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Abstract. Coronary artery bypass grafting with cardiopulmonary bypass acti-

vates the human innate immune system (HIIS) and invokes a vigorous inflamma-

tory response that is systemic. This massive inflammatory reaction can contribute 

to the development of postoperative complications that could topple the state of 

the system from health to disease, or even to some extent, death. The body, after 

all, is in a state where majority of its immune cell populations have been depleted, 

and sometimes needs days or even longer to recuperate. To obtain a deeper un-

derstanding on how HIIS responds to complications after cardiac surgery, we 

perturb the immune system model that we have developed in an earlier work in-

silico by adding another source of inflammation triggering moieties (ITMs) hours 

after surgery in various regimes. A critical transition occurs upon the addition of 

a critical concentration of ITMs when the insult is sustained for approximately 3 

hours – a total concentration that corresponds to the fatal concentration of ITMs 

documented in literature. By perturbing HIIS in-silico with additional sources of 

ITMs to mimic persistent and recurring episodes of post-surgery complications, 

we are able to specify under which conditions critical transitions occur in HIIS, 

as well as pinpoint important blood parameters that exhibit critical transitions in 

our model. More importantly, by applying early warning signals on the clinical 

trial data used to calibrate and validate HIIS model, we are able to detect blood 

parameters that exhibit critical transitions in patients who died post-surgery, 

where pro-inflammatory cytokines are deemed potential markers for critical tran-

sitions. 

Keywords: human innate immune response, post-surgery complications, criti-

cal transitions, early warning signals. 

1 Introduction 

Coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB) in-

vokes a systemic inflammatory response that activates HIIS. Contact of blood compo-

nents with the artificial surface of the bypass circuit induces sheer stress on blood cells. 

Ischemia-reperfusion injury due to accumulated ITMs that have crossed the gut-barrier 
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during hypo-perfusion [1], endotoxemia or the presence of endotoxins such as ITMs in 

the blood, as well as tissue damage caused by the surgical wound are all possible causes 

of systemic inflammatory response syndrome (SIRS). This massive inflammatory re-

action may contribute to the development of postoperative complications such as myo-

cardial dysfunction, respiratory failure, renal and neurologic dysfunction, bleeding dis-

orders, altered liver function, and sequentially, multiple organ failure [2]. Taking into 

account that more than 800,000 patients per year undergo coronary artery bypass graft-

ing (CABG) surgery worldwide while approximately 150,000 patients undergo valve 

surgery [3, 4], postoperative respiratory failure has a mortality rate of 80% in patients 

undergoing cardiac surgery [5, 6]. Myocardial dysfunction that escalates to sympto-

matic heart failure accounts for 50% of medical admissions to hospitals, and is associ-

ated with in-hospital mortality of 12% and a 1-year mortality of 20-35% [7, 8]. The 

Society of Thoracic Surgeons National Database reported that 20% (22,000 patients) 

of “low-risk” patients developed postoperative complications. 

Using the HIIS model that we have developed in an earlier work [9], we show how 

HIIS reacts to complications after surgery by adding a source of ITMs in-silico hours 

post-surgery. The developed model is an ordinary differential equations model of that 

of HIIS in response to systemic inflammation. The model has been calibrated and val-

idated against clinical trials data of patients undergoing cardiac surgery. ITMs may re-

fer to any cell or enzyme that triggers the innate immune response, such as bacterial 

lipopolysaccharides (LPS) and extracellular nucleotides [10, 11]. In case of a massive 

insult, HIIS’ response becomes amplified and dysregulated [12], which leads to the 

imbalance between pro-inflammatory and anti-inflammatory cytokines [13]. By per-

turbing the in-silico system with different intensities of ITMs, we aim to test the resili-

ence of HIIS and assess at which point the system shifts between alternative regimes: 

from state of health to disease. 

Various and diverse complex dynamical systems have been shown to exhibit transi-

tions or so-called tipping points, where there occurs an abrupt shift in stable states. In 

biological systems, such as the human body, this tipping point can occur as a rapid shift 

from state of health to disease in various manners [14, 15]. In depression, fluctuations 

of emotions serve as indicators for tipping points from normal to the onset of a depres-

sive state [16]. Other examples also include systemic market crashes observed in finan-

cial systems [17, 18], the slowing down of fluctuations before a climate shift [19, 20], 

trends of a declining population prior to extinction [21, 22], blood parameters as indi-

cators of tipping points in patients undergoing cardiac surgery [23], and early warning 

systems in floods [24] and dams . 

