interconnection are selected
from the neighborhood with radii r > 0.

The Rapidly-exploring Random Tree (RRT) [10] belongs to the second men-
tioned group. RRT has been designed for use in models with a number of complex
physical constraints. A tree is generated instead of the graph, which simplifies
the path planning part. Next it incrementally grows towards unexplored regions
of the configuration space. In addition, it also needs the start configuration. The
main RRT computation is as follows. First of all, the tree structure tmain is ini-
tialized and then the algorithm repeats three main steps in cycle. The first step
is to randomly generate a new sample in the configuration space. Steering the
new sample close to the nearest tree list of the tree tmain is the second step. The
last step is to check the collision of the new sample. If the sample is collision-free,
it is added to the tree tmain, otherwise it is rejected. As RRT is the base of our
proposed solution, it will be explained in more detail in the next section.

In the case of RRT algorithms, there are a number of modifications that
solve motion planning in general or for specialized problems. RRT* [6] is an
algorithm that uses a heuristic function to find the optimal solution. The ex-
tension for dynamic environment is solved by RRTX [13]. There are plenty of
other modifications but all of them suffer from the narrow passage problem like
PRM algorithms. Guiding the tree along a precomputed path by geometry-based
methods [14] is a possible way how to solve the narrow passage problem.

The motion planning methods can also be applied to other areas than to the
navigation of mechanical objects. The motion planning in molecular simulations,
where we have found inspiration for our proposed solution, is also a very impor-
tant topic of research. The problem is, e.g., a navigation of the so-ccalled ligand
in a protein. Probabilistic Roadmaps can be used to sample the configuration
space of the protein [1] in order to speed up molecular dynamics simulations but
atoms bounds of the ligand lead to sampling in the high-dimensional configura-
tion space.

The RRT algorithm is an appropriate planner also for a flexible ligand [3].
The ability to generate new configurations greatly affects the performance of
the RRT. The high-dimensional space problem can be time consuming and the
ML-RRT (Manhattan-like RRT) copes with this problem [4]. The method was
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further extended for flexible ligands [3]. Moreover, the high-dimensional space
roadmap can be projected back to 3D space [2].

Exit areas (exit regions) were originally developed for cavities in protein
models [12]. Cavities and their exits are computed from a Voronoi diagram. The
graph of Voronoi vertices and edges captures possible trajectories of collision
avoiding spherical probes among spherical obstacles (the atoms of a protein
model). When the probe is located in a cavity, it cannot get to the exterior
space without a collision unless the probe radius is reduced. The exact value to
which the probe radius must be reduced and the exact position where the probe
will be located (the primary exit location) can be computed by analyzing the
graph of Voronoi vertices and edges. The edge on which the probe could escape
is then disabled and the process is repeated to discover remaining exits. Exit
areas (exit regions) are then constructed as the groups of intersecting probes in
the exit locations.

3 Proposed Solution

The proposed solution idea is based on incorporation of exit areas [11] into a
randomized sampling-based algorithm where it helps to detect narrow passages
in the data. The exit area in this context is the area that contains the nearest
collision-free surrounding of the narrow passage. The position inside the exit
area (more precisely in the middle of the narrowest passage) is called the exit
point. Now let us first recall the original RRT algorithm in detail, see [10], and
then the proposed modifications.

Each RRT algorithm contains three identical steps that have been used since
the introduction of the original RRT algorithm [10], only the techniques used to
solve these individual steps differ. After the tree structure tmain is initialized,
three steps, which are repeated until the computation is finished (exceeding the
maximum iteration, finding the path, etc.), are started. Generating the new
random sample in the configuration space is the first step. The second step is
steering the new sample close to the nearest tree list of the tree tmain. The third
and final step is to check if the new sample is colliding with surroundings. If the
sample is collision-free, it is added to the tree tmain, otherwise it is rejected.

