
Estimation of tipping points
for critical and transitional regimes

in the evolution of complex interbank network ?

Valentina Y. Guleva[0000−0002−1555−9371]

ITMO University, Kronverkski 49, 199034 Saint-Petersburg, Russian Federation
guleva@itmo.ru

Abstract. We consider an agent-based model of dynamic interbank net-
work, evolving under several influential factors. Co-evolution is formally
performed by the connection between node states and topology of inter-
action, and vice versa. During the simulation, network evolves to criti-
cal regime, corresponding to cascading behaviour in the system, through
transitional one. Results show these global regimes correspond to dynam-
ics at micro-level with three types of node states. On the base of formal
model of system evolution and regimes formal definitions we estimate the
starting point of cascading behaviour and determine number of iterations
before its early warning signal – the start of transitional regime. Exper-
iment is made for the interbank market model, nevertheless, possible
applications are not restricted by the case. We show, that the obtained
estimations allow for appropriate prediction of starting points of critical
and transitional regimes (which correspond to cascading behaviour and
its early warning signal) and explanation of observed dynamics in the
evolution of banking system model under fund infusion scenario.

Keywords: complex dynamic network · interbank market · analytical
estimation · regimes · criticality · tipping point

1 Introduction

Complexity of systems, emerging from element interactions, their inner struc-
ture, and dynamic processes affecting network evolution, is hard to explore and
predict due to wide number of affecting factors. Analytical methods are usually
differential models, which assume fully connected graph for interactions between
system elements. Effects of topology of nodes interaction on further system evo-
lution is considered in simulation models. They allow for reproduction of local
dynamics by means of agent-based approach in the combination with graph mod-
els. Agent-based models involve small changes and dynamics at node-level and
consider their effect on network structure and further changes in node states aris-
ing from their interactions with other nodes. Nevertheless, the number of details
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and heterogeneities in structure and behaviour obstruct analytical prediction
and analysis of complex systems.

Analytical estimations are useful for models verification and validation. The
validation process of agent-based models is restricted by observed data segment.
Large number of model parameters puts trajectory of system evolution to a mul-
tidimentional surface, containing numerous possible trajectories [6]. Therefore,
the observed data segment, used for validation, can be in several different pos-
sible trajectories, leaving a system still unpredictable, despite model validity.
Other usage of analytical estimations is early-warning signals. They are usu-
ally explored to predict catastrophe bifurcations and critical failures in time-
evolving systems, and are associated with systemic characteristic, served as a
predictor [18]. Banking systems stability is one of the applied issues related to
emergent criticality in systems, which were studied from the points of network
effects, default prediction [15], single bank stress-tests [14], early-warning signals.

Here, we make an attempt to predict critical failure of interbank market and
corresponding early-warning signals analytically on the base of system organisa-
tion and local dynamics, resulting in interbank network evolution. We decompose
initial agent-based model of interbank market into basic local actions, formalise
them, and introduce structure of interactions between agents. Node states are
real-valued, which allows for consideration of individual bank effects on sys-
temic stability. Generality of system performance allows for application of the
suggested approach to wide variety of systems and to generalise some models
widely used in epidemiology, ecology, etc.

For the evolution process we consider three regimes, referred to as normal,
transitional, and critical. Normal regime demonstrates no special warnings, but it
can be unsteady and lead to criticality. Transitional regime is related to changes
in dynamics of system state variable, before a cascade, when dramatical changes
are not available for observation, but they are able to be. In literature this regime
is associated with early warning signals. Critical regime is associate with cascad-
ing behaviour. We build mathematical model and estimate points of transitions
between regimes analytically, in contrast to early-warning signals, based on ob-
served state variable changes [21] (like “critical slowing down”). The suggested
approach application is shown for the case of interbank network with Poison
structure of connections and for interbank market simulation model with var-
ied counterparty choice, resulting in various network structures. Transition to
cascading behaviour of an interbank network is taken as a case.

2 Literature

Natural systems usually evolve under internal and external drivers. The combi-
national effects of these drivers may shift a system to qualitatively new states,
so called phase transitions, while the corresponding points are called tipping
points [16]. In biological systems these transitional processes are associated with
homeostasis, when positive and negative feedback links lead a system back to
its stable state (negative feedback) or amplify external effects allowing for the
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transition to a qualitatively new state or phase [12]. In the combination with
interaction patterns between elements of a system this phenomena results in
self-organisation [23], and, in special cases, to self-organised criticality [20]. This
can be observed as default cascades in banking systems, as synchronisation in
the case of oscilators, or as avalanche in a sandpile model. In general case, there
are system elements characterised by states, some results of interactions affect-
ing elements states, and a system state, related to the combination of element
states, which we call critical and want to estimate.

