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Abstract. We present a mathematical model of a microbial commu-
nity in the human colon, including transport, exchange and metabolic
processes. The colon is represented as a bioreactor with separate lu-
men and mucus microhabitats. The microbial community in the colon
is grouped into four biomass functional groups based on their metabolic
activity. While computational models present a challenge in the selection
of model parameters, they also provide a more systematic approach to
addressing uncertainties when compared to in vivo and in vitro experi-
ments. We conduct an exploratory study on the uncertainty of our input
parameters and a simulation study of the perturbation and recovery of
gut microbiota from antibiotic exposure. We consider our parameters
as random variables drawn from a uniform random distribution to re-
�ect the diversity of gut microbial composition and variability between
individuals

Keywords: mathematical model · colon · simulation experiments · pa-
rameter uncertainty · ADM1.

1 Introduction

The human intestine, or colon, is inhabited by a diverse and dynamic micro-
bial community that harbours over 1000 types of microbes [8]. This microbial
community plays an important role in human health and has a mutualistic rela-
tionship with the host [16]. The intestinal microbiota are responsible for many
functions, such as maintaining the gastrointestinal epithelial barrier, preventing
pathogens from adhering to intestinal surfaces, and the development of the im-
mune system [17]. A core function of the gut microbiota is carbon fermentation
and the breakdown of complex carbohydrates into short chain fatty acids (SC-
FAs) and gas. The conversion of these carbohydrates into SCFAs contributes
to human energy requirements, regulation of intestinal physiology, and immune
function [9].
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The composition of gut microbial communities varies between individuals
and may be altered by many factors such as diet, genetics, antibiotic treatment,
and environmental factors [3, 8, 6]. Many in vivo studies have shown that an im-
balance in gut microbiota composition through loss of microbial and metabolic
diversity can result in the development of disease [15]. Due to host-speci�c gut
community composition, as well as confounding environmental factors and lack
of easy access to the gut, it is di�cult to draw conclusions about underlying
function and behaviour of the gut microbiota [19]. In vitro experiments aim to
provide insight by experimentally simulating the gut using a bioreactor. These
experiments are more economical and allow for greater experimental control
when compared to human studies, however repeated experiments can be expen-
sive and it is di�cult to exactly replicate the physiology of the colon, particularly
the mucus layer. Additionally, microbial community composition can vary be-
tween bioreactor models due to the source of the inocula [20], making it di�cult
to draw population-level conclusions. In silico, or computational models can be
used as a predictive and explanatory tool for biological processes and phenom-
ena. They can allow for the mechanistic investigation of the gut microbiota while
overcoming several limitations of in vivo and in vitro studies. They eliminate the
ethical considerations of in vivo studies, can incorporate interactions and pro-
cesses that are not possible in vitro, and repeated in silico simulations are more
economical than in vivo trials and in vitro experiments.

Presented in this paper is a mechanistic model of the microbiota in the
human colon that considers the lumen and mucus environments of the colon,
microbial interactions, and transport and exchange processes within the colon.
Despite the large inter-individual variation between gut microbial communities,
core metabolic pathways are conserved across individuals due to functional re-
dundancy in microbial groups [8]. Rather than representing individual species
of microbes, gut microbiota can be organized based on their metabolic activity
into biomass functional groups (BFGs). Each BFG is responsible for a particular
metabolic pathway based on substrate preference and fermentation products.
This is modelled using mass balance equations for biomass growth, substrate
consumption and product formation. There are a number of studies that model
the gut microbiota using mass balance equations with varying degrees of com-
plexity. The review by Williams et al. [19] includes models that range from a
single-species in a simple chemostat reactor to multi-species models with complex
physical representations of the colon. Several models are based on the Anaerobic
Digestion Model No. 1 (ADM1)[1], which is a generalised model of anaerobic
digestion, typically applied to wastewater. The ADM1 was modi�ed by [14] to
consider only the degradation of carbohydrates to glucose, lactate, hydrogen, car-
bon dioxide, water, methane and SCFAs (acetate, propionate, butyrate). Since
the majority of substrates available for fermentation in the human colon consist
of carbohydrates, [14] excludes the digestion of proteins and lipids, acid-base
reactions in ADM1. Many current mechanistic models of anaerobic digestion in
the gut are adaptions and extensions of the carbohydrate model in [14], modi�ed
to include more realistic physical representations of the colon [7, 11], digestion
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of proteins and lipids [4, 5] and further subdivision of BFGs [4, 11]. Our model
uses the metabolic processes in [11] with a simpli�ed physical representation of
the colon. A bacteriostatic antibiotic treatment which inhibits the growth of the
microbiota is included. The subsequent recovery of microbiota after perturbation
is investigated with probiotics and prebiotics.

