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Abstract. Recent measles outbreaks in regions with a high overall vac-
cination coverage have drawn attention to other factors - aside from the
overall immunity level - determining the spread of measles in a popula-
tion, such as heterogeneous social mixing behavior and vaccination be-
havior. As households are an important context for measles transmission,
the clustering of susceptible individuals within households can have a de-
cisive effect on the risk for measles outbreaks. However, as the population
ages and household constitutions change over the next 20 years, that ef-
fect may change as well. To adequately plan for the control and eventual
elimination of measles, we need to understand how the effect of within-
household susceptibility clustering will evolve. Individual-based models
enable us to represent the different levels of heterogeneity in a population
that are necessary to understand the spread of a disease in a highly immu-
nized population. In this paper, we use such an individual-based model
to investigate how the effect of household-based susceptibility clustering
is expected to change over the next two decades in Flanders, Belgium.
We compare different scenarios regarding the level of within-household
susceptibility clustering for three different calendar years between 2020
and 2040, using projections for the age distribution of the population,
the constitution of households and age-specific immunity levels. We find
that a higher level of susceptibility clustering within households increases
the risk for measles outbreaks and their potential to spread through the
population, in current as well as in future populations.
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1 Introduction

The WHO recommends that 95% of children born in a country should be vac-
cinated against measles to ensure herd immunity [25]. However, during recent
years, measles outbreaks have frequently occurred in regions with a high over-
all vaccination coverage [7, 8]. To control and eventually eliminate measles, we
need to understand the mechanisms that enable such outbreaks to happen. The
threshold proposed by the WHO is based on the assumption that susceptibility
to measles is always homogeneously distributed in a population. This, however,
might not be a realistic assumption.

When measles outbreaks occur in a highly vaccinated population, it is often
observed that pockets of un-vaccinated individuals are important drivers of these
outbreaks [10, 20]. Susceptible individuals can be clustered in a variety of ways:
geographically, in schools, or in households. Some attention has already been
devoted to modeling the effect of the geographical clustering of measles suscep-
tibility [21]. Since households are an important place for disease transmission
[17], the presence of multiple susceptible individuals within the same household
may have an important impact on the risk for measles outbreaks. This is the
reason why we investigated the effect of household-based susceptibility clustering
on the risk and persistence of measles outbreaks in a previous study [14]. Using
data on the current population of Flanders (Belgium), we found that a higher
level of household-based susceptibility clustering leads to an increased risk for
measles outbreaks and increases the size of those outbreaks.

However, to adequately plan for the control and elimination of measles, we
need to validate if these results will still apply in the future. As time progresses,
the age distribution of a population changes, as does the way in which households
are constituted [6]. Furthermore, different age groups will be at risk for measles
infection in the future [11, 15]. To estimate the effects of household-based suscep-
tibility clustering in the future, we need to take these changes in the population
into account.

Individual-based models, in which each individual is treated as a unique
entity, are very well suited to model these different levels of heterogeneity in a
population [24]. They allow us to take into account age- and context-dependent
social mixing behavior, as well as age-specific immunity levels and heterogeneous
vaccination behavior.

In this paper we use Stride [13], an individual-based model for the transmis-
sion of infectious diseases, to examine how the effects of household-based sus-
ceptibility clustering on measles outbreaks are expected to change over the next
20 years. To do this, we simulate different scenarios regarding within-household
clustering of susceptibility, using projections of the Flemish population and age-
specific immunity levels for 2020, 2030 and 2040. To estimate how the effects of
household-based clustering evolve over the next two decades, we compare sim-
ulation results regarding the risk and persistence of measles outbreaks between
the different scenarios and calendar years.
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2 Methods

Stride was previously developed by our research group [13]. By supplying dif-
ferent input files to the simulator, it can be used to model a wide variety of
populations and (air-borne) infectious diseases. It is an open-source project: the
source code can be found in a public Github repository [3]. We will briefly de-
scribe the input we supplied to Stride to conduct our study and the way in which
certain relevant aspects of the simulator were implemented.