Early warning signals (EWS) are hypothesized to serve as indicators of loss of sys-

tem resilience prior to transitions between regimes. Subtle statistical properties of meas-

urements in the system are assessed to indicate presence of critical transitions [25]. 

Sometimes, these transitions are observed in changes in correlations, standard devia-

tion, and skewness of system measurements through time [26]. 

We define critical transition occurring in the in-silico model when blood parameter 

concentrations exhibit either a saturation to a maximum value, as in the case of increas-

ing concentrations of ITMs, accompanied by the depletion of other immune cell popu-

lations. These serve as strong indicators that the body is no longer able to neutralize the 
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ongoing inflammation. We show that the system shifts abruptly and irreversibly from 

the state of health to disease given a critical threshold of ITMs in our model.  

This startling transition in HIIS poses an urgent and crucial concern as it might be 

difficult, or even impossible for medical practitioners to act upon beforehand due to the 

abrupt nature of the transition. Due to the urgency of the situation, it calls for a deeper 

understanding on the nature of the instances that contribute to the occurrence of these 

transitions. More importantly, there is a need to investigate the possibility of detecting 

these transitions at a considerable time before the event happens. We define a healthy 

state when HIIS can resolve or neutralize all ITMs, while disease when ITMs are not 

resolved within incubation time. Consequently, critical transition is the point when the 

state of the system shifts from health to disease. Finally, we assess the capability of 

EWS in detecting critical transitions in clinical trials data of patients undergoing cardiac 

surgery that was used to calibrate and validate HIIS model in [9]. In the clinical trials 

data, 3 out of 52 patients died post-surgery. In the context of our model, we define the 

3 patients who died as critical patients who exhibited critical transitions in their blood 

parameters, while the remaining patients we refer to as non-critical. 

2 Methods 

2.1 Metric and Model-Based Indicators 

EWS for detecting critical transitions in systems can be divided into two categories: 

metric and model-based. Both methods aim to quantify the variations in correlation 

structure, and changes in variability in measurements prior to the system’s transition 

between alternate regimes [27]. Metric-based indicators aim to quantify changes in sta-

tistical properties of measurements without attempting to fit the measurements onto a 

model. We use variance, skewness, and kurtosis as metric-based indicators for transi-

tion from state of health to disease, which are explained each in turn next. 

The most important hints of whether a system is close to a critical transition is re-

ferred to in dynamical systems theory as “critical slowing down” [28]. It’s most 

straightforward implication is when the rate of recovery after tiny perturbations can be 

used as an indicator on whether a system is close to a bifurcation point [29]. That is, 

the time it takes to return to equilibrium even after tiny perturbations strongly increases 

as the system approaches the threshold of bifurcation. Hence, referring to how the sys-

tem “slows down” going back to equilibrium [30, 31].  

Variance. An increase in variance in fluctuation patterns could be another conse-

quence of critical slowing down. As a system approaches a tipping point it could exhibit 

increasingly strong variations at measurements around the equilibrium as the impacts 

of perturbations do not decay, and only accumulates. Skewness. Perturbations drive the 

state of the system to shift between alternate regimes. Critical slowing down, which 

refers to a decreasing return rate of the system towards equilibrium results in distribu-

tion asymmetry [32]. Hence skewness either increases or decreases depending on the 

direction of transition. Kurtosis. Strong perturbations provokes the system to take on 

extreme values close to transition, increasing the occurrence of rare values in the 
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measurements [33]. Therefore, an increase in kurtosis, or “bulging” is observed in the 

measurements leading to a tipping point. 

Model-based indicators quantify variations in measurements by fitting the data to a 

model. Autocorrelation is a simple method used to quantitatively describe slowing 

down in a system nearing tipping point. Autocorrelation is one of the simplest ways in 

measuring slowing down. Increasing autocorrelation implies that consecutive points in 

the time series have become increasingly similar [34]. Time-varying Autoregressive 

models (AR) at time lag 𝑝 is also one of the numerous methods used to estimate the 

local dynamics in measurements of a system [35]. The first step is calculating the in-

verse of the characteristic root (𝜆), by estimating the autoregressive function. Values 

for 𝜆 that approaches 0 imply that the system quickly returns or stabilizes towards the 

mean. This is because we used a time lag equal to one, which indicates that the current 

value is based on the value immediately preceding it. Hence, 𝜆 would simply be the 

slope of change between two time points, 𝑦(𝑡) and 𝑦(𝑡 − 1). See equation for time-

varying AR(1) model in equation (1). The smaller this slope is, the more similar the 

measurements are at time 𝑡 − 1 with 𝑡. Hence, it would be quicker for the system to go 

back to equilibrium. On the other hand, when values for 𝜆 approach 1, measurements 

become increasingly varied hence implying instability. 

