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Abstract. We extend Merton’s framework by adopting stochastic volatil-
ity to propose an early warning indicator for banks’ credit risk. Bayesian
inference is employed to estimate the parameters of Heston model. We
provide empirical evidence and demonstrate the comparative strength of
our risk measure over others.
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1 Introduction

Monitoring the risk borne by the banking sector and detecting early warning
signals were propelled to the forefront of regulation after the catastrophic finan-
cial crisis of 2007–08 much of which was attributable to banks such as Lehman
Brothers. In finance, Merton’s probability of default (PoD) is regarded as an
informative and reliable credit risk measure [1].4 Under this model, the firm’s
equity is considered as a call option with a strike price equal to the face value of
the firm’s debt [1,2,3,4]. Merton model assumes that the value of the firm’s assets
follows a lognormal diffusion process that has a constant volatility; however, it
is restricted in terms of being able to adequately describe the real world [5].

Hence, we adopt the concept of time-varying volatility, specifically Heston
model [6,7,8,9,10] in which volatility is driven by its own mean-reverting stochas-
tic process where log-returns of an asset exhibit heavy tails. Bu and Liao em-
ployed stochastic volatility and jumps to explain the time variation in credit
default swaps, a proxy for credit risk [11]. Fulop and Li suggested a simulation-
based parameter learning methodology to estimate parameters, and applied their
approach to stochastic volatility and jump models [12]. Based on these studies,

4 Network approach is also applied to assess the credit risk of banks. Angelini et al.
and Khashman employed neural network using the real-world credit approval data
of Italy and Germany to evaluate banks’ credit risk [13,14]. González-Avella et al.
adopted network topology, i.e., loans are interpreted as links between banks (nodes),
to examine the interbank credit risk with financial contagion [15].
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we propose an indicator that delivers early warning signals for banks’ credit risk,
and compare the performance of our measure with others.

This paper is organized as follows. In the second section, we adopt stochastic
volatility to probability of undercapitalization (PoU) and propose an early warn-
ing indicator. The third section explains the parameter estimation strategy, and
we discuss the application of our risk indicator for two US banks in the fourth
section. Finally, the fifth section concludes.

2 Stochastic volatility and the effect of capital buffer

Among the pool of stochastic volatility models, we pick out Heston model due to
its semi-closed form solution and realistic assumptions such as mean-reversion
of variance and statistical dependence between an asset and its volatility. The
value of a firm at time t, Vt, is assumed to evolve with a stochastic variance, σ2

t ,
that follows a Cox, Ingersoll and Ross process [16,17]

dVt = µVtdt+ σtVtdW1,t and dσ2
t = κ(θ − σ2

t )dt+ σvσ
2
t dW2,t,

where µ is the growth rate of firm value, κ is the mean reversion speed for the
variance, θ is the mean reversion level for the variance, σv is the volatility of
the variance, and Wi,t (for i = 1, 2) is a standard Brownian motion. The Feller
condition, 2κθ > σ2

v , is imposed to ensure that the variance is strictly positive
[18]. It is further assumed that the asset value and its variance are driven by a
correlated stochastic component of d〈W1,t,W2,t〉 = ρdt. When the asset return
and the variance are positively correlated (ρ > 0), the distribution of return has
a fat right tail [7].

A firm’s asset consists of equity and debt. In particular, a bank’s equity is
considered as an European call option with a strike price equal to the obligated
debt payment L at the maturity T as ET = max{VT −L, 0}. Thus, the calcula-
tion of PoD with Heston model is as follows. For the simplicity of notation, all
subscripts are suppressed, and the proof is provided in the Appendix.

Proposition: Let xt = log Vt and υt = σ2
t . PoD admits a semi-analytical ex-

pression

PoD = P (VT ≤ L) =
1

2
− 1

π

∫ ∞
0

Re

[
e−iu logLϕ(u; 0, x(0), υ(0))

iu

]
du,

where ϕ(u; t, x, υ) takes an exponential linear form as

ϕ(u; t, x, v) = exp(A(T − t, u) +B(T − t, u)υ + iux) for 0 ≤ t ≤ T,

A(t, u) = (iµu− κθλ2
a

)t+
κθ

a
log

1− l
1− ledt

and B(t, u) = −λ2
a
· 1− edt

1− ledt
.