Transitional behaviour (preceding critical one), as it is explored in this pa-
per, is well-presented by the avalanche model of a sandpile. Learning sandpile
behavior [5] shows the systemic stability question may be reduced to the criti-
cality of individual grains. Bouchaud et al. considers two types of grains, stable
and rolling, and find a critical angle when grain turn to instable state. Systemic
properties of human-made, economical and socio-technical systems can also be
reduced to the local dynamics of their elements. Nevertheless, their criticality
may be human made which makes the dynamics and corresponding transitions
dependent on verbal definitions, notions, and regulation mechanisms. For ex-
ample, bank defaults in banking systems may initialize default cascades, and
in this case banks correspond to grains and a default cascade to an avalanche.
Nevertheless, regulatory restrictions, applied to banks, can be considered as a
critical state vector, like the critical angle of a grain, and may affect systemic
evolution. This interdependence and systemic variability give rise not only to a
problem of systemic phase transitions, emerging from systemic elements states,
but also to the inverse problem of regulatory restrictions optimisation. But in
the second case functional properties of a system and corresponding formulations
of criticality can also play an important influence on resulting requirements to
systemic elements.

In this section, we observe existing methods of analytical estimation of agent-
based systems and network dynamics, and results related to criticality in their
evolution and early-warning signals.

2.1 Agent-based models estimation

Agent-based models tend to present accurate copies of observed reality and usu-
ally take many parameters and model combinations to reach the required ac-
curacy. Nevertheless, such multidimentionality results in difficulties in model
estimation, analysis, and calibration. Problem of formal description of agent-
based models is not new in literature [11]. Hinkelman et. al. argue, agent-based
models are usually poorly formalised and suggest field theory application for
their formal representation. Nevertheless, the suggested framework is aimed at
providing a uniform way of agent-based system description and does not imply
predictability. Laubenbacher [17] suggest formal methods like sequential dynam-
ical systems over Boolean set of node states. Both studies propose frameworks for
agent-based systems formalisation, but there are no means for state estimation,
and the set of element state variables is discrete. Formalisation and estimation
of agent-based models are not so developed for the best of our knowledge.
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2.2 Early-warning signals

Early-warning signals are strongly related to questions of predictability and crit-
icality, which are of great importance for wide range of applications. In particu-
lar, financial systems suffer from repeated crises, so authors claim, early warning
signals are of great interest [25, 13]. Others show how dynamics of a system at
micro-level results in critical behaviour at system-level, showing synchronisa-
tion [1] as mathematically explored phenomena, homeostasis as a complex of
positive and negative feedback mechanisms, resulting in regime shifts [12], and
applications to other areas, involving fractal nature of river and its evolution [24].
An attempt to estimate long-term influence of node state on criticality is per-
formed in [8], where authors introduce early-warning signal on the base of change
in real-valued node state.

2.3 Complex networks dynamics prediction/analysis

The most developed literature area, related to our research field, is prediction
and analysis of the network evolution. Lambert and Vanni [16] explore changes
of topological state variable in the dynamic graph model with edges addition
and deletion at micro-level1, and show that its fluctuations given by the derived
master-equation are more significant than for the case of mean-field approxima-
tion. Nevertheless, the model does not capture influence of node state effects on
micro-level dynamics.

Sole et. al. [22] provide a dynamical model of node state change with con-
sideration to neighbourhood influence according to connectivity matrix. El-
ement states are of two values si ∈ {0; 1}, for extinct and for alive; when
t = 0 ⇒ ∀i si = 1. Hernandez-Urbina and Herrmann [10] provide evolution
of state variable in the iterative form with consideration of external forces im-
pact and the influence of node states in the combination with adjacent edge
weights. Nevertheless, dynamics of a network and its relation to node states are
not captured.

In contrast to these methods, we consider graduate change of real-valued
node states and imply three kinds of dynamics of links creation at micro-level,
depending on node state value. This results in three patterns of network forma-
tion affecting changes of node states and resulting in three regimes of systemic
evolution.