Two modifications of the RRT algorithm are needed in the proposed solution.
First, the exit points are computed before the main RRT cycle is started. Exit
points tell us the exact position of the most problematic places (narrow passages)
in the data, which can be then focused on (e.g., more detailed sampling of narrow
passages can be done). In any case, the knowledge of the exact position of the
narrow passage is absolutely crucial. The second change is the correction of the
rejected samples. If the agent has a small collision with the surroundings and
the sample would be rejected, we try to move the agent into the free space. This
modification is included in the third step of the RRT algorithm (the collision
test of the sample).

Let us illustrate the main idea of the proposed solution. First, the proposed
solution finds exit points viexit, i = 1, 2, 3, whose surrounding is then sampled
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Fig. 1: (a) Sampling around exit points, (b) Sampling around the starting posi-
tion vstart, (c) Merging exit point tree t3 into the main tree tmain

by a randomized sampling method (Fig. 1a). When all narrow passages are
processed, sampling from the starting position vstart is initiated (Fig. 1b). This
sampling from the starting position vstart repeats until we find the pass through
the sampled data. During this sampling, the tree tmain can reach some smaller
tree ti that has been created when the method was sampling the exit point
surroundings. In this case, we connect the smaller tree ti to the main tree tmain

(Fig. 1c). This approach has two obvious advantages. The main tree tmain grows
by already created samples to cover more space, and above all, it easily overcomes
the narrow passage.

The whole process is shown in detail as Alg. 1. Exit points are computed
at (Alg. 1, line 1). Each exit point viexit is basically a new starting point for
calculating the RRT algorithm, so we run it for each viexit (Alg. 1, line 5). It is
important to note that we will let the RRT algorithm run only a limited number
of steps cmax, because we only need to sample surroundings of a narrow passage
to find if there is a possibility to get the agent through. Finally, the main RRT
algorithm computation is run from the input starting point vstart (Alg. 1, line
7), this run is not limited by the number of samples.

Now let us focus on the modification of the RRT algorithm itself (Alg. 1,
lines 9-19). For a given starting point vstart, which is the root of our main tree
tmain, we will try to find a collision-free position (Alg. 1, line 11). Then the main
loop of the algorithm, which contains the above mentioned steps (sample, steer,
connect), runs. The most important is the modification at the end of this loop
where the merging of the existing trees tmain and ti is done. If the new sample is
collision-free and is added to the tree ti, a check is done whether the new sample
is also close to any other existing sampled tree tj , i 6= j. If there is such a tree
tj , both trees are joined (i.e., the currently sampled tree ti is extended).

We also modified the rejection of samples in collision with environment. An
often case is that the sample is rejected, although only its small part is in collision
with the surroundings. Therefore, in case of a collision, its ’size’ is checked. If
there is a ’big’ collision (e.g., more than 20% of the agent is in an obstacle),
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Algorithm 1: The proposed solution with modified RRT algorithm

Data: The flexible agent A with initial position vstart, set of obstacles O
Result: The main tree structure tmain

1 Algorithm proposed solution

2 exits← computeExits (vstart)
3 T ← ∅
4 foreach e ∈ exits do
5 t← RRT (e, T, n,O)
6 Add t into T

7 tmain ← RRT (vstart, T, nmax, O)
8 return tmain

9 Procedure RRT(Tree root vroot, set of trees T , number of iterations n, set of
obstacles O)

10 Create the tree t with the root vroot
11 Collision-free rotation of agent in the root position vroot
12 repeat n times
13 Create a new sample s
14 Steer s to the tree t
15 if s is collision-free then
16 Add s to the tree t
17 if s is close to some tree tj ∈ T then
18 Merge the tree tj into the tree t

19 return t

the sample is rejected. Otherwise, we try to push the agent out of the obstacle
to the free space following the shortest trajectory (Fig. 2a). There are multiple
directions where to push the agent but we are using the direction with the
shortest shift of the agent to the free space. Subsequently, it is necessary to check
whether this shift was accessible or not. If the agent is collision-free (Fig. 2b), the
sample is accepted and added into the tree structure. However, it may happen

(a) (b) (c)

Fig. 2: (a) Small collision with obstacles, (b) Sample pushed correctly to the free
space, (c) Sample pushed to another collision
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that the push-out of one obstacle results in a collision of the agent with another
obstacle (Fig. 2c). In this case, the sample is rejected.