𝑦(𝑡) = 𝑎(𝑡)𝑦(𝑡 − 1) + 𝜀(𝑡), (1) 

where 𝑎(𝑡) corresponds to the autoregressive  coefficient, and 𝜀(𝑡) corresponds to 

the environmental variability [27]. 

 

2.2 Trend Detection 

Any presence of statistically significant increasing trends captured by early warning 

indicators are evaluated using the Mann-Kendall trend test. The Mann-Kendall trend 

test is a non-parametric test that analyzes consistent increasing or decreasing patterns 

in data series. The null hypothesis being a monotonic trend does not exist, while the 

alternate hypothesis assumes the existence of a trend. These trends are tested to a sig-

nificance level of 5%. We used a one-tailed test. This means that we only look at posi-

tive trends in values of EWS to be able to fully understand the system. 

3 Results and Discussion 

3.1 Effects of Adding Inflammation Triggering Moieties In-Silico to the 

Human Innate Immune System 2 Days After Surgery 

Cardiac surgery with CABG activates HIIS, which invokes a vigorous response that 

most likely depletes the body’s reservoir of immune cells, proteins, and enzymes, such 

as macrophages, neutrophils. Depending on the patient’s conditions, it may take days, 

weeks or even months for immune cell levels to fully recuperate to normal levels. Ngu-

yen et al. have shown that the activity of immune cells in cardiac surgery patients was 

impaired on the 3rd day post-surgery. These levels, however, returned to normal after a 

week after surgery [36]. The occurrence of complications post-operation becomes a 

serious threat as the body has not yet fully recovered. Complications sometimes happen 
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from 2 to 9 days after surgery [37]. In a study conducted by Hashemzadeh et al., the 

majority of the complications, more specifically postoperative atrial fibrillation, de-

velop within the first 2 days after surgery [38]. Hence, in all our experiments, we add a 

source of ITMs that starts at 48 hours after cardiac surgery.  

Below we explore the effects of adding various concentrations of ITMs in-silico 48 

hours after surgery for a duration of 3 hours. These ITMs may come from complications 

from inflicted wound due to surgery, oxidative stress coming from various sources in 

the body, or external factors that invoke further production of ITMs. 3 hours is the 

duration of insult that is typically observed in patients undergoing cardiac surgery be-

fore they stabilize back to normal values, often 7 days after surgery [36, 39]. We show 

that this duration of adding ITMs is able to tip the balance, pushing the state of the 

system from health to disease, which we will later show numerically in Section 3.2. We 

summarize our results in Fig. 1.  

  

  
Fig. 1. Human Innate Immune Response to Post-Operative complications. Excess ITMs are continuously 

added for 3 hours in-silico at exactly 48 hours (2 days) after surgery. Our results show that at an ITM con-

centration of 𝟏 × 𝟏𝟎𝟗 𝒄𝒆𝒍𝒍𝒔

𝒎𝒎𝟑
, the concentration of ITMs in the tissue remains unneutralized even after 96 hours 

of surgery. Compared to 𝟏 × 𝟏𝟎𝟖 𝒄𝒆𝒍𝒍𝒔

𝒎𝒎𝟑
,  this concentration HIIS can completely neutralize the inflammation 

at 60 hours post-surgery. Pro-inflammatory cytokines, proteins responsible for opening the endothelial barrier 

to allow recruitment of more neutrophils from the bloodstream into the tissue, exhibit a saturation of concen-

tration at added ITMs of 𝟏 × 𝟏𝟎𝟗 𝒄𝒆𝒍𝒍𝒔

𝒎𝒎𝟑
. AP, enzymes known to neutralize ITMs, are depleted both in blood 

and tissue at added ITM concentration of 𝟏 × 𝟏𝟎𝟗 𝒄𝒆𝒍𝒍𝒔

𝒎𝒎𝟑
. Resting macrophages show slight differences for 

various ITM concentration regimes due to the slow replenishment rate from the bone marrow. Nonetheless, 
we still see a depletion of concentration of resting macrophages at a critical ITM concentration of 