3 Method

3.1 Interbank market model

We consider an interbank network as a directed graph where nodes correspond to
banks and links correspond to interbank exposures. Each bank is characterised by
its balance sheet, having interbank and external assets and liabilities, s. t. assets

1 The Generators–Destroyers model [19, 26]
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correspond to output edges, liabilities correspond to input edges. External assets
and liabilities reflect bank interactions with customers and firms, and interbank
exposures are related to weighted sums of output and input edges, adjacent to a
considered bank. The difference between assets and liabilities determines bank
state and is referred to as net worth [2, 3, 7, 9]. Changes of bank state (resulting
from balance sheet changes) may initiate activity on the interbank market, which
is aimed at enhancing individual bank state. In this way, dynamics on node-
level in the combination with counterparty choice strategy results in patterns
of network topology evolution [4]. Lack of assets initiates output links creation,
and lack of liabilities results in the creation of input links, adjacent to a node.
Changes in network structure in turn affect bank states, resulting in further
changes. In combination with initial parameters and network configuration, the
dynamics of interbank network is affected by different factors, as it is illustrated
in Figure 1.

Fig. 1. Factors affecting the evolution of interbank network [9]

Therefore, the above mentioned dynamics can be decomposed to the following
components: i) the bank model determines node state and is related to network
structure (by definition) and activity triggers; ii) the network model connects
banks and is related to the changes in their states; iii) the model of counterparty
choice, resulting in emerging network topology; iv) triggers of link formation;
v) bank default condition. These components provide two ways of evolution,
driven by basic triggers of link formation and default condition. Prevalence of one
basic mechanism over others provide transitions between normal, transitional,
and critical regimes, associated with closeness to cascading behaviour. This will
be formally shown further in the paper.
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3.2 Formal dynamics of interbank network evolution

Let S(t) = {si(t)}, i ∈ {1, . . . , N} be a state of an evolving system of N elements
with their states si ∈ R. States are related to bank balance sheet in the interbank
market model, where banks represent system elements. They interact with each
other, which is formally reflected by a directed evolving graph Γ (t) = {γij},
where nodes correspond to elements and are attributed by states. Since the
structure of interactions is connected to node states, addition of output edges
positively contributes to a state, while input edges negatively contribute to it.
In a static case, that means si =

∑N
k=1 (γik − γki) + C, where C is summarised

contribution of factors not related to topology. Coming to dynamics, there are
triggers related to node states and resulting in different patterns of topological
changes.

Types of node states & corresponding triggers. Type of node states de-
scribed in this section are met in literature related to interbank markets as
stressed and defaulted banks [2]. Here, node states are taken real-valued to re-
flect the possibility of their graduate decrease. Nevertheless, number of possible
reactions at micro-level, resulting in corresponding macro-level dynamic pat-
terns, is restricted by three and fixed for each type of node state.

Let us take a node i having state si, fix a, b ∈ R dividing R into 3 semi-
intervals. Without loss of generality let a 6 b.

– si < a ⇒ the state is critical and node is removed from the network with
the edges adjacent to it;

– si ∈ [a; b)⇒ the state is transitional and the node tends to enhance its state
by creating new edges in the network, to make the state si ≥ b;

– si ∈ [b;∞) ⇒ the state is stable, and the node does not create new edges
actively, nevertheless, it can interact with other nodes if they need it.

Therefore,

si(t) < b⇒ dsi
dt

= b− si(t) =

∑N
j=1 γij

dt
(1)

si(t) < a⇒ ∀sj ∈ N (si) :
dsj
dt

= γij − γji;∀jγij = 0, γji = 0, (2)

where N (si) is a neighbourhood of si node in terms of connection graph.
Therefore, each kind of node states has a corresponding type of related dy-

namics at different scales (Table 1).

Network formation process, initiated by equation (1), is determined by the
considered node strategy. In random case, edges are distributed equiprobably.
Counterparty choice strategies, corresponding to preferencial patterns, can be

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_32

https://dx.doi.org/10.1007/978-3-030-50371-0_32


Title Suppressed Due to Excessive Length 7

Table 1. Correspondence between dynamics and events at different scales. The rightest
column show observable system states in the evolution trajectories, represented by
number of nodes in a system and by entropy of graph Laplacian spectrum

node-level
local

formation pattern
network-level

critical (−∞; a) del. node

transitional [a; b) add edge

stable [b; +∞) —

taken into account by implementing probability distribution over the all nodes
for adjacency matrices of interaction. Here we suppose random connections, re-
sulting in a network with Poisson degree distribution, as initial consideration
and random choice strategy during simulation. Equation 2 can also be modified
to consider rewiring process related to market clearing algorithm, nevertheless,
this detail is out of this study consideration.