2.1 Population

We used projections for the age distribution of the population of Flanders and
the constitution of households for 2020, 2030, and 2040. These projections are
based on currently unpublished work, and were provided to us after personal
communication with the authors [16]. For each calendar year we examined, we
used a population of about 300,000 individuals, 5% of the total population size
of Flanders. Aside from in their households, there are three other social contexts
in which individuals can contact each other in our model: schools, workplaces,
and more general communities.

The distribution of school group sizes by student age is based on registration
data collected by the Flemish government in 2019 [23]. We assumed that all
children aged between 3 and 18 years of age attend school during weekdays. The
distribution of workplace sizes was based on data extracted from Eurostat [5].
We assumed an employment rate of 70% for individuals aged between 18 and 65
years old, based on data for Belgium in 2018 obtained from the Eurostat database
[5]. Finally, each individual was also assigned to a separate week- and weekend
community, to represent more general contacts made during, respectively, week-
and weekend days. These communities consist of about 1,000 individuals each,
in line with earlier work by Chao et al. [4].

Age-specific contact rates in each of these contexts - households, schools,
workplaces, and communities - are based on a social contact study conducted in
Flanders in 2010 and 2011 [12].

2.2 Age-specific immunity levels

To inform our model, we used projections for age-specific immunity levels for
Belgium in 2020, 2030 and 2040. These projections are based on a recent study
by Hens et al. [11], and were obtained in the same way as described in a recent
paper [15]. In Figure 1, the projected percentage of immune individuals by age
can be observed for 2020 (solid blue line), 2030 (dashed orange line) and 2040
(dotted green line).

In Belgium, uptake of a measles-containing vaccine took off on a large scale
from 1985 on - although a vaccine had been available on the Belgian market
since 1975 [2]. Therefore, we will assume that most individuals born in Belgium
before 1985 have acquired natural immunity after surviving a measles infection.
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Fig. 1. Projected percentages of immune individuals by age for 2020 (solid blue line),
2030 (dashed orange line) and 2040 (dotted green line).

For the generation born between 1985 and 1995, the situation is different.
As measles no longer circulated, fewer persons were infected and, consequently,
natural immunity became less common. However, due to the introduction period
of the vaccine, many individuals born during this period were not vaccinated, or
were incompletely vaccinated - receiving only one dose instead of the recommend
two doses of a measles-containing vaccine. This is reflected in the immunity level
of this age group, as can be seen in Figure 1: for 2020, a dip in the immunity
level for individuals aged 25 to 35 years can be observed. As this generation
ages, their immunity level is expected to decrease further due to the waning of
vaccine-induced immunity: the dip in immunity level that can be observed for
2020 becomes deeper for 2030 and 2040. As a consequence of this, the overall
immunity level of the population is also projected to decline in the future (from
about 92% in 2020 to a little over 86% in 2040).

Since 1995, vaccination coverage in Flanders has been fairly stable. In the
projections we used, it is assumed that this will also remain the case in the
future. The recommended age for infants to receive the first dose of a measles-
containing vaccine in Flanders is at 12 months [1]. As such, children younger
than 12 months of age constitute another group at risk for measles infection.
Furthermore, in Flanders, the recommended age to receive the second dose of a
measles-containing vaccine is at 10 years of age [1]. Until they receive this second
dose, children might not be fully protected against measles.

2.3 Distribution of immunity: implementation

To reflect both the age-specific immunity levels discussed above, and the target
level of household-based susceptibility clustering that is supplied to the simulator
as an input parameter, the following procedure was used to distribute immunity
in the population before the start of each simulation.

We assume that individuals born before 1985 have acquired natural immu-
nity, and that the household-based clustering of susceptibility is the result of de-
cisions made about vaccination. As such, we do not take into account household-
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based susceptibility clustering for individuals born before 1985. To distribute im-
munity among individuals in this age group, we follow the algorithm described
below.

