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Abstract. As burnouts grow increasingly common, the necessity for a model de-

scribing burnout dynamics becomes increasingly apparent. The model discussed 

in this paper builds on previous research by adding dreams, a component that has 

been shown to have an adaptive regulating effect on emotions. The proposed 

model is a first-order adaptive temporal-causal network model, incorporating 

emotions, exercise, sleep, and dreams. The model was validated against given 

patterns found in empirical literature and it may be used to gain a better under-

standing of burnout dynamics. 

1 Introduction 

A burnout is seen as a buildup of long-term unresolved work-related stress. Recently, 

the World Health Organization (WHO) has classified an occupational burnout as a syn-

drome [1]. There may be multiple causes for the development of this syndrome, but 

according to the WHO, it can arise from a failure to manage chronic work-related stress. 

This can cause feelings of energy depletion, exhaustion, job detachment, negative feel-

ings and cynicism towards the job, and reduced professional efficacy as put forward in 

[1]. The number of people complaining about burnout related symptoms has increased 

over time and it is rising fast. In 2015, 13% of the Dutch employees mentioned burnout 

symptoms, this figure has risen to 16% by 2017 as shown in [2, 3]. Around 20% of 

employees aged between 25 and 35 have mentioned burnout symptoms in the Nether-

lands. 

 Due to the increase in burnout complaints and the severity of the issue, it has 

become more important to not only analyse the causes of burnouts, but also how to 

prevent, avoid, and if possible, cure them. A few possibilities to fight against burnouts 

may be lifestyle or habit changes. This paper uses previous research on modeling burn-

out phenomena [4][5], to build forth on the already created temporal-causal network 

models that describe the burnout syndrome as a dynamic interplay between symptoms 

in line with [6]. In [4], the initial model was created and the effects of physical exercise 

were analysed, in [5] sleep factors were added to improve the model. This paper adds 

relevant dream components as described in [7] and also makes the model adaptive, 

resulting in a first-order adaptive temporal-causal network model. The main adaptive 

network-oriented modelling approach was adopted from [8]. 
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 The aim is to gain a better understanding of the development of burnouts and to 

create a more realistic model that can be used in real-life scenarios. In Section 2, a brief 

overview of the relevant background knowledge will be provided; in Section 3, the 

network-oriented modelling approach will be explained in some detail. In Section 4, 

the designed adaptive network model will be described. Multiple simulations will be 

given in Section 5. Section 6 and Section 7 will respectively address empirical and 

mathematical validation of the model. Finally, a discussion concludes the paper.  

2 Theoretical Background 

This paper assumes the classic definition of the burnout by Maslach and Jackson [9]. It 

describes the symptoms of emotional exhaustion, a decline in experiencing personal 

accomplishment, and a sense of depersonalization. These symptoms are also described 

in the WHO classification of a burnout provided in [1]. The main idea behind the defi-

nition of Maslach and Jackson, was to invent a measurement instrument for burnouts 

[9]. Various components are mentioned that interact together to form a burnout. The 

most important components are described as risk factors and suppressive factors, also 

called protective factors. Among the risk factors are subjective stress, job ambiguity, 

work pressure, thoughts of work during leisure time, the amount of sleep, and the qual-

ity of sleep. Protective factors are, for example, confidence, or the amount of physical 

exercise, as modeled in [4] and sleep modeled in [5]. Factors that influence the progres-

sion or development of burnout symptoms are influenced by personal characteristics as 

described in [10]. For example, neuroticism has shown a strong correlation with expe-

riencing stress. Next to this, openness has been shown to be negatively correlated with 

depersonalization and emotional exhaustion as discussed in [11]. Because of the link 

between openness and physical exercise addressed, for example, in  [12], previous 

recomputational modeling search has analyzed the effects of physical exercise on the 

dynamics of a burnout [4]. In [5], the relation between sleep and burnout dynamics is 

analysed. This is partially done by analysing the results of a questionnaire which 

showed that insufficient sleep can be used as a predictive factor for clinical burnout as 

put forward in [13]. A noteworthy finding is that the amount of sleep is a better predic-

tor for a clinical burnout than the amount of stress someone experiences at work.  