𝟏 × 𝟏𝟎𝟗 𝒄𝒆𝒍𝒍𝒔

𝒎𝒎𝟑
. Cells, in the context of our work, also refer to proteins, enzymes, and molecules as a unifying 

unit in our system. 
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The abrupt change in blood parameter concentrations shown in our results imply that 

there seems to be a critical concentration of ITMs where HIIS is no longer able to neu-

tralize the inflammation. We highlight this in red as shown in Fig. 1. With overwhelm-

ing concentration of ITMs, activated neutrophils that are at the site of inflammation go 

into necrosis, as an attempt, paradoxically, to aggravate the inflammation, which results 

in the recruitment of more neutrophils into the site of inflammation. This peculiar 

choice in death pathway (apoptosis or necrosis) is explained and modeled in [40, 41]. 

Necrosis, a violent death pathway that involves the rupture of the neutrophil’s cytoplas-

mic content into its surroundings, releases an additional source of ITMs that invokes a 

series of immune cell responses, which fuels, and further aggravates the ongoing in-

flammatory response. One could imagine the effect of a considerable amount of ITMs 

on HIIS. More specifically, how it induces a magnified and continuous production of 

concentrations of pro-inflammatory cytokines.  

With additional ITM concentrations of 1 × 108 𝑐𝑒𝑙𝑙𝑠

𝑚𝑚3
, ITMs in tissue decrease 60 hours 

after surgery, implying that the body is still capable of neutralizing the additional 

amount of insult. On the other hand, this ITM concentration saturates when the added 

concentration of ITMs is 1 × 109 𝑐𝑒𝑙𝑙𝑠

𝑚𝑚3. One of the key functions of pro-inflammatory 

cytokines is to open up the endothelial barrier, which consequently recruits a fresh fleet 

of neutrophils into the site of inflammation. We show in our results that the concentra-

tion of pro-inflammatory cytokines increases and saturates to a steady level when the 

added concentration of ITMs 1 × 109 𝑐𝑒𝑙𝑙𝑠

𝑚𝑚3 while AP in blood and in tissue becomes de-

pleted. In contrast, for added ITMs of 1 × 108 𝑐𝑒𝑙𝑙𝑠

𝑚𝑚3
, pro-inflammatory cytokines level 

slides back to zero and AP stabilizes back to normal roughly 60 hours after surgery. 

Added ITMs do not seem to affect activated macrophages and neutrophils as shown 

in Fig. 2.  

  

Fig. 2. Resting and Activated Macrophages and Neutrophils’ Response to Added ITMs. Even without addi-

tional ITMs, our model predicts the activation of all resting macrophages and neutrophils due to the scale of 

insult cardiac surgery with CABG invokes on HIIS. Therefore, additional source of ITMs, especially when 
the immune cells, proteins, and enzymes are already depleted, will still invoke the maximum effect on mac-

rophages and neutrophils. Cells, in the context of our work, also refer to proteins, enzymes, and molecules as 

a unifying unit in our system. 

This is because even without a new source of ITMs, resting macrophages and neu-

trophils have already been fully activated. Hence, additional source of ITMs will not 
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significantly change the profiles of these immune cells, proteins, and enzymes. During 

systemic insult, the bone marrow releases both mature and immature neutrophils into 

the bloodstream. This is the so-called “left shift,” which refers to the increase in the 

number of immature neutrophils in the bloodstream [42]. After which, it takes roughly 

a week for the bone marrow to release a new set of mature neutrophils into the blood-

stream [43, 44]. 

3.2 How does the Human Innate Immune System Respond to Persistent and 

Recurrent Episodes of Post-Surgery Complications? 

In this section, we further explore how HIIS responds to complications that are either 

recurring or persistent by adding ITMs in various regimes: 1) changing intervals and 2) 

changing durations. 

Effects of Adding Inflammation Triggering Moieties In-Silico at Different Time Inter-

vals? 

Here we introduce an additional source of ITMs at various intervals: 8 hour, 16 

hours, and 24 hours intervals. The concentration of ITMs is continuously added for 30 

minutes to mimic those complications that are persistent. Our results are summarized 

in Fig 3. 