First, we calculate for each age the target number of immune individuals,
based on the age-specific immunity level and the total number of individuals of
this age present in the simulated population. Next, we draw a random individual
from the population. If this individual is susceptible and there are not yet enough
immune individuals in the age category that this individual belongs to, we make
this person immune. We repeat this process until all age-dependent immunity
quota for individuals born before 1985 have been fulfilled.

For individuals born since 1985, we do take into account the target clustering
level. The target clustering level is an input parameter between 0 and 1. It
represents the probability that if an individual (born since 1985) is immune,
all other individuals (also born since 1985) that belong to the same household
are also immune. To immunize this part of the population, we use the following
procedure.

As before, we calculate the target number of immune individuals for each
age category. Next, we select a random individual from a random household.
If the selected individual is still susceptible, and if there are not yet enough
immune individuals in their age category, we make this person immune. Then,
we compare a random draw to the target clustering level. If the random draw
is lower than the target clustering level, we immunize all other individuals born
since 1985 that belong to the same household. We do this within the limits posed
by age-specific immunity quota: we do not allow the actual immunity level for
each age to exceed the target immunity level by more than 5%. We repeat this
procedure until the total target number of immune individuals born since 1985
has been reached.

2.4 Contact and transmission events

Once the population has been initialized, we simulate the actual contact and
transmission events that occur in the population. This procedure is explained
in more detail in a previous publication [13], but we will briefly repeat relevant
elements here. The simulator moves forward in discrete time-steps of one day.
During each time-step, we update the presence of individuals in their respective
social contact pools (households, schools, workplaces and communities), based on
the day of the week and each individual’s health status (symptomatic individuals
only make contacts within their own household).

Next, we simulate contact and transmission events for each social contact
pool. Based on the age- and context-specific contact rates discussed above, we
check whether contact occurs between infectious and susceptible members of each
contact pool. If an infectious and a susceptible individual contact each other,
we compare a random draw to the transmission probability. This transmission
probability - Ptransmission - is supplied as an input parameter to the simulator
and represents the probability that if an infectious and a susceptible individual
have contact, a transmission of the disease occurs. If the random draw is lower
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than the transmission probability, we set the health status of the susceptible
individual to exposed.

Individuals that are not marked as immune from the beginning of the simu-
lation can be in one of 5 health states: susceptible, exposed, infectious, infectious
and symptomatic, and recovered. We modeled the natural history of measles as
described in previous work [14].

2.5 Scenarios

A common measure used in epidemiology to estimate the transmission potential
of a disease is R0, the basic reproduction number. R0 represents the average
number of new cases one infected individual would cause in a completely sus-
ceptible population. However, as R0 not only depends on the pathogen itself,
but also the structure of the population and on social contact behavior, we used
Ptransmission as an input parameter to represent the transmission potential of the
disease. Despite this, we want to be able to express our results in terms of R0,
and so we established a relationship between Ptransmission and R0 for the different
populations that we used in our experiments.

We estimated this relationship for the populations projected for 2020, 2030
and 2040. For each calendar year, we ran 1000 simulations each for 21 values of
Ptransmission between 0 and 1. At the beginning of each simulation, we introduced
one infected individual into the population. We kept track of the number of
secondary cases caused by this index case in a completely susceptible population,
and used this to estimate R0. We ran each simulation for 30 days: by this time
the index case has recovered and can no longer infect any new cases.

We used the optimize.curve fit function in the scipy python package [22] to
fit a function through the 21,000 data points we collected for each calendar year,
allowing us to estimate a corresponding R0 value for each Ptransmission that we
used as an input parameter. The optimize.curve fit function uses a non-linear
least squares method to fit the data obtained from our simulation runs to a
function of the form shown in Equation (1).

a + b× log(1 + Ptransmission) (1)

After we established a relationship between Ptransmission and R0, we investigated
different scenarios regarding household-based clustering of susceptibility for dif-
ferent calendar years. We tested 9 values for Ptransmission between 0.40 and 0.80
- corresponding to a basic reproduction number of about 11.16 to 19.71 for 2020,
10.95 to 19.36 for 2030 and 10.80 to 19.12 for 2040. We also tested 5 values for
the target clustering level between 0 and 1. We compared these 45 scenarios
between 3 different calendar years: 2020, 2030 and 2040. For each of these 135
scenarios, we ran 200 stochastic simulations.