 Next to sleep, dreams have been found to have a regulating effect on some emo-

tions as described by [7, 15, 16, 17] which is considered a form of internal simulation. 

The internal simulation consists of activation of memory elements, which are sensory 

representations in relation to emotions. Dream episodes occur after competing, which 

will activate different sensory representations (e.g., images) during dreams. The level 

of how much the feeling states and sensory representations are activated is controlled 

by different control states. In [7], Ch 5, an adaptive temporal-causal network model is 

introduced to model dream dynamics that shows a form of adaptiveness called fear 

extinction as described in [17]. Here emotion regulation is included of which the con-

nections become stronger as they are used more according to the principle of Hebbian 

learning as discussed in [18]. Fig. 1 shows a conceptual representation of part of the 

adaptive temporal-causal network model that is presented in [7], Ch. 5, Fig. 5.1. Five 
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states are shown, a sensory representation state, an emotion regulation control state, a 

dream episode state, a feeling state and a preparation for a bodily response state. The 

red arrows indicate inhibition, or a negative impact, and the black and green arrows 

indicate a positive impact, where the green arrows are adaptive. 

 

 

 

 

 

 

 

 

Fig. 1. Conceptual representation of part of an adaptive temporal-causal network model for 

dream dynamics. Here, (1) the arrows between srssk  and psb indicate the bidirectional associa-

tions between sensory representations srssk and emotional fear responses psb, (2) the arrows be-

tween psb and fsb indicate an as-if body loop generating fear feelings fsb, (3) the arrow from 

sensory representation srssk to dream episode dessk indicates the triggering of a (pseudo-con-

scious) dream episode, (4) the arrow from dessk to psb indicates the (amplifying) impact of the 

dream episode on the emotional fear response, (5) the upward arrows from dessk to emotion 

regulation control state cssk,b indicate monitoring of the (emotional) state of the person, and (6) 

the red dotted downward arrows indicate suppression of the target states as a form of emotion 

regulation. 

3 Network-Oriented Modelling 

The temporal-causal network model presented here was designed using a network-ori-

ented modelling approach that is described in [7] and [8]. Network-Oriented Modelling 

uses nodes and edges, which are the connections between nodes. Nodes are states with 

values that vary over time, while the connections can be seen as the causal relationships 

between these nodes. For an adaptive network model, besides the states also the causal 

relationships can change over time. Table 1 summarises the main concepts of network 

oriented modelling. The connections indicate the impact that states have on each other. 

Every connection has a connection weight, which is a numerical value indicating the 

connection strength. The connections and their weights define the network’s connec-

tivity characteristics. 

Next to this, every state has a combination functions that describes the manner in 

which the incoming impacts per connection are combined to form an aggregated im-

pact. This defines the network’s aggregation characteristics. A combination function 

can be a basic combination function from the available Combination Function Library 

or a weighted average of a number of such basic combination functions. Which combi-

nation function is used depends on the application and can also be node-specific. To 

define the network’s timing characteristics, every state has a speed factor that deter-

mines how fast a state changes because of its received causal impact. The numerical 

representation derived from the network characteristics is summarised in Table 2.  

psb 

cssk,b 

  srssk dessk fsb 
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Table 1. An overview of the concepts in the conceptual component of temporal-causal networks. 

Concepts Notation Explanation 

States and  

connections 
X,Y 

X→Y 
Denotes the nodes and edges in the conceptual represen-

tation of a network. 
Connection weights 

X,Y 
A connection between states X and Y has a corresponding 

connection weight. In most cases X,Y ∈[-1,1]. 
Aggregating multiple 

impacts on a state cY(..) 
Each state has a combination function and is responsible 

for combining causal impacts of all states connected to Y 

on that same state. 
Timing of the effect of 

causal impact 
Y 

The speed factor determines how fast a state is changed 

by any causal impact. In most cases: Y∈[0,1]. 