Our results show that recurrent episodes of post-surgery complications that are sus-

tained for 30 minutes only exhibit critical transitions when the intervals between epi-

sodes are 8 hours. Our initial results show a proof-of-concept that there exists a critical 

interval between episodes that drives the state of the system to shift from one regime to 

another, which could possibly make interventions by medical practitioners feasible.  
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Fig 3. Human Innate Immune Response to Additional Sources of ITMs at Varying Time Intervals. A non-

fatal concentration of 1 × 109 𝑐𝑒𝑙𝑙𝑠

𝑚𝑚3
 ITMs [45] was added at different time intervals starting at 2 days (48 

hours) after surgery continuously for 30 minutes to mimic a persistent and recurring post-surgery complica-

tion. Our results show that when the interval between each episode decreases to 8 hours, the system undergoes 

a transition where it is no longer able to neutralize the ITMs effectively.  Hence, we see that the ITMs in the 
tissue remain at a stable concentration because the remaining population of immune cells, proteins and en-

zymes are no longer able to neutralize the ITMs. Moreover, more pro-inflammatory cytokines are induced 

due to the intense scale of insult. Cells, in the context of our work, also refer to proteins, enzymes, and 

molecules as a unifying unit in our system. 

Effects of Adding Inflammation Triggering Moieties In-Silico at Different Time Range? 
In order to mimic post-surgery complications that are persistent, we added ITMs in 

various durations starting from 30 minutes of continuous infusion, to 1 hour, 2 hours and 
3 hours. Our results are summarized in Fig 4. 

Our results show that the system can no longer neutralize the inflammation when the 
added insult is sustained for 3 hours. This can be deduced based on the profiles of ITMs 
in the tissue as well as pro-inflammatory cytokines, which portray high values. AP in 
blood and tissue, however, are depleted. 

Intuitively, we are able to show numerically that the duration of added ITMs in the 

system has prominent effects on ITMs in tissue, pro-inflammatory cytokines, and AP 

concentrations in blood and in tissue. As the body recuperates after cardiac surgery, 

there comes a point when the system can no longer neutralize the inflammation. We 

have shown in the previous section that recurrent episodes of post-surgery complica-

tions could tip the balance between health and disease when the time interval reaches 8 

hours apart. In this section, we show that this critical transition happens when the post-

surgery complication is persistent and lasts for 3 hours. This is in fact consistent with 

the findings of Damas et al., where the overall concentration of ITMs within this 3-hour 

duration corresponds to the fatal concentration of ITMs in humans [45]. 
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Fig 4. Human Innate Immune Response to Added ITMs at Different Time Durations. A non-fatal concentra-

tion of 1 × 109 𝑐𝑒𝑙𝑙𝑠

𝑚𝑚3
 ITMs [45] was added at increasing durations starting at 2 days (48 hours) after surgery 

continuously for 30 minutes, 1, 2, and 3 hours to model persistent post-surgery complications. Our results 

show that when the infusion of ITMs is 3 hours, the system undergoes a transition where it is no longer able 

to neutralize the ITMs effectively 

Critical Transitions in Blood Parameter Timeseries of Patients Undergoing Cardiac 

Surgery? 

The clinical trials data is composed of concentrations of 43 various blood parameters 

sampled from 52 patients who have undergone cardiac surgery with bypass filter. Time 

stamps at which the samples were taken were also recorded and indicated in the data. 

The data was collected from two separate hospitals: Catharina Hospital Eindhoven (The 

Netherlands), and Zuid Oost-Limburg Hospital (Belgium). The conditions at which the 

patients have undergone, methods used to obtain the blood parameter samples, as well 

as time intervals for the data collection were standardized between the hospitals. A 

more detailed description of the population of patients can be found in [9].  

The raw data contains a huge amount of missing data points (58.7 %) because not 

all blood parameters are sampled. Missing values are inevitable in clinical trial data, so 

it is necessary that the methods are able to deal with this type of data. Numerous tech-

niques are able to handle missing values. But what is important is that, these techniques 

should not significantly increase the rate at which false positives are being detected or 

labeling critical patients as non-critical; labeling critical patients as healthy. Otherwise, 

it makes the signal noisy as well as impractical for medical practitioners to act upon.  
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Missing values are dealt with by using a simple technique called bootstrapping. The 

basic idea behind bootstrapping involves a repeated random sampling with replacement 

from the original data to come up with random samples (or bootstrap samples) that have 

the same size as the original data. Each measurement can be sampled more than once 

and only within the distribution of the type of patients involved. That is, bootstrapping 

of non-critical patient is only resampled within the distribution of non-critical patients. 

The same goes with critical patients, where missing data points are resampled within 

the distribution of critical patients. In this way we limit the possibility of increasing 

false negatives in our bootstrapped data. We resampled 100 times to ensure variability 

in the bootstrap samples. 