Complex models lead to more realistic representations of biological systems
but increased complexity often limits possible theoretical analyses. Complex
mathematical models typically require computational simulations with large pa-
rameter spaces. A limitation of mechanism-based and predictive modeling often
stems from the di�culties in model parameter estimation, since experimental
data is needed to validate and calibrate model behaviour. These models require
clear estimates of stoichiometric and kinetic properties of model processes in
order to make meaningful predictions. However, bioreactor operating conditions
such as temperature, pH and source of inocula determine the composition of
bioreactor microbial communities and can result in variability in the measured
parameters. Due to the diversity of gut microbial composition, there is an inher-
ent variability of parameters between individuals. A speci�c set of parameters
could be taken to represent the microbial composition and physiology of a par-
ticular individual. As such, the uncertainty of the parameter space must be
considered when drawing conclusions from simulation results of computational
models of the gut, to account for both variability in measured experimental pa-
rameters and inter-individual variability in gut microbiota composition. In [4],
each BFG includes multiple strains with kinetic parameters drawn randomly
from a uniform distribution. We consider all model parameters, including ki-
netic and exchange parameters, as a uniform random variables to account for
the variability in gut microbiota diversity and physiological variability between
individuals.

2 Model Formulation

2.1 Reactor Representation

The human colon can be described as an anaerobic bioreactor. Previous work
has described the human colon as a single-stage reactor [4, 10, 13], a three-stage
reactor [10, 14] and a plug-�ow reactor [7, 11, 12]. In this study, to capture the
lumen and mucus microhabitats, the colon is modelled as a continuous stirred-
tank reactor (CSTR) with a lateral di�usion compartment (see Fig. 1). The
main (lumen) compartment, has in�ow from the upper gastrointestinal tract
(GIT) and out�ow out of the colon as well as removal of water and metabolites
from the lumen into the host. There is no in�ow and out�ow from the lateral
di�usion (mucus) compartment but there is exchange between the lumen and
mucus compartments. In a typical system, �ber is the only in�ow into the lumen
compartment and mucins are endogenously produced in the mucus compartment.
The �ow rate through the lumen compartment is assumed to be continuous and
is chosen such that washout of biomass does not occur.
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Fig. 1. Reactor representation of the gut with in�ow from the upper GIT, out�ow out
of the colon and exchange between the mucus and lumen compartments

2.2 Reaction Kinetics

In both the lumen and mucus compartment, anaerobic digestion of carbohy-
drates is carried out by intestinal microbiota. Rather than characterising in-
dividual species, microbiota are categorised into four biomass functional groups
(BFGs) based on their metabolic activity: sugar degrading biomass (SD), lactate
degrading biomass (LD), acetogenic biomass (HDA), and methanogenic biomass
(HDM). Due to the redundancy in metabolic pathways in the colon, �ve main re-
action pathways are considered (Fig. 2), each facilitated by a biomass functional
group (BFG). Fiber and mucin are assumed to be the only fermentable carbo-
hydrates available to the microbiota. Fiber enters the lumen compartment at a
constant rate from the upper GIT and mucin is produced endogenously by the
host. The SD are the only BFG that are able to degrade the �ber and mucin into
consumable monomer sugars. The hydrolysis of �ber and mucin into monomer
sugars by SD is based on Contois kinetics (φ1(c) in Table 1). Monod kinetics is
applied to the fermentation of sugar by SD, lactate by LD, acetogenesis by HDA
and methanogenesis by HDM (φ2(c)�φ5(c) in Table 1).

The entirety of the reaction processes are shown in Table 1. The rows cor-
respond to the processes and the columns correspond to the components. The
components consist of the biomass and metabolites and are associated with the
lumen of mucus microhabitat that they occupy. The reaction rates are given by
φj(c) and include growth kinetics and decay of biomass. Endogenous mucin pro-
duction is modelled as in [11] and is a source of �ber in the mucus compartment.