The last row of this Table 2, shows the difference equation. Adaptive networks are 

networks for which some of the characteristics X,Y cY(..), Y change over time. To model 

this, extra states are added that represent the adaptive characteristics. For example, for 

an adaptive connection weight X,Y a new state WX,Y is added (called a reification state 

or adaptation state for X,Y) representing the dynamic value of X,Y. 

Table 3 shows an overview of the combination functions used in the designed model. 

The first is the identity function id(.), which is commonly used when a state only has 

one incoming connection. 

Table 2. Numerical representations of temporal-causal networks. 

Concepts Notation Explanation 

State value at time t Y(t) 
For every time t a state Y has a 

value in [0,1]. 

Single causal im-

pact 
impactX,Y(t)  

= X,Y X(t) 

At any time t a state X (if con-

nected to Y) impacts Y through 

a connection weight X,Y. 

Aggregating multi-

ple impacts on a 

state 

aggimpactY(t)  

= cY(impactX1,Y(t),…, impactXk,Y(t)) 

= cY(X1,YX1(t), …, Xk,YXk(t)) 

The combination function cY 

determines the aggregated 

causal impact of states Xi on Y. 

Timing of the effect 

of causal impact 

Y(t+t) = Y(t) +  

Y [aggimpactY(t) - Y(t)] t 

= Y(t) +  

Y [cY(X1,YX1(t), …, Xk,YXk(t)) - Y(t)] t 

The speed factor Ydetermines 

how fast a state Y is changed 

by the aggregated causal im-

pact of states Xi 

 

The advanced logistic sum function alogistic,(..) is used to aggregate impact for 

each state that has multiple incoming connections; it has as parameters steepness  and 

threshold . The combination function hebb(..) is used for adaptation states WX,Y, rep-

resenting the adaptive value of a connection weight. It has one parameter μ, which is 

the persistence of the state. In all formula of Table 3 the variables V1,...,Vk are used for 

incoming single impacts, and W for the value of the connection weight reification state. 
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Table 3. Overview of the combination functions used. 

Combination function Description Formula  cY(V1,...,Vk) = 

id(.) Identity V 

alogisticσ,(..) Advanced logistic sum [
1

1+e−𝛔(𝑉1+⋯+𝑉𝑘−𝛕)   −   
1

1+e𝛔𝛕)](1+e-στ) 

hebbμ(..) Hebbian learning V1V2(1-W)+μW 

4 Modeling Adaptive Burnout Dynamics with Dreams 

This section describes the details of the designed adaptive network model. The states 

shown in the model are mainly based on the literature mentioned in Section 2, specifi-

cally [4] and [5]. Table 4 shows the different states that are used in the model, as well 

as their respective types. There are 5 different state types: 

Table 4. The states used in the model and their respective types. 

State Abbr. Description Type 

X1 CO Confidence Protective 

X2 OP Openness Protective 

X3 PE Physical exercise Protective 

X4 PA Personal accomplishment Protective / Consequent 

X5 NR Night rest Protective / Consequent 

X6 CW Charged work Risk 

X7 JA Job ambiguity Risk 

X8 JS Job satisfaction Protective / Consequent 

X9 NE Neuroticism Risk / Consequent 

X10 SC Social contact Protective 

X11 EE Emotional exhaustion Burnout element 

X12 CY Cynicism Burnout element 

X13 JP Job performance Consequent 

X14 JD Job detachment Consequent 

X15 DU Drugs Consequent 

X16 ST Stress Combination 

X17 fsb Feeling state for b Dream 

X18 srsST Sensory representation state for ST Dream 

X19 csST,b 
Control state for regulation of sensory represen-

tation of ST and feeling b 
Dream 

X20 desST Dream episode state for ST Dream 

X21 Wsrs,cs Reification state for connection weight srsST,csST,b Dream 

X22 Wfs,cs Reification state for connection weight fsb,csST,b Dream 

• Protective: Protective states are states that protect a person against a clinical burnout; if they 

have high values, then the chance of developing a burnout is lower. 