Since we are dealing with an imbalanced data set – 6% of the data are critical patients 

and the rest are non-critical, we assess the performance of EWS in detecting critical and 

non-critical patients by calculating the F1 score based on outcomes of the detection 

based on the definitions summarized in Table 1.  

Table 1. Definition of Terms Used for Assigning Critical and non-critical patients. 

Symbol Interpretation Definition 

𝑇𝑃 True Positive assigning critical patients as critical 

𝐹𝑃 False Positive assigning non-critical patients as critical 

𝐹𝑁 False Negative assigning critical patients as non-critical 

𝑇𝑁 True Negative assigning non-critical patients as non-critical 

 

The F1 score is calculated based on equation (2): 

𝐹1 = 2
𝑃∙𝑅

𝑃+𝑅
 , (2) 

where 𝑃 corresponds to precision, which provides a measure or percentage of the 
results that are relevant as it measures the percentage of true positive with respect to the 
total predicted positive (true positive + false positive). 𝑅 is Recall, which measures the 
fraction of relevant instances retrieved or what percentage of the actual number of critical 
patients are correctly identified by the methods. Precision provides a good measure when 
the cost of false positive is high. On the other hand, Recall is a good measure when the 
cost of false negative is high. F1 score provides a good measure that seeks the balance 
between precision and recall especially when the dataset exhibits an imbalanced class 
distribution. We correct this from a previously published work, where we used Recall 
and Precision as measures of our model [23].  

Using Early Warning Signals to Pinpoint Blood Parameter Markers of Death 

Each time series corresponding to a timely record of a patient’s concentrations of 

blood parameter is assessed on whether a critical transition is detected or not using 

EWS. This is done by using a rolling window of half the size of the time series data for 

each methodology for EWS. The Mann Kendall trend test is then used to test the pres-

ence of a significant increasing trend. The results are evaluated by calculating for the 

F1 scores per blood parameter. The motivation here is to pinpoint blood parameters that 

may be the best option for medical practitioners to focus on, as opposed to doing an 

extensive scan on all blood parameters that in fact do not reveal signs of critical 
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transitions in patients at all. In this way, resources as well as time are wisely conserved 

and patients, who are prone to criticalities, can readily be given the immediate treatment 

they need. We processed both bootstrapped and original data, but the results of our 

simulations are similar for both data sets.  These results are summarized in Fig 5. 

 

Fig 5. F1 Score of model output after using early warning signals in detecting critical and non-critical patients. 

The highest F1 score corresponds to KreaMDRD, which corresponds to the level of creatinine in blood cal-

culated using the MDRD (Modification of Diet in Renal Disease Study) equation with Kurtosis as EWS. This 
is followed by IL6 (pro-inflammatory cytokine) and LD (Lactate Dehydrogenase) with autoregression and 

variance as EWS respectively. 

4 Summary and Conclusion 

Using our model of the human innate immune response for patients undergoing car-

diac surgery, we show how HIIS reacts to complications that occur post-surgery. We 

did this by adding in-silico ITMs at 48 hours (2 days) after surgery. We showed that an 

additional concentration of 1 × 109 𝑐𝑒𝑙𝑙𝑠

𝑚𝑚3 ITMs continuously added for 3 hours lead to a 

rapid and irreversible critical transition from health to disease. In fact, this concentra-

tion of ITMs corresponds to the fatal concentration of ITMs documented in literature. 

We used EWS to detect the presence or absence of critical transitions in clinical trials 

data of patients undergoing cardiac surgery. Our initial findings show that by using 

EWS, blood parameter markers such as Creatinine, IL6 and Lactate Dehydrogenase 

reveal significant presence of critical transitions. IL6, a pro-inflammatory cytokine, was 

also pinpointed in the in-silico model as one of the blood parameters that exhibit critical 

transitions. However, more experiments need to be done to carefully assess the strength 

of positive trends that we have detected using EWS.  

We have provided a proof-of-concept on the existence of critical transitions in HIIS 

model, with ITMs as the driving force for this bifurcation. Our initial findings call for 

a thorough investigation on the conditions at which critical transitions occur in HIIS. 
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More importantly, to explore if the onset of this bifurcation can be detected using 

known methods in EWS, which we perceive as potentially interesting and helpful to 

medical practitioners as these might serve as indicators to warn, or better yet prevent 

the onset of disease leading to fatalities.  
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