Co-evolution – feedback mechanisms. On one hand, changes in node states
affect micro-scale dynamics, resulting in changes in network topology, on other,
network topology contributes node states. In the system considered, each node
state depends on adjacent edges and their attributes (related to Γ (t)), neigh-
bouring nodes (system state S(t)), and external factors gi(t) affecting node i at
time t:

si(t) = f(Γ (t), gi(t)), (3)

where Γ (t) = 〈{γij(t)}, V (t) = S(t)〉 is a dynamic graph, reflecting the interac-
tions between agents at the moment t. Then, following the components interplay
(eq. 1), the change in node state per iteration can be rephrased as

dsi
dt

=

N∑
k=1

f

(
t,
dγik
dt
− dγki

dt
,
dS

dt

)
+ gi(t), (4)

where f is the rule setting dependence of a node state on its neighborhood, and
gi(t) is the aggregation of external effects on the system.

Let fix parameters: N , a, b, {gk(t)}; si ∈ R, a and b determines 3 types
of states. Initial conditions are denoted as: S(0) = {sk(0)}; Γ (0) = {γij(0)}.
Then, coming to iterative form and using conditions (1)–(4), we obtain eq. (5)
and (6), determining dynamics in the system:

si(t+ 1) = si(t) · χ(−∞;a)(si(t)) + (b− si(t)) · χ[a;b)(si(t))− (5)

−χ[a;∞)(si(t)) ·
[ ∑
sj∈[a;b)

b− sj(t)
N

+
∑
sj<a

(
γij(t)− γji(t)

)
− gi(t+ 1)

]
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γij(t+ 1) = γij(t) +
b− si(t)

N
· χ[a;b)(si(t))χ[a;+∞)(sj(t))− (6)

−γij(t)
(

1− χ[a;+∞)(si(t))χ[a;+∞)(sj(t))

)
Since algorithms used for simulation are discrete, formulae contain indicator

function χset(var), selecting addends depending on node state, which allows for
consideration of node-level dynamics variations (from Table 1).

3.3 Regime durability estimation

Since the transitional phase is associated with the existence of node having
si ∈ [a; b), while others are≥ b, the length of first phase, i. e. expected time before
start of transitional regime is estimated as minimal number of iterations before
one of nodes reach b. That is |ΦI| =

∣∣{min t : ∃i ∈ N si(t) ∈ [a; b) ∀j 6= i sj(t) ≥
b
}∣∣. Similarly, |ΦII| =

∣∣{min t : ∃i ∈ N si(t) ∈ (−∞; a) ∀j 6= i sj(t) ≥ a
}∣∣.

Consider a set of nodes B = {b}. ∀b ∈ B with the corresponding state sb
fix gb(t). Say eab and elb are external assets and liabilities, therefore they are
related to node state, on one hand, and to external impact – on other. Let ∀t > 0
gb(t) = const > 0⇒

∀t > 0 ∆|eab − elb| = −gb(t)⇔
∑
k

[
∆γik −∆γki

]
= −gb(t) (7)

Then, summarizing eq. 7 for the whole system:

N∑
i=1

N∑
k=1

[
∆γik −∆γki

]
=
∑
b∈B

−gb (8)

⇔ 0 =
∑
b∈B

−gb, (9)

which is obvious. Then we simplify indicator function and further equations for
the cases of ΦI and ΦII, summarise equation for all nodes, and modify sums in
the consideration of Erdos-Renyi graph:

si(t+ 1) = si(0) +

t+1∑
k=1

gi(t)−
t∑

k=1

∑
sj(t)∈[a;b)

b− sj(k)

N
(10)

∑
i=1

Nsi(t+ 1) =

N∑
i=1

si(0) +

N∑
i=1

t+1∑
k=1

gi(k)−
N∑
i=1

t∑
k=1

∑
sj(t)∈[a;b)

b− sj(k)

N
(11)

[
N∑
i=1

t+1∑
k=1

gi(k) ≈ N · (t+ 1) · g

]
⇒ (12)
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If we fix the number of initially stressed nodes as α0 =
∣∣∣{i|si ∈ [a; b)

}∣∣∣, then

|ΦI| = si(0)− b
g

(13)

|ΦII| ≥ g + b− a
g − α0

N (b− ¯s(k))
(14)