• Risk: Risk states are states that increase the chance of developing a burnout. 

• Burnout element: Burnout elements are affected by the protective factors and the risk factors, 

they are the states that will grow in value when a burnout is developing. Looking at these 

states is the best way to identify the level of burnout progression. 

• Consequent: Consequent states are states that are affected by the burnout elements. By intro-

ducing a feedback loop from protective or risk states to burnout elements and then from burn-

out elements to the protective or risk factors, realistic positive or negative feedback becomes 

possible. Thus, some states may have a consequent type, as well as another type. 
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• Dream: The dream type states are newly introduced in this model compared to previous lit-

erature on burnout modeling. These dream states regulate the emotions in an adaptive manner 

as new dream episodes occur, as described in Section 2.  

There are two special states shown in Table 4, namely state X21 and X22. These are the 

reification states that introduce the adaptivity in the dream component of the model, as 

described in [7].  These states use a Hebbian combination function, whereas the other 

states all use a logistic function. Furthermore, state X16 has a type ‘combination’, which 

was not mentioned above. According to [1], the main symptom of a clinical burnout is 

the high stress level. Stress is an abstract concept that can be approached using multiple 

emotions mentioned in Section 2. The stress state was added to the model as a kind of 

aggregate state state that represents an overall combination of some other important 

states in the model. The stress state is not directly regulated; instead states X17 and X18 

corresponding to the feeling state of stress and the sensory representation of stress are 

regulated by the Control state X19. A conceptual representation of the introduced adap-

tive network model is shown in Fig. 2. This Fig. 2 shows two planes, of which the 

second plane (blue) represents the adaptation states in the network: state X21 and X22 

represent the values for the weights of the connections from state X17 to state X19 and 

from state X18 to state X19, which allows the connection weight values to change over 

time. In contrast to the simplified representation shown in Fig. 2, the actual model con-

tains many more causal relations between all states, as most emotions slightly affect 

each other, as shown in literature and mentioned in Section 2. The network character-

istics for connectivity (the connections and their weights), aggregation (the combina-

tion functions and their parameters), and timing (the speed factors) have been specified 

in the form of role matrices, which provides a compact specification format for (adap-

tive) temporal-causal network models. For two of them, mb (base matrix) and mcw 

(matrix for connection weights) specifying the connectivity characteristics, see Box 1.  

 

 

Fig. 2. A simplified conceptual representation of the designed first-order adaptive temporal-

causal network. The upper plane indicates the adaptiveness of the model. 

Most of the values for these network characteristics were selected based on empirical 

data as well as previous works like [4] and [5]. Role matrices have rows for all the states 

and at each row indicate the elements that for the specific role have impact on that state. 

For example, in Box 1 in mb it is indicated which other states have basic impact, and 

in mcw it is indicated what is the connection weight impact for that state. Note that the 

cells with nonadaptive values are green and the cells with adaptive values are red. In 
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the latter cells, not a value but the name of the reification state is specified which rep-

resents the adaptive value. This can be seen in the row for the control state X19, where 

X21 and X22 are indicated as the states representing the adaptive values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 1 Role matrices for the connectivity characteristics: role matrix mb (base connectivity) 

and role matrix mcw (connection weights). 