At the beginning of each simulation, we introduced one infectious individual
into the population. Next, we ran every simulation for 730 days. We assumed
that after this period the outbreak had run its full course - as no more new
infections were recorded after day 730 in previous, exploratory simulations.
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3 Results

3.1 Relationship Ptransmission ∼ R0

As discussed above, we established a relationship between the input parameter
Ptransmission and R0, the basic reproduction number. As R0 depends on both
the transmission potential of a disease as well as on the structure and social
mixing behavior of a population, we estimated this relationship separately for
each different population projection we used (2020, 2030, and 2040).

The functions of the form shown in Equation (1) that we fit for 2020, 2030,
and 2040 can bee seen in Table 1. Even though the populations used for 2020,
2030 and 2040 differ from each other in terms of age distribution and household
constitution, the relationship between Ptransmission and R0 does not appear to
change a lot.

Table 1. Coefficients for fitted functions of the form shown in Equation (1) to estimate
the relationship between Ptransmission and R0.

Calendar year a b

2020 -0.29 34.03
2030 -0.31 33.46
2040 -0.33 33.09

An overview of the simulation results we used to fit these functions can be
seen in Figure 2. For all three fits, we observe that a value for Ptransmission of
0 corresponds to a value of 0 for R0. Furthermore, as Ptransmission increases, we
see that both the mean number of secondary cases caused by our index case
(solid blue line) and the median number of secondary cases (dashed pink line)
increase. These values both roughly follow the shape of a logarithmic function,
which is the reason why we chose to fit them to a function of the form shown in
Equation (1).

We also added the fitted function which estimates the relationship between
Ptransmission and R0 for each calendar year to the plot seen in Figure 2 (dotted
brown line). For all calendar years we tested, the fitted function neatly follows
both the mean and median number of secondary cases we observed for each value
of Ptransmission.

The basic reproduction number of measles is commonly estimated to be
between 12 and 18. In our model, this would thus correspond to a value of
Ptransmission of about 0.44 (R̂0 = 12.12) to 0.72 (R̂0 = 18.17) for 2020, 0.45
(R̂0 = 12.12) to 0.73 (R̂0 = 18.03) for 2030, and 0.46 (R̂0 = 12.19) to 0.75
(R̂0 = 18.19) for 2040. As we ran simulations for values of Ptransmission from
0.40 to 0.80, we are certain to have included a relevant range of transmission
probabilities for measles.
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Fig. 2. Estimated relationship between Ptransmission and R0 in our simulated popula-
tions for 2020 (a) and 2040 (b) (results for 2030 not shown here). Besides the mean
number of secondary cases for each value of Ptransmission (solid blue line), the median
number of secondary cases (dashed pink line), and the 95% percentile interval of sec-
ondary cases observed (gray shape), the fitted function (dotted brown line) is also
shown for each tested calendar year.

3.2 Household assortativity coefficient

Our goal in this study was to investigate how the effect of the clustering of
measles susceptibility within households evolves as the population ages. We used
a target clustering level as an input parameter to inform how immunity is to
be distributed in the simulated population. To check in how far changes in this
input parameter actually led to more clustering of susceptibility in the simulated
population, and to obtain a measure that could be used to measure clustering in
reality, we constructed a measure to estimate the actual level of household-based
susceptibility clustering in a population: the household assortativity coefficient
[14, 18].

To calculate this household assortativity coefficient, we first build a network.
The nodes in this network correspond to individuals in the population. Each
node has a single attribute: an individual is either susceptible to measles at the
beginning of the simulation or they are not. An edge connects two nodes if the
two individuals represented by the nodes belong to the same household.