4 Experiment results

4.1 Case study: Failures Prediction

For this experiment we made simulations of implemented system and check if
our estimations of tipping points correspond to simulation results. We suppose
random structure of interactions, s. t. initial network configuration is provided by
Erdos-Renyi model, parametrised by 1000 nodes and 0.2 connection probability.
Tipping points of node states are a = −0.5 and b = 2.5, and α = 0.5. (Parameter
values were chosen arbitrary and does not affect predictability.) Taking formu-
lae (13) and (14) we obtain estimated number of iterations before starting point
of an avalanche and its early warning signal, which is the point before transi-
tional regime. In Figure 2 predicted values, evaluated by formulae (13) and (14)
are displayed by vertical pink lines, which corresponds to dives in dynamics of
node and edge counts. Right panel of Figure 2 is aimed at demonstrating inner
processes, explaining the dynamics at left panel, and shows dynamics of nodes
count being in transitional and critical states.
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Fig. 2. Analitical estimations of transitional points and simulation results (on the left);
dynamics of node count inside each category (on the right)
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Results demonstrate satisfactory prediction ability in the case of poisson
network structure. The consideration of other topologies, formally, will require
other approximation techniques for final estimation formulae. Nevertheless, for
scenarios, when network structure plays minor role in contrast to external and
node effects, this method will work.

4.2 Case study: funds infusion

The approach, provided in current paper, allows for explanation of dynamics
of interbank network evolution, observed in simulations under several driving
factors, like choice models, market clearing methods, and external effects [9].
Lines of different colours correspond to different combinations of counterparty
choice models with choice models for external impacts (Fig. 3), and display the
influence of funds infusion at different time moments.

The simulation scenario shows system evolution coming to cascading dy-
namics under different parameters and showing effects of funds infusion to the
system. System state is observed with the number of removed nodes and with the
entropy of Laplacian spectrum [27]. The left panel shows the begin of cascade
when number of removed nodes increases sharply. Infusion stops this process
temporally. At the same time, the right panel shows the critical regime, corre-
sponding to decrease in entropy, has an interval of increasing entropy before it –
this interval corresponds to transitional regime and show how number of edges
change due to increasing number of stressed nodes. For this reason, fund infu-
sion return nodes to prevailing stressed state from critical, and we see increase
in entropy until some critical point.

Fig. 3. Functional properties are often evaluated as a number of nodes. Transitions
observed in functional properties (left) do not reflect hidden dynamics in topological
properties (right)

These observations, in the combination with results of current paper, say that
system has its capacity against external impacts. In this case, this combination is
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prevailing, so topology is not so significant. Infusion brings additional capacity to
the system, allowing to avoid failures for a number of iterations when summarised
external impact

∑N
i=1 gi(t) is fixed ∀t. In practice, this time can be appropriate

for changes in managerial approaches or strategies, nevertheless, it is obvious,
that in current case external impact must be balanced by other resources to
provide stable system evolution.

5 Conclusion and future work

This study formally demonstrates, how micro-level dynamics of complex agent
networks results in global patterns at system-level, in particular in the case of
default cascades in interbank networks. This allows to see, how local effects
are accumulated, and how this affects times between regimes of evolution. In
addition, this gives a base for the exploration of which factors will have more
influence and how to control it.

Cascading behaviour, observed via system state variables, is preceded by
changes in inner dynamics, related to co-evolution of node states and structure
of their interaction. This can be detected aforehand by means of topological fea-
tures, like entropy of Laplacian spectrum, in the case of correspondence between
node states and micro-level dynamics resulting in structural changes. In this
way, tipping points are related to the share of nodes in each category. The con-
sideration of real-valued state set for nodes, instead of discrete states, allows for
consideration of system capacity against external impacts, which has a connec-
tion with lower levels. In the context of homogeneous structure of interactions,
with no weak-connected components, the most effect is due to relation between
external impact and overall systemic capacity, opposing to it.

The considered agent-based network evolves under factors, comprising node
states dynamics, network topology, and external effects. These factors are con-
sidered in the estimations of the number of iterations before starting points of
critical and transitional regimes. The regimes are introduced to distinguish cas-
cading dynamics (critical regime) and early-warning tipping point, associated
with the start of transitional regime. In addition, the above mentioned regimes
are associated with real-valued node states, broken into three semi-intervals and
triggering corresponding types of local dynamics. Therefore, we show the cor-
respondence between dynamics at different scales and present formal model,
providing inter-scale connection and prediction of tipping points.
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