mb 
1 2 3 4 5 6 7 8 9 10 11 12 

State Abbr 

X1 CO PE PA JA JS NE JP JD      

X2 OP CO PE JS NE SC JD       

X3 PE OP            

X4 PA CO PA CW JA JS NE EE JP JD    

X5 NR PE PA CW JS NE EE DU      

X6 CW CO PE PA NR CW JA JS NE SC EE JD DU 

X7 JA CO PA NR JA JS NE SC EE JD DU   

X8 JS PA CW JA NE EE CY JP JD     

X9 NE CO OP PE PA NR CW JA JS SC EE JP JD 

X10 SC CO OP PE NR NE        

X11 EE CO OP NR CW JA JS NE JP JD DU   

X12 CY CO OP NE EE JD        

X13 JP CO PA NR CW JA JS NE SC EE JD DU  

X14 JD CO PA CW JA JS NE EE CY JP DU   

X15 DU OP PE CW NE SC EE DU      

X16 ST EE CY JP JD         

X17 fsb ST csst,b           

X18 srsST ST csst,b           

X19 csST,b fsb srsst desst          

X20 desST srsst csst,b           

X21 Wsrs,cs srsst csst,b Wsrs,cs          

X22 Wfs,cs fsb csst,b Wfs,cs          

 mcw 
1 2 3 4 5 6 7 8 9 10 11 12 

State Abbr 

X1 CO 0.5 1 -1 1 -1 1 -0.5      

X2 OP 1 0.5 1 -1 1 -0.5       

X3 PE 1            

X4 PA 1 1 -0.5 -1 1 -1 -0.5 1 -1    

X5 NR 0.5 0.25 -1 1 -0.5 -0.5 1      

X6 CW -1 -0.5 -0.5 -1 0.5 1 -1 1 -0.5 1 -1 1 

X7 JA -1 -1 -1 1 -1 1 -0.5 1 -1 -1   

X8 JS 1 -1 -1 -1 -1 -0.5 1 -1     

X9 NE -0.25 -0.25 -0.25 -0.5 -0.5 1 1 -0.5 -0.5 1 -0.5 1 

X10 SC 1 1 0.5 0.5 -1        

X11 EE -0.5 -1 -1 1 1 -1 1 -0.25 -1 -0.5   

X12 CY 0.25 -1 0.5 0.25 1        

X13 JP 1 1 1 -0.5 -0.75 1 -1 0.25 -0.5 -1 -1  

X14 JD -0.5 -1 -1 1 -1 1 1 1 -0.5 0.25   

X15 DU 0.25 -0.5 0.25 1 0.25 0.25 0.5      

X16 ST 1 1 -1 1         

X17 fsb 1 -1           

X18 srsST 0.5 -1           

X19 csST,b X22 X21 0.3          

X20 desST 1 -1           

X21 Wsrs,cs 1 1 1          

X22 Wfs,cs 1 1 1          
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Similarly, in Box 2 a role matrix ms (matrix for speed factors) specifies what speed 

factor value has impact on the state, role matrix mcfw (matrix for combination function 

weights) specifies what combination function weights have impact and mcfp (matrix 

for combination function parameters) what parameter values of the combination func-

tion. As can be seen in these role matrices, no further adaptive characteristics were 

considered. 

 

 

 

 

 

 

 

 

 

 

 

 

Box 2  Role matrices for the aggregation characteristics: role matrix mcfw (combination func-

tion weights) and role matrix mcfp (combination function parameter values); and role matrix 

for the timing characteristics: role matrix ms (speed factors). 

5 Simulation Results 

This section shows the results obtained by running the model described in Section 4. 

The model was simulated using the modeling environment described in [14] and [8], 

Ch 9, using different initial values to create different scenarios. This modeling environ-

ment uses the above role matrices and initial values (and the step size t and end time 

of the simulation) as input and then runs the simulations. These scenarios were tested 

to gain a better understanding of the model and of clinical burnout progression. The 

main scenarios tested are non-burnout versus burnout scenarios, which are obtained by 

proper setting of the initial values of the relevant protective and risk states. Due to the 

many causal relationships, initial values can severely impact the outcome of the simu-

lation. The scenarios were obtained by using  the initial values for the states shown in 

Table 5 and t = 0.01. Fig. 3 shows the progression of the states for a non-burnout 

scenario (left) and a burnout scenario (right). For the non-bunout scenario the initial 

mcfp hebb alogistic 

State Abbr 

1 

 

2 

 

1 

 

2 

 