Once this network has been constructed, we can calculate the attribute as-
sortativity coefficient, based on the susceptibility attribute. This coefficient de-
scribes in how far similar nodes - here in respect to their immunity status - in the
network are connected to each other. To construct the networks and calculate
the attribute assortativity coefficient, we used the networkX python package [9].

In figure 3, the distribution of household assortativity coefficients by target
clustering level can be seen for simulations for 2020 (red), 2030 (yellow), and
2040 (green). For all calendar years the same trend can be observed: as the target
clustering level is increased, the household assortativity coefficient also increases.
Furthermore, there seems to be a consistent relationship between the target
clustering level and the household assortativity coefficient for each calendar year.
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Fig. 3. Distribution of household assortativity coefficients by input clustering level for
simulations for 2020 (red), 2030 (yellow) and 2040 (green).

When we compare the different calendar years, we observe that, in later years,
the household assortativity coefficient increases more sharply as the clustering
level is increased. This can be expected when we consider that we only took the
target clustering level into account for individuals born since 1985. In 2020, this
age group constitutes a smaller part of the population than it does in 2030 and
in 2040. As such, clustering is applied to a larger part of the population in later
calendar years, which is reflected in the corresponding household assortativity
coefficients.

3.3 Risk and persistence of measles outbreaks

Effective R To estimate the impact of household-based susceptibility clustering
on the risk for measles outbreaks, we calculated the Effective R for each scenario
that we tested. We defined the Effective R as the average number of secondary
cases an infected individual causes in a partially immune population. The method
we used to calculate the Effective R is similar to how we calculated R0. For each
scenario we tested, we calculated the average number of secondary cases caused
by the index case over the 200 stochastic simulations.

In Figure 4, the Effective R by Ptransmission and clustering level is shown for
2020 (a), 2030 (b), and 2040 (c). For all calendar years, the same trend can
be observed. As expected, increasing the transmission probability leads to an
increase in the Effective R. However, when the clustering level is increased while
Ptransmission remains the same, the Effective R also increases.

When we compare the results for the different calendar years to each other,
we observe that overall, the Effective R is higher in later calendar years - even for
the lowest values of Ptransmission and a clustering level of 0. This can be explained
by the fact that the overall immunity level of the population is also decreasing
as time progresses.

Escape probability To estimate the risk for measles outbreaks, it is important
to know whether it is likely that an outbreak will be contained to a few secondary
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Fig. 4. Heat-maps of the Effective R by Ptransmission and clustering level for 2020 (a),
2030 (b), and 2040 (c).

cases, or has the potential to spread to a large part of the susceptible population.
For this reason, we calculated, for each simulation run, the escape probability. We
defined the escape probability as the chance that an individual who is susceptible
at the beginning of the simulation will remain uninfected over the entire course
of the simulation (730 days). We estimated this probability as shown in Equation
(2), with Nsusceptible the number of susceptible individuals in the population at
the beginning of the simulation and Ncases the total number of cases infected
over the course of the entire simulation (730 days).

P̂escape =
Nsusceptible −Ncases

Nsusceptible
(2)

In Figure 5, the average escape probability over 200 stochastic runs for each sce-
nario is shown for 2020 (a), 2030 (b), and 2040 (c). Again, a clear relationship
can be observed between Ptransmission and the escape probability: as the trans-
mission probability is increased, the escape probability decreases. Increasing the
clustering level has the same effect: a higher clustering level corresponds to a
lower escape probability.

In 2020 (see Figure 5 (a)), when Ptransmission is 0.50 (corresponding to an R0

of about 13.5) and the clustering level is set at 0, the average escape probability
is 0.79. However, when Ptransmission remains the same, but the clustering level is
increased to 1, the average escape probability decreases to 0.68. The same trend
can be observed for 2030 (b) and 2040 (c).