The terms are defined as

a =
1

2
σ2
v , b = iuσvρ− κ, c = −1

2
(u2 + iu),

d =
√
b2 − 4ac, λ2 =

b− d
2

and l =
b− d
b+ d

.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_30

https://dx.doi.org/10.1007/978-3-030-50371-0_30


Stochastic volatility and early warning indicator 3

Unlike general firms, banks are subject to capital adequacy requirement,
however PoD simply focuses on a firm’s debt-paying ability. Hence, Chan-Lau
and Sy proposed distance-to-capital (DC) to address banks’ undercapitalization
risk [19]. PoU and DC are considered as more conservative measures than PoD
and distance-to-default [20,21]. A bank is regarded as undercapitalized once
VT − L < c · VT holds at time T after debt payment and PoU of a bank can be
computed as

PoU = P

(
VT <

L

1− c

)
= PoD + P

(
L ≤ VT <

L

1− c

)
.

We further propose an early warning indicator, namely the effect of capital
buffer (ECB). When bank failure looms, the elevated possibility of insolvency
risk eats up the capital buffer, and the regulation on a bank’s capital plays a
lesser role in governing risk. Hence, the ECB drops to small numbers, which can
be interpreted as warning signals,

ECB =
PoU− PoD

PoU
.

3 Estimation strategy

A firm’s value and its variance are not directly observable, thus, we need to
estimate these variables from equity prices. However, the observed equity prices
may be contaminated by the microstructure of noise [22]

logSt = log Ŝt(Vt, σ
2
t ) + δνt, (1)

where νt is i.i.d. standard normal random variable. Thus, the fundamental com-
ponent of equity price is a function of Vt and σ2

t [7]

Ŝt(Vt, σ
2
t ) = VtP1 − Le−r(T−t)P2,

Pj =
1

2
+

1

π

∫ ∞
0

Re

[
exp(−iuL)

iu
× exp(Cj +Djσ

2
t + iu lnVt)

]
du,

where u ∈ R is the characteristic index, and Cj and Dj are known functions of
the model parameters for j = 1, 2.

The estimation can be simplified as the input of observed equity prices
y1:t = {logS1, · · · , logSt}, the output of a parameter set Θ = {µ, θ, κ, σv, ρ, δ},
and the latent states x1:t = {

(
V1, σ

2
1

)
, · · · ,

(
Vt, σ

2
t

)
}. Then, we apply the se-

quential Bayesian inference to estimate the parameters and hidden states [12],
hence, our objective is to find the joint posterior distribution p(xt, Θ|y1:t) of
states and parameters at each time t. Since there is no analytical solution of the
joint posterior distribution, we need to draw samples from this distribution. The
underlying idea of sampling is to break up the interdependence of hidden states
and fixed parameters

p(xt, Θ|y1:t) = p(xt|y1:t, Θ)p(Θ|y1:t).
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Thus, the procedure of sampling from the posterior distribution can be di-
vided into: (i) state filtering p(xt|y1:t, Θ); and (ii) parameter learning p(Θ|y1:t).
State filtering estimates the probability of latent state variables for a given static
parameter set, and we can derive the recursion of the filtering density (the pa-
rameter set Θ is suppressed in this step)

p(xt|y1:t) ∝ p(yt|xt)
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1,

where p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. Suppose that we have a

weighted sample to represent the target distribution p(xt−1|y1:t−1) at time t −
1, i.e., {(x(i)t−1, ω

(i)
t−1), i = 1, · · · ,M}, where ω

(i)
t−1

.
= p(yt−1|x(i)t−1). Then, a new

weighted sample {(x(i)t , ω
(i)
t ), i = 1, · · · ,M} ∼ p(xt|y1:t) can be drawn by a

recursive approach: (i) obtain a new sample x
(i)
t from p(xt|x(i)t−1); and (ii) assign

a weight ω
(i)
t = p(yt|x(i)t ) for each x

(i)
t .