X1 CO   50 0.5 

X2 OP   50 0.5 

X3 PE   50 0.5 

X4 PA   50 0.5 

X5 NR   50 0.5 

X6 CW   50 0.5 

X7 JA   50 0.5 

X8 JS   50 0.5 

X9 NE   50 0.5 

X10 SC   50 0.5 

X11 EE   50 0.5 

X12 CY   50 0.5 

X13 JP   50 0.5 

X14 JD   50 0.5 

X15 DU   50 0.5 

X16 ST   50 0.5 

X17 fsb   50 0.5 

X18 srsST   50 0.1 

X19 csST,b   50 0.5 

X20 desST   60 0.25 

X21 Wsrs,cs 0.99    

X22 Wfs,cs 0.99    

mcfw 
hebb alogistic 

State Abbr 

X1 CO  1 

X2 OP  1 

X3 PE  1 

X4 PA  1 

X5 NR  1 

X6 CW  1 

X7 JA  1 

X8 JS  1 

X9 NE  1 

X10 SC  1 

X11 EE  1 

X12 CY  1 

X13 JP  1 

X14 JD  1 

X15 DU  1 

X16 ST  1 

X17 fsb  1 

X18 srsST  1 

X19 csST,b  1 

X20 desST  1 

X21 Wsrs,cs 1  

X22 Wfs,cs 1  

ms 
1 

State Abbr 

X1 CO 0.1 

X2 OP 0.1 

X3 PE 0.1 

X4 PA 0.1 

X5 NR 0.1 

X6 CW 0.1 

X7 JA 0.1 

X8 JS 0.1 

X9 NE 0.1 

X10 SC 0.1 

X11 EE 0.1 

X12 CY 0.1 

X13 JP 0.1 

X14 JD 0.1 

X15 DU 0.1 

X16 ST 0.1 

X17 fsb 0.1 

X18 srsST 0.1 

X19 csST,b 0.1 

X20 desST 0.1 

X21 Wsrs,cs 1 

X22 Wfs,cs 1 
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values of the states that form high risks are low and the protective factors are high, as 

can be seen in Table 5. The lines in the figure are colored based on their type: protective 

factors in green, risk factors yellow, burnout elements red, consequences blue, dream 

factors magenta, and finally, the stress state in black. The difference between states that 

share the same type is shown using different line styles. 

Table 5. The initial values used for the non-burnout and burnout scenarios. 

State X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

Non-burnout 0.85 0.80 0.70 0.75 0.72 0.21 0.15 0.75 0.10 0.82 

Burnout 0.25 0.22 0.23 0.20 0.35 0.90 0.95 0.30 0.98 0.17 

State X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 

Non-burnout 0.20 0.78 0.15 0.22 0.00 0.00 0.00 0.00 0.00 0.00 

Burnout 0.15 0.90 0.05 0.075 0.00 0.00 0.00 0.00 0.00 0.50 

 

The pattern can be explained by looking at where the states are converging to. The 

protective factors are converging to one (all had high initial values), while the risk fac-

tors converge to zero and (they had low initial values). 

  

 

Fig. 3. Non-burnout scenario (left) and a burnout scenario (right) simulated, all states except the 

dream states are shown. States are colored by their type and can be distinguished by looking at 

their line types. 

When the initial values are changed to the values noted in the burnout scenario rows 

in Table 5, the plot shown in the right hand side of Fig. 3 is acquired. This graph is a 

bit more complex compared to the left graph, as more dynamics are shown. The figure 

shows how the protective states, which have low initial values, converge to zero this 

time. In contrast, the risk states, with high initial values, converge to one. This has 

multiple repercussions for the model, as can be seen from the burnout element states 

(red), EE and CY. As the burnout element states start to increase in value,  the conse-

quent states (blue) are affected. For example, the job performance state, which had an 

initial value of 0.90, starts to converge to zero, even though it had a high initial value. 

Next to this, the consequent states job detachment and drugs, start to converge to one, 

which starts to indicate the condition of the simulated person. Finally, the black line 
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shows the stress factor, which is a combination of the most important stress-related 

states. At first, the stress level is not changing, until a tipping point is reached where it 

starts to converge to one, as the consequent states are starting to affect the stress level 

too much compared to the protective factors. 