2.3 Exchange

The exchange of materials between the lumen and mucus compartment can
be categorised into passive and active exchange. Sugar is the only component
to passively di�use between compartments. In general, all other components
are exchanged through attachment (lumen to mucus), detachment (mucus to
lumen), and absorption (mucus to host).
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Fig. 2. Metabolic reaction pathways showing the degradation of �ber into short chain
fatty acids and gas by the four biomass functional groups

2.4 Complete Model

The matrix representation of the complete model including transport, exchange
and reaction kinetics is given by:

d

dt

(
CL

CM

)
=

(
ST 0
0 ST

)(
φ(CL)
φ(CM )

)
−
(
−DLL DLM

DML −DMM

)(
CL

CM

)
+

(
uL
uM

)
. (1)

The variables CL and CM are each vectors of length 14 and contain the concen-
trations of biomass, substrates and products in the lumen and mucus, respec-
tively. ST is the transpose of the stoichiometric matrix in Table 1 and is of size
14 × 9. φ(CL) and φ(CM ) are the reaction rates given in Table 1 and are each
vectors of length 9. The matrices D·,· include all transport and exchange terms,
are non-negative and diagonal and are of dimension 14 × 14. The vectors uL
and uM are each of length 14 and contain the in�ow of substrate, biomass of
products into the system. In a typical simulation, the only external input into
the system is a �ber in�ow to the lumen compartment. Since �ber is the only
input into the system, uL contains only one non-zero entry. uM is a vector of
zeros as there is no external input into the mucus compartment.

2.5 Antibiotics Mechanism of Action

A bacteriostatic antibiotic is considered in the simulation studies. The antibiotic
mechanism is designed to elicit a nonlethal response from the microbiota by pre-
venting the proliferation of bacteria. Antibiotic action is modelled as a growth
inhibition term such that biomass growth is inhibited as antibiotic concentra-
tion increases. The growth inhibition term is written as KA

KA+A , where A is the
concentration of antibiotic. In the antibiotic simulation experiments, the input
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Table 1. Stoichiometric matrix, S, of reaction processes. This matrix S and the reac-
tion rates φ correspond to Eq (1) in Section 2.4

For soluble components
Component i 1 2 3 4 5 6 7 8 9 Rate

j Process S1 S2 S3 S4 S5 S6 S7 S8 S9

1 Hydrolysis Y1,1 φ1(c)
2 Glucose utilization -1 Y2,2 Y3,2 Y4,2 Y5,2 Y6,2 Y8,2 Y9,2 φ2(c)
3 Lactate utilization -1 Y3,3 Y4,3 Y5,3 Y6,3 Y8,3 Y9,3 φ3(c)
4 Homoacetogenesis -1 Y4,4 Y8,4 Y9,4 φ4(c)
5 Methanogenesis -1 Y7,5 Y8,5 Y9,5 φ5(c)

For particulate components
Component i 10 11 12 13 14 Kinetic Rate

j Process I1 X1 X2 X3 X4

1 Hydrolysis -1 φ1(c) = κ1
I1X1

K1X1+I1

2 Glucose utilization Y11,2 φ2(c) = κ2
S1X1
K2+S1

3 Lactate utilization Y12,3 φ3(c) = κ3
S2X2
K3+s2

4 Homoacetogenesis Y13,4 φ4(c) = κ4
S3X3
K3+S3

5 Methanogenesis Y14,5 φ5(c) = κ5
S3X4
K5+S3

IpH

IpH :=

{
exp(−3( pH−pHU

pHU−pHL
)2) if pH < pHU ,

1 if pH ≥ pHU

6 Decay of X1 -1 φ6(c) = κ6,1X1

7 Decay of X2 -1 φ7(c) = κ7,1X2

8 Decay of X3 -1 φ8(c) = κ8,1X3

9 Decay of X4 -1 φ9(c) = κ9,1X4

concentration of the antibiotic is constant and held at A = 1. As a result, the
parameter KA term solely controls the strength of the antibiotic. Only single
continuous doses of �nite duration of antibiotics are considered in the following
simulation study.