Parameter learning evaluates the probability of parameter set Θ for the given
observed equity prices. For each parameter particle

{
Θ(j), j = 1, · · · , N

}
, the

likelihood is

p̂(y1:t|Θ) =

t∏
l=2

p(yl|y1:l−1, Θ)p(y1|Θ), (2)

where p(yl|y1:l−1, Θ) =
∫
p(yl|xl, Θ)p(xl|y1:l−1, Θ)dxl. From state filtering, we

already have a sample of {x(i)l , i = 1, · · · ,M} ∼ p(xl|y1:l−1, Θ), so

p̂(yl|y1:l−1, Θ) =
1

M

M∑
i=1

p(yl|x(i)l , Θ), (3)

then, we can calculate the posterior distribution of Θ

p(Θ|y1:t) = p(y1:t|Θ)p(Θ). (4)

The transition density p(xt|xt−1) and the likelihood of measurement p(yt|xt)
are necessary for both state filtering and parameter learning. The transition law
is determined by

log Vt+τ = log Vt + (µ− 1

2
σ2
t )τ + σt

√
τε1,t, (5)

σ2
t+τ = σ2

t + κ(θ − σ2
t )τ + σvσt

√
τε2,t, (6)

where ε1,t and ε2,t follow N(0, 1) with correlation ρ, and τ is the time interval
of one period. The likelihood of measurement yt is determined by Equation (1).

The process of obtaining the posterior distribution from the real data is as
follows. Assume that we have {(V (i)

t−1, σ
2(i)
t−1); i = 1, · · · ,M} ∼ p(xt−1|yt−1), then we

can obtain p(xt|yt) from the following steps: (i) draw the next volatility σ
2(i)
t

from p(σ2
t |σ

2(i)
t−1) in Equation (6) and error term ν

(i)
t ∼ N(0, 1); and (ii) solve the

equation Ste
−δν(i)t = Ŝt(V

(i)
t , σ

2(i)
t |P1,t−1, P2,t−1) for V (i)

t , which is a rearrangement
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of Equation (1). To solve Vt, Duan and Fulop found an approximate inversion,
which can estimate the solution without solving nonlinear equations [22].

Using the above sample, we can obtain the posterior density of measurement

from the following steps: (i) calculate P1,t and P2,t based on sample σ
2(i)
t and

V
(i)
t ; (ii) evaluate Ŝt(V

(i)
t , σ

2(i)
t |P1,t, P2,t); (iii) calculate the probability density

p(yt|xt), which follows a normal distribution, i.e., logSt ∼ N(log Ŝt, δ
2), taken

from Equation (1); and (iv) calculate the posterior density of measurement based
on Equations (2)–(4).

4 Application to banks

To demonstrate the performance of the ECB, we apply it to Lehman Brothers
and Bank of America for the period between 1 April 2006 and 29 August 2008.
The capital adequacy ratio c is set as 6.25% for investment banks following the
capital rules applied by the Securities and Exchange Commission, and and 4%
for commercial banks, which is the tier 1 capital adequacy ratio in the Basel
Accords. We assume that banks’ capital completely consists of equity. Both
PoD and PoU show similar movements as displayed in figures 1 and 2, and these
measures deliver warnings prior to the bankruptcy of Lehman Brothers and the
bailout to Bank of America. In reality, the US government provided 25 and 20
billion USD on October 2008 and January 2009, through Troubled Asset Relief
Program (preferred stock purchase) to Bank of America. The gap between PoU
and PoD indicates the capital buffer (effect of capital adequacy requirement).

Moreover, the shareholders of a bank are considered to be offered put options
on the bank’s assets through the bank safety net since the depositors’ repayment
is guaranteed in case of bank run through deposit insurance scheme, which is
provided by the Federal Deposit Insurance Corporation in the US. Thus, it is
suggested that shareholders had exploited the bank safety net prior to crises
through various risk-taking activities [23,24], leading to increases in put value,
which can be another early warning indicator. The put value can be calculated
from the contingent claim model

Ŝ′t(Vt, σ
2
t ) = Vt(P1 − 1)− Lte−r(T−t)(P2 − 1).

In the case of Lehman Brothers, the ECB gave an early warning signal in
mid–2007, approximately a year earlier than the put value. For Bank of America,
the ECB started to decline from the end of 2007, delivering a warning signal in
mid–2008, however the put value failed to deliver any warnings. Put differently,
the put value of bank safety net is insufficient as an early warning indicator
unlike the ECB.
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Fig. 1. Credit risk and early warning indicator (Lehman Brothers)
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Fig. 2. Credit risk and early warning indicator (Bank of America)

5 Concluding remarks

We extend the Merton model by incorporating stochastic volatility and the con-
cept of undercapitalization to evaluate credit risk of banks in a more realis-
tic manner. We elect Heston model, in which asset return distribution exhibits
non-lognormal properties such as heavy tails. We employ Bayesian inference to
estimate parameters. Then, capital adequacy requirement is adopted to better
illustrate banks’ credit risk, and we further propose an early warning indicator,
namely the ECB. The application of the ECB to Lehman Brothers and Bank of
America demonstrates the comparative strength of our early warning indicator
compared to the put option value of the bank safety net.
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Appendix. Proof of the proposition

According to Ito’s formula, the dynamics of x(t) are given by

dx(t) =

(
µ− 1

2
υ(t)

)
dt+

√
υ(t)dWV (t).