Outbreak size Finally, we looked at the average size of persistent outbreaks.
We defined a persistent outbreak as an outbreak that spreads throughout the
population, instead of being contained to only a few secondary cases. To deter-
mine what we would consider a persistent outbreak, we looked at the frequency
of outbreak sizes over all scenarios. We observed that an outbreak either dies
out after only a few infections, or spreads through a large part of the suscepti-
ble population, with very few cases in between. As such, we chose a threshold
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Fig. 5. Average escape probability by Ptransmission and clustering level for 2020 (a),
2030 (b), and 2040 (c).

of 5,000 infected cases (about 1.5% of the population), in between those two
extremes. Any outbreak that leads to more than 5,000 infected cases, we thus
regard as a persistent outbreak.

In Figure 6, the average outbreak size of persistent outbreaks by Ptransmission

and by clustering level is shown for 2020 (a), 2030 (b), and 2040 (c). Again,
an increase in Ptransmission leads to an increase in the average size of persistent
outbreaks. Furthermore, as the clustering level is increased, the average size of
persistent outbreaks also increases.

However, we observe that the increase in average outbreak size as the cluster-
ing level is raised from 0 to 1 is smaller for later calendar years, and conversely, is
also smaller for larger values of Ptransmission. Indeed, when we consider that the
overall population immunity decreases from 2020 to 2040, these are two sides of
the same coin: an increase in the transmission potential of a disease can be ex-
pected to have the same effects as a decrease in the overall population immunity
to a disease.

4 Discussion

We used an individual-based model to investigate how the effect of household-
based susceptibility clustering on the risk for measles outbreaks is expected to
change over the next 20 years. We compared different scenarios regarding the
clustering of susceptibility over three calendar years: 2020, 2030 and 2040. For
each of these calendar years we used projections of age distribution, household
constitution, and age-specific immunity levels.

We compared the results of these simulations regarding the risk, persistence
and size of measles outbreaks. We found that for all tested calendar years, an
increase in the level of household-based susceptibility clustering leads to an in-
crease in the risk for measles outbreaks, their potential to spread throughout the
population, and the eventual size of these outbreaks. However, for later calendar

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_28

https://dx.doi.org/10.1007/978-3-030-50371-0_28


12 E. Kuylen et al.

(a) 2020 (b) 2030

(c) 2040

Fig. 6. Average sizes of persistent outbreaks (threshold = 5,000 cases) by Ptransmission

and clustering level for 2020 (a), 2030 (b), and 2040 (c).

years, and for higher values of Ptransmission, the effect of susceptibility clustering
on the size of persistent outbreaks is less pronounced.

As such, we need to take household-based susceptibility clustering into ac-
count when modeling the spread of measles both in current and in future pop-
ulations. Not doing so could lead to an under-estimation of the herd immunity
threshold and the efforts needed to control measles. Furthermore, the clustering
of susceptibility within households becomes especially important when taking
into account the projections for age-specific immunity levels that we used. The
generation born between 1985 and 1995, who have a lower immunity level, are
now becoming parents, meaning they will share a roof with susceptible infants,
who are still too young to be vaccinated. Increasing the immunity level of this
generation - for example by organizing a catch-up campaign - should thus be a
priority.

There are some limitations that should be taken into account when inter-
preting the results of this study. First, the populations we used are closed pop-
ulations: no individuals were born or died over the course of each simulation.
As such, there were no new susceptible individuals entering the population. In
reality, newborn infants are an important group of susceptible individuals, that
may thus have been underrepresented in our study [1].

Furthermore, the projected age-specific immunity levels that we used for
2020, 2030 and 2040 were based on a serological survey [11]. A serological survey
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measures antibody titres in surveyed individuals, which provide an estimate of
humoral immune response. However, cellular immune response mechanisms may
offer protection against a disease even when antibody levels are low [19]. As
such, the projections we used may underestimate the level of immunity against
measles in Flanders.

Finally, this study is a case-study for the population of Flanders, Belgium. It
should be verified whether the effect of household-based susceptibility clustering
evolves in the same manner for other populations. We also recommend that, in
the future, data on the level of susceptibility clustering in different contexts and
for different populations should be collected and used to update estimations of
the herd immunity threshold for measles.
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tions for the age distribution of the population of Flanders, Belgium and the
constitution of households in 2020, 2030, and 2040.
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