4 Experiments and Results

All experiments of the proposed solution, which was implemented in C#, were
performed on a computer with the CPU Intel R© CoreTM i7-7700K (4.2GHz) and
64GB 2400MHz RAM. Three types of environments were used for the testing of
the proposed solution – two artificial environment data sets and real biomolecule
dcp (proteins are freely available from data bank). Moreover, each of the envi-
ronments was tested with a different flexible agent.

In the first column of figures there are the first artificial data (Fig. 3a) that
are compounded from two hollow cubes connected by tunnels. There is also a
cross-section (Fig. 3d) of these data, the location of the exit point (green circle
with red cross) and the starting position (green rhombus with red cross) are
shown, too. Fig. 3g contains an example of one state of a flexible agent. In total,
we have 15 different states of this flexible agent with different positions and
rotations of individual spheres towards each other. Similarly, the second column
contains data, also artificially created, that resemble a shell (Fig. 3b). To be
more specific, it represents a hollow sphere with a crack. The position of the
start (green rhombus with red cross), which is exactly in the middle, and the
exit point (green circle with red cross) is shown in Fig. 3e. Using this data, we
navigated the agent shown in Fig. 3h, which also has 15 different states. The
last column contains real biomolecular data (Fig. 3c). The cross-section of these
data with location of some exit points (green circles with red cross) and starting
position (green rhombus with red cross) are shown in Fig. 3f. Fig. 3i contains an
example of one state of a flexible agent (ligand). In total, we have 100 different
states of this flexible agent with different positions and rotations of individual
spheres towards each other.

Now let us look at the difference in the tree structure, which is an algorithm
output, using the RRT algorithm with and without exit points. The biggest
visual difference between the results of RRT and its modification is at the be-
ginning of the computation. Differences remain also in the further course of the
algorithms, but it is difficult to distinguish them visually, because the environ-
ment is filled with a large number of samples. Note that the starting position
vstart is colored green and each exit point viexit has red color (Fig. 4). Due to
the good visibility of individual trees ti, the rendering of obstacles is disabled.
In the case of a modified RRT algorithm, we may notice that we have more than
one tree (Fig. 4a). A small tree ti is created around each exit point, and then
the main sampling starts from the start point vstart, which creates the main tree
tmain. The isolated vertices in Fig. 4a are those exit points which did not lead to
a collision-free configuration, so were not subsequently used in the calculation.
Fig. 4b then shows the behaviour of the standard RRT algorithm, which will sub-
sequently have a problem with narrow passages, as there is very little probability
that the algorithm will hit the right place with the correct configuration.
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(a)
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Fig. 3: (a-c) Tested data sets, (d-f) Cross-section through tested data sets, (g-h)
Examples of navigated flexible agents

Results of the standard RRT method and of our proposed solution (let us
call it mRRT for short), applied on the first artificial data (Fig. 3a) are shown
in Table 1. There is only one possible way how to get out through the obstacles
and it was found in all cases by both tested algorithms with 100% success.
However, mRRT has a clear superiority over the RRT algorithm as to the time
of computation. As mentioned there is only one path through data but Table 1
contains 1000 found paths. This column means that we have ran the computation
1000 times with different seed of random generator.

This time difference was bigger on the other artificial data (Fig. 3b), where
there is also one possible pass but the passage through the data now contains
more possible space around the narrow passage, but at the same time a large
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(a) (b)

Fig. 4: Start of (a) The modified RRT algorithm with exit points, (b) Standard
RRT algorithm

Table 1: Comparison of the RRT algorithm and our modified version (mRRT) -
first artificial data

Number of Time [s]
Algorithm found paths Lowest Average Median Biggest

RRT 1000 28.31509 281.595 259.9069 861.9697
mRRT 1000 0.145702 14.79853 0.23456 59.82809

amount of free space where the sampling algorithm may become congested. In
this case, the RRT algorithm did not find its passage through data at all (Ta-
ble 2). The calculation even ended up with a low memory error, after having
checked one million samples in approximately two hours of each run. Similarly
to the previous table, the column with the number of paths means how many
times was the path found from 5000 runs with different seeds. The mRRT found
its way in every run in a very good time.