Let ϕ(u; t, x, υ) = E[eiux(T )|x(t) = x, υ(t) = υ]. Then, by Gil-Pelaez inversion
formula [25], we have

P (V (T ) < L) = P (x(T ) < logL)

=
1

2
− 1

π

∫ ∞
0

Re

[
e−iu logLϕ(u; t, x(0), υ(0))

iu

]
du.

By Feynman-Kač theorem, ϕ solves the following boundary value problem

∂ϕ

∂t
+
∂ϕ

∂x

(
µ− 1

2
υ

)
+
∂ϕ

∂υ
κ(θ − υ) +

1

2

∂2ϕ

∂x2
υ +

1

2

∂2ϕ

∂υ2
σ2
vυ + σvυρ

∂2ϕ

∂x∂υ
= 0,

ϕ(u;T, x, v) = eiux.

Following the guess by Heston [7], we assume that ϕ takes an exponential linear
form

ϕ(u; t, x, υ) = exp(A(T − t, u) +B(T − t, u)υ + iux).

Because of ϕ(u;T, x, v) = eiux for any x and υ, we have boundary conditions for
A and B as

A(0, u) = B(0, u) = 0.

Denoting τ = T − t and plugging the “guessed” form into a partial differential
equation, we get

−
(
∂A

∂τ
+
∂B

∂τ
υ

)
+ iu

(
µ− 1

2
υ

)
+Bκ(θ−υ)− 1

2
u2υ+

1

2
B2σ2

vυ+ iuσvυρB = 0.

As this holds for any υ, we get the following two ODEs

∂A

∂τ
= iµu+Bκθ,

∂B

∂τ
= −1

2
iu−Bκ− 1

2
u2 +

1

2
B2σ2

v + iuσvρB.

The ODE for B takes the form of Riccati equation:

∂B

∂τ
=

1

2
σ2
vB

2 + (iuσvρ− κ)B − 1

2
(iu+ u2) ≡ aB2 + bB + c,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_30

https://dx.doi.org/10.1007/978-3-030-50371-0_30


8 G. Ji et al.

where

a =
1

2
σ2
v , b = iuσvρ− κ and c = −1

2
(u2 + iu).

According to the solution of Riccati equation, the solution to the ODE for B is
given by B = − h′

ah , where h(τ) solves the following ODE

h′′ − bh′ + ach = 0.

Denote d =
√
b2 − 4ac, then h takes the form

h(τ) = D1e
λ1τ +D2e

λ2τ ,

where λ1 = b+d
2 and λ2 = b−d

2 . Letting H = D1

D2
and plugging h into B, we get

B(τ, u) = −λ1D1e
λ1τ + λ2D2e

λ2τ

a(D1eλ1τ +D2eλ2τ )
= −λ1He

λ1τ + λ2e
λ2τ

a(Heλ1τ + eλ2τ )
.

Recall the boundary condition,B(0, u) = 0. It follows immediately−H = λ2

λ1

∆
= l.

Thus, we further have

B(τ, u) = − −λ2e
λ1τ + λ2e

λ2τ

a
(
−λ2

λ1
eλ1τ + eλ2τ

) = −λ2
a
· 1− edτ

1− ledτ
.

To solve A, note that the indefinite integral is∫
B(τ, u)dτ = −λ2

a

∫
1− edτ

1− ledτ
dτ = −λ2τ

a
+
λ2
ad

(
1− 1

l

)
log(1− ledτ ) + const.

Hence,

A(τ, u) = iµuτ − κθλ2
a

τ +
κθλ2
ad

(
1− 1

l

)
log(1− ledτ ) + const.

Recall the boundary condition A(0, u) = 0. Thus we can solve for the constant
term and further simplify the expression to

A(τ, u) =

(
iµu− κθλ2

a

)
τ +

κθ

a
log

(
1− l

1− ledτ

)
,

and the proof is complete.
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