3 Results of Simulation Experiments

3.1 Exploration of Parameter Space

The presented model involves a large multi-dimensional parameter space. In or-
der to increase our con�dence in the qualitative predictions of the model, we used
a brute force approach to investigating the sensitivity of potentially in�uential
parameter sets. Considering the parameters as random variables, simulations
were conducted in replicate, drawing parameters from a uniform random distri-
bution prior to the start of the simulation. The parameters were held constant
over the course of a simulation. Default parameter values from the literature are
taken as mean values. This approach is used to ensure that the observed qualita-
tive behaviour is typical for a reasonable parameter range. If any parameter sets
signi�cantly impact the longterm behaviour of the system, they may require ex-
tra consideration in simulation studies. Simulations were performed in replicates
of 100 with a parameter upper and lower bound of ±10% the mean value unless
otherwise speci�ed. With limited information about the distributions of model
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parameters, a uniform random distribution was chosen to re�ect species hetero-
geneity with BFGs, host heterogeneity in species composition and to account for
variability in bioreactor setups. The uniform distribution allows for parameters
to be selected in only a biologically relevant (nonzero) range. The equilibrium
concentration of the biomass species, particularly the sugar degrading biomass,
are compared to the default equilibrium values to determine the sensitivity of
the system to a parameter set.

The default parameters used for simulations were obtained from [11], which
were in turn adapted from [1, 14]. In general, the parameters that most in�u-
ence the behaviour of the system can be classi�ed as reaction parameters, which
control substrate consumption and biomass growth, and exchange parameters,
which control the exchange of materials between the lumen and mucus compart-
ments. Both sets can be determined empirically, with the variability of reaction
parameters being more well-studied experimentally. The yield coe�cients (Y in
Table 1) are derived from the balanced chemical equations describing the con-
version of reactants to products and are not varied in this study.

Four preliminary studies were conducted to investigate the sensitivity of the
system to the reaction and exchange parameters. The parameter sets are as fol-
lows: (1) 10% uncertainty on all reaction parameters performed in 200 replicates,
(2) 50% uncertainty on all reaction parameters performed in 200 replicates, (3)
10% uncertainty on exchange parameters performed in 100 replicates, and (4)
10% uncertainty on exchange parameters responsible for the movement of mucins
and sugar between compartments in 100 replicates. The sensitivity of the output
was determined using the variance of the steady state values of the SD since they
are at the top of the metabolic hierarchy and highly in�uence the behaviour of
the other three BFGs. For the reaction parameters, the distribution of steady
state values of the lumen SD biomass had a standard deviation of 0.219 and
4.965 for an uncertainty of 10% and 50% respectively. The distribution of steady
state values of the mucus SD biomass had a standard deviation of 1.264 and
27.899. Figs. 3 & 4 shows the distribution of the steady state values for the
sugar degrading biomass with an uncertainty of 10% and 50%. The sensitivity of
the output to exchange parameters similarly shows a small variance in SD steady
state values for an input uncertainty of 10% on the exchange parameter set. The
distributions of steady state values for the full set of exchange parameters and
the subset of top level exchange parameters are shown in Figs. 5 & 6.

3.2 Calibrating Antibiotic Strength

Model output was found to be relatively stable in response to uncertainty in
reaction and exchange parameters. Since these parameters did not have a sig-
ni�cant e�ect on model output, they were held at their default values for the
follwing simulation studies. As a result, simulating the e�ects of antibiotics on
the gut microbiota only requires the consideration of the parameter KA and the
duration of antibiotic administration. Simulations were conducted by selecting a
KA value within a biologically relevant range. Small values of KA result in erad-
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Fig. 3. Distribution of sugar degrading
biomass steady state values in lumen
(a) and mucus (b) with uncertainty of
10% for reaction and exchange param-
eters

Fig. 4. Distribution of sugar degrading
biomass steady state values in lumen
(a) and mucus (b) with uncertainty of
50% for reaction and exchange param-
eters

Fig. 5. Distribution of sugar degrading
biomass steady state values in lumen
(a) and mucus (b) with uncertainty of
10% for top level exchange parameters

Fig. 6. Distribution of sugar degrading
biomass steady state values in lumen
(a) and mucus (b) with uncertainty of
10% for all exchange parameters

ication of the population (Figs. 7�10) or too drastic of an e�ect (Figs. 11�14)
with an antibiotic administered for 14 days.

A KA value of 60 with a duration of 14 days results in a moderate pertur-
bation of the biomass with a recovery to equilibrium values (Figs. 15�18). This
value of KA with a dose period of 14 days is used in the following simulation
study as the baseline antibiotic strength. At this strength, the antibiotic e�ect in
the lumen and mucus are similar with the SD biomass being a�ected the most.
This is followed by the LD biomass, with little e�ect on the methanogens and
acetogens. The SCFAs and substrates are not heavily impacted.