Fig. 4 shows the progression of the dream states during the burnout scenario simu-

lation. The dream states are not shown in Fig. 3 to prevent the figure from becoming 

unreadable. The brown and purple lines in Fig. 4 indicate the reification states that show 

the progression of the adaptive weights from the sensory representation state of stress 

to the control state and the feeling state to the control state. The reification states are 

affected by the control state, their own state, and respectively the sensory representation 

state and feeling state. This can also be seen in Fig. 4, as the reification state Wsrs,cs 

starts to increase when the control state as well as the sensory representation are in-

creasing and then starts to slowly decrease when the sensory representation state con-

verges to zero. The reification states increase due to the fear extinction learning cycle 

[7], which means that when the connections are used more, they are strengthened over 

time. Furthermore, the sensory representation state starts to increase rapidly, but when 

the control state starts to increase, the sensory representation state starts to decrease, 

until it converges all the way to zero. This is due to the negative emotion regulation 

cycle, where the control state affects the feeling state and sensory representation state 

as well as the dream episode state [7]. Dream episodes are generated by the sensory 

representation state, which affects the control state as well. This simulation includes 

one dream episode, which can be seen from the red line, that peaks around t = 20 and 

then converges to zero.  

 

 

Fig. 4. A display of the change in the dream states values during the burnout scenario simulation. 

The interesting part of the figure, is where in contrast to the sensory representation 

of stress, the feeling state starts to increase and then decrease, which is in line with 

literature and the expected behavior, but then starts to increase again due to the reso-

nance with the control state. At that point, both the control state and the feeling state of 

stress are resonating with one another and are creating a cycle where they are both 

enforcing the behavior of each other. This continues until the feeling state fsb reaches a 
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point where its value is higher than the value of the control state, after this they con-

verge to their respective values. 

6 Empirical Validation 

Although no numerical empirical data is available that outlines the exact influence that 

emotions have on one another in a quantified manner, certain patterns can still be found 

in the literature, which can be used to validate the model in an empirical manner. This 

section will describe how the network model’s characteristics were tuned in accordance 

with the patterns found in literature. In [4] and [5], the models were tuned in accordance 

with respectively physical exercise and sleep components, which allowed for a more 

realistic selection of parameter values.  

This paper tunes the most important dream states, the feeling state and the control 

state, in accordance with the patterns found in [7, 15, 16, 17]. This was done by first 

creating data points in a manner that corresponds with the noted literature. The data 

points used can be found in Table 6. The pattern that would be acquired by tuning the 

parameters to be in accordance with the data points, would be more in line with the 

emotion regulation cycle, instead of the resonance pattern that was shown in Fig. 4. The 

network characteristics that were selected to be tuned as parameters were the connec-

tion weights for the incoming connections to the feeling state X17 and the control state 

X19, making 5 parameters in total.  

To tune the parameters, a simulated annealing algorithm was used with the default 

settings of Matlab’s Optimization Toolkit. A final Root Mean Squared Error (RMSE) 

of 9.87*10-2 was acquired using 104 iterations. Table 7 shows the optimal values that 

were found to achieve the RMSE in accordance with Table 6. After simulating the 

model, using the initial values for the burnout scenario shown in Table 5, it can be seen 

that the results are more in accordance with literature, as shown in Fig. 5.  

 

 

Fig. 5. Burnout scenario simulation using the optimal parameters found in Table 7 with the initial 

values shown in Table 5 compared to the empirical data as dots. 
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Extinction learning and the reduction in feeling level can now be properly shown in 

accordance with [5]. The resonance is still present, but in contrast to Fig. 4, the feeling 

state does not surpass the control state, as they both converge before intersecting a sec-

ond time. The Appendix (see https://www.researchgate.net/publication/340162256) 

shows the development of the RMSE over iterations during the tuning process. 

Table 6. Data points created for the feeling state and control state in accordance with patterns 

found in literature. 