Table 3 compares the results of the real biomolecular data. The tested al-
gorithms were run 500 times for the time of two minutes, and each run had a
different seed of random sampling generator (but the same seed was used for
both algorithms) Table 3 contains information on how many times the RRT al-
gorithm was better in the evaluated property than mRRT and vice versa where

Table 2: Comparison of the RRT algorithm and our modified version (mRRT) -
second artificial data

Number of Time [s]
Algorithm found paths Lowest Average Median Biggest

RRT 0 Out of Memory Out of Memory Out of Memory Out of Memory
mRRT 5000 0.235554 11.2778 9.891314 53.59965
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Table 3: Comparison of the RRT algorithm and our modified version (mRRT) -
tested on the real biomolecular data

Number Time of of the found path Count of Samples
Algorithm of paths First Second Third Fourth Fifth Accepted Rejected Total

RRT 0 37 206 315 289 177 476 61 425
mRRT 500 463 294 185 211 323 24 439 75

the evaluated properties were higher number of found paths, shorter path finding
times, more samples accepted, fewer rejected samples, and more total samples,
respectively. In all cases mRRT algorithm found a higher number of paths than
the RRT algorithm. The result of the time comparison of these methods is inter-
esting. The first two passes through the data were found faster by our method,
the third and fourth by standard RRT algorithm, and since the fifth pass, mRRT
began to lead again.

The last mentioned modification in the proposed solution - pushing the agent
out of the obstacle if there is only a small collision with the environment - is
in Table 4. There is a comparison of both RRT and mRRT algorithms with
and without this modification on the real biomolecular data. Table 4 provides
information on how many times the RRT algorithm was better without sample
correction than with sample correction and vice versa (same for mRRT). Focus-
ing on the RRT algorithm, we can notice that the first two passes through the
data are found faster without correcting the samples. However, the other three
passes are found faster when using this approach. At the same time, it is essen-
tial that using this approach, the number of samples received is higher and the
number of rejected samples is lesser than the standard RRT algorithm has. The
total number of samples is lower, but this is because the RRT algorithm without
this approach has a much larger number of rejected samples. In the case of our
proposed solution (mRRT), it is better to use the sample correction, because in
almost all cases we get better results. Only in the total number of samples is
the result worse, but the reason is the same as in the case of the standard RRT
algorithm.

We should point out that results are highly dependent on the data type: if
the data contain only narrow passages, mRRT is better. If the data contains

Table 4: Comparison of the RRT algorithm and our modified version (mRRT) -
push with and without

Time [s] Samples
Algorithm First Second Third Fourth Fifth Accepted Rejected All

RRT without push 1931 1484 960 704 609 0 35 2187
RRT with push 333 780 1304 1560 1655 2264 2229 76

mRRT without push 813 727 710 696 732 0 28 1774
mRRT with push 1023 1109 1126 1140 1104 1836 1808 62
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large passes, mRRT is slower due to the calculation of exit points (useless for
large passes). In the current data there are both types of passes (large passes
and narrow passages) where our modified solution finds the narrow passages first
and than the large passes. On the other hand, the standard RRT algorithm first
finds the large passes and then the narrow passages (very low probability).

5 Conclusion

In this paper we introduced a modification of the RRT algorithm with improved
ability to find a collision-free path for a flexible agent in an environment repre-
sented by configuration space. The proposed modification has been described for
RRT algorithm but can be used in any sampling-based algorithm. Besides find-
ing the path, the method provides knowledge where exactly the narrow passages
are. This is extremely useful information as with proper tools it is possible to de-
cide whether the narrow passage is passable or not. The RRT algorithm gives us
two possible answers - there is a path through data or the algorithm cannot find
any (the path may exist or not). The modified algorithm is able to give us also
two answers - there is a path through the data or there is none. The proposed
solution is most suitable for the data with narrow passages, where it is multiple
times better than the original algorithm. For data without narrow passages the
proposed method is slower than the standard sampling-based algorithm due to
the extra computation of exit points and sampling their surrounding. However,
a correct path will be found even for such unfavourable data.
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