3.3 Mitigation Strategies and Recovery Time

Antibiotic use can shift gut microbiota composition from a healthy to an un-
healthy equilibrium that can persist for years [8]. Prebiotics and probiotics are
often used to alleviate the side e�ects of antibiotics that result from the loss
of gut microbiota. A simulation study was carried out to investigate the e�ect
of di�erent antibiotic mitigation strategies in the form of prebiotics and pro-
biotics. Prebiotics, which are a `dietary component that fosters the growth of
bene�cial bacteria' [18] were considered in the form of a single dose of �ber or
sugar before or after antibiotic treatment. Probiotics, which are live microor-
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Fig. 7. Lumen concentrations of
biomass with 14 day dose of lethal
antibiotic, KA=1.35
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Fig. 8. Lumen concentrations of
metabolites with 14 day dose of lethal
antibiotic, KA=1.35
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Fig. 9. Mucus concentrations of
biomass with 14 day dose of lethal
antibiotic, KA=1.35
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Fig. 10. Mucus concentrations of
metabolites with 14 day dose of lethal
antibiotic, KA=1.35

ganisms that provide a health bene�t to the host [2, 18], were in the form of a
discrete input of either all BFGs or only sugar degrading biomass before or after
antibiotic treatment. A 14 day dose with a weak antibiotic is investigated, as
well as shorter doses of stronger antibiotics. The antibiotic strength KA and the
antibiotic dose duration are adjusted such that the total amount of antibiotic
administered remains the same for all dosing regimes. The prebiotics and probi-
otics are administered at a constant input into the system for 7 days. Recovery
time of each simulation is measured as the time from the end of the antibiotic
dose to the time when the biomass has reached 99% of the equilibrium values
prior to antibiotic perturbation. A treatment is classi�ed as e�ective if the per-
cent di�erence in recovery time decreases for at least one biomass species when
compared to the recovery time with no treatment. Tables 2 & 3 summarize the
e�cacy of the di�erent treatments and dosing regimes. For both prebiotic and
probiotic treatments, administration during the antibiotic dosing reduced recov-
ery time most consistently. Sugar was a more e�ective prebiotic treatment when
compared to �ber, and a probiotic with only sugar degrading biomass was more
e�ective than a complete probiotic. It was also consistently easier to mitigate
the e�ects of an antibiotic administered at moderate strength for a moderate
amount of time when compared to a long course weak antibiotic. It was however
not possible to decrease recovery time for strong antibiotics that were adminis-
tered over less than a day. In all cases, prebiotic and probiotic treatment had
little e�ect on substrate and product concentrations. Figures 19 and 20 show the
percent di�erence in recovery time for the most e�ective treatment.
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Fig. 11. Lumen concentrations of
biomass with 14 day dose of strong
antibiotic, KA=1.45
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Fig. 12. Lumen concentrations of
metabolites with 14 day dose of strong
antibiotic, KA=1.45
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Fig. 13. Mucus concentrations of
biomass with 14 day dose of strong
antibiotic, KA=1.45
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Fig. 14. Mucus concentrations of
metabolites with 14 day dose of strong
antibiotic, KA=1.45

Table 2. Summary of e�ectiveness of prebiotics for recovery of the communities in
lumen and mucus compartments for di�erent regimes. Each row represents one simu-
lation, with the X's indicating the treatment regime

Antibiotic
Short
Dose

Antibiotic
Moderate
Dose

Antibiotic
Long
Dose

Before
Antibiotic

During
Antibiotic

Sugar
Prebiotic

Fiber
Prebiotic

E�cacy

X X X None

X X X None

X X X None

X X X None

X X X Both

X X X None

X X X None

X X X Both

X X X Mucus

X X X None

X X X Both

X X X Mucus
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Fig. 15. Lumen concentrations of
biomass with 14 day dose of moderate
strength antibiotic, KA=60
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Fig. 16. Lumen concentrations of
metabolites with 14 day dose of
moderate strength antibiotic, KA=60
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Fig. 17. Mucus concentrations of
biomass with 14 day dose of moderate
strength antibiotic, KA=60
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Fig. 18. Mucus concentrations of
metabolites with 14 day dose of
moderate strength antibiotic, KA=60