Time FSb CSST,b 

30 0.50 0.30 

60 0.45 0.28 

80 0.40 0.31 

99 0.38 0.30 

Table 7. Optimal parameter values found for network characteristics ST,fsb, csSTb,fsb and 

desst,csSTb (indicated as parameters P1, P2, and P3, resp.) using simulated annealing to mini-

mize the RMSE in accordance with the points in Table 6. 

ST,fsb csSTb,fsb desst,csSTb 

P1 P2 P3 

0.632 -0.333 -0.037 

7 Mathematical Verification 

The methods to verify if a model is mathematically correct described in [7] and [8] 

were followed by checking some of the stationary points for the states. Stationary points 

can be identified when dY(t)/dt = 0. Given the formulae in Section 3, a criterion for 

finding a stationary point, is whether aggimpactY(t) = Y(t) holds, or cY(X1,YX1(t), …, 

Xk,YXk(t)) = Y(t). This criterion can thus be used to identify stationary points in a tem-

poral-causal network. This was done for the burnout scenario described in Section 5.  

The model was run until t=100 and then state fsb and state srsST were analysed to see 

if they reached stationary points, by plotting the gradient of the states and finding the 

points where the gradient is 0. The result can be seen in Fig. 6, which yields some of 

the points that have been noted in Table 8 for analysis usable for mathematical verifi-

cation. To estimate the correctness of the model, four points for two states (for each of 

the two states two different time points) were analysed; the average error for the points 

as shown in Table 8 is 2.855*10-4, which is a small error and is an indication of evidence 

that the model is mathematically accurate.  

Table 8. Stationary point identification to verify the model. 

State Xi fsb = X17 fsb = X17 srsST = X18 srsST = X18 

Time point t 17.94 31.19 18.14 32.73 

Xi(t) 0.4449 0.1303 0.6643 0.1665 

aggimpactXi(t) 0.4446 0.1305 0.6648 0.1665 

deviation 3*10-4 2.5*10-4 5.1*10-4 8.2*10-5 
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Fig. 6. Plot of the gradient (derivative over time) of states fsb and srsst to identify where intersec-

tions are with y = 0, which indicate stationary points. 

The errors were acquired by calculating the difference between the state values Xi(t) 

and aggimpactXi(t), which is based on the logistic combination function with as input 

the incoming state values with their corresponding weights, with 𝞂 = 50 and 𝞃 = 0.5 for 

state X17 and 𝞃 = 0.1 for state X18. 

8 Discussion 

The goal of this study was to design an adaptive temporal-causal network model incor-

porating dream components to create adaptive and more realistic burnout dynamics 

than in earlier models [4, 5]. Not only dream states were added, the model was also 

turned into a first-order adaptive model using a hebbian learning approach for adaptive 

weights between states involved in dreaming. Using the methodology described in [7, 

8] and the environment described in [14], a model was created that can be simulated as 

well as optimised. The results acquired by introducing dream states, do substantially 

differ from previous work that only introduced states corresponding to sleep [5], as 

dreams are powerful regulators of emotions such as fear [17].  

Further application of the model may address a portrayal of how a clinical burnout 

might develop, as this might give more insights into how they can be prevented. This 

could be done for example, by creating an agent-based model, that keeps track of the 

emotional wellbeing of a person and then scheduling them in manners where they gain 

enough sleep which allows for enough dreams to take place, to prevent them from de-

veloping burnouts. One issue is still that there is no numerical data available, which 

means that the model had to be validated based on qualitative empiric information using 

a simulated annealing algorithm to tune parameters to find the behavior of the model 

that is in accordance with the literature.  

This paper serves as a first step to create an adaptive temporal-causal network de-

scribing burnout dynamics, which can still be expanded in the future, by adding more 

real-life states. If more empirical data becomes available in regard to burnout, it will 

also become possible to optimise the relationships between states, that were now based 

on qualitative literature. When these components are optimised, a foundation can be 

created to prevent, treat, or identify burnouts as well as gain a better understanding of 

the underlying dynamics. 
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