Table 3. Summary of e�ectiveness of probiotics for recovery of the communities in
lumen and mucus compartments for di�erent regimes. Each row represents one simu-
lation, with the X's indicating the treatment regime

Antibiotic
Short
Dose

Antibiotic
Moderate
Dose

Antibiotic
Long
Dose

Before
Antibiotic

During
Antibiotic

SD
Probiotic

Complete
Probiotic

E�cacy

X X X None

X X X Lumen

X X X None

X X X None

X X X Both

X X X Lumen

X X X None

X X X Both

X X X None

X X X None

X X X Both

X X X Both
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Fig. 19. Lumen concentrations of
biomass after treatment with sugar
degrading probiotic during antibiotic
dosing
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Fig. 20. Mucus concentrations of
biomass after treatment with sugar
degrading probiotic during antibiotic
dosing

3.4 Uncertainty in Antibiotic Parameter KA

To con�rm whether the di�erence in recovery time between prebiotic/probiotic
treatment and untreated antibiotic exposure is statistically signi�cant, we con-
ducted a simulation study to compare two regimes of antibiotics, with KA = 60
and KA = 30 as default values and an antibiotic course of 14 days. A subset
of prebiotic and probiotic treatments are repeated with randomly generated KA

and growth parameters using the method described in Section 3.1. See Table 4
for a summary of the results. The recovery time with no prebiotic or probi-
otic treatment is taken as the base value for comparisons. A t-test is used to
determine whether the recovery time with prebiotic/probiotic treatment with
uncertainty on KA and growth parameters is statistically di�erent when com-
pared to the recovery time with no treatment. Treatment recovery times with
p-values less than 0.05 are considered signi�cantly di�erent from recovery times
with no treatment. Treatment regimes where there is no improvement in recov-
ery time using default parameter values also show no improvement in recovery
time in the sample set.

Table 4. Summary of E�ectiveness of Probiotics for Di�erent Regimes

Simulation KA Base Population
Mean

Sample
Mean

Std. dev p-value

Pre. before 60 11.23 5.409 5.465 0.1815 0.00263
Pre. before 30 14.58 8.677 8.754 0.2697 0.00523
Pre. during 60 11.22 2.075 2.088 0.1056 0.228
Pre. during 30 14.53 4.820 4.842 0.09125 0.0229

Pro. before 60 11.23 0.0 0.0 0.0 N/A
Pro. before 30 14.58 0.0 0.0 0.0 N/A
Pro. during 60 11.23 0.0 0.0 0.0 N/A
Pro. during 30 14.53 4.753 4.748 0.09334 0.573
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4 Conclusions

Uncertainty of parameters is an inherent part of computational models, partic-
ularly in physiological models with heterogeneity across individuals. Including
parameter uncertainty as an intrinsic part of computational experimental design
allows for model outcomes to be used in a predictive or explanatory capacity on
a population level. For many computational models there is an underlying idea
that there is a true set of parameter values. However, for many biological mod-
els, parameter values may exist within a range. For the model presented in this
study, treating the parameters as random variables helps to address the diversity
of microbial gut composition and variability within and between individuals. In
this preliminary computational study, we �nd that variability in parameters do
not have a signi�cant impact on long-term model outcomes. A more thorough
analysis of the parameter distribution and uncertainty of the input parameters
is necessary to draw further conclusions.

Theoretical analyses of mathematical models can provide insight into system
behaviour. It is often di�cult or not possible to carry out this type of analysis
for large and complex models. Due to the hierarchical structure of the metabolic
processes in our system, the long-term survival of the gut microbiota are depen-
dent on the survival of the sugar degrading biomass group, which is responsible
for the degradation of carbohydrates into usable monomer sugars. Antibiotic
mitigation strategies were found to be most e�ective if they targeted this group
by supplementing their population with a probiotic or their diet with a prebi-
otic. Other applications of this model to human health and disease, such as the
role of SCFAs may require the consideration of the full system. However, in the
context of recovery after antibiotic treatment, the top level of our system can
be studied independently. A reduced system would consist of the equations for
�ber, mucin and SD biomass, corresponding to rows 1, 2 and 6 in Table 1. This
reduced system allows for theoretical analysis and results in a reduced parameter
space. Studying this system could aid in the design of computational studies of
the full system, particularly in the scope of microbial recovery after antibiotic
perturbation.
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