
Patient-specific cardiac parametrization from
Eikonal simulations?

Daniel Ganellari1, Gundolf Haase1, Gerhard Zumbusch2, Johannes Lotz3,
Patrick Peltzer3, Klaus Leppkes3, and Uwe Naumann3

1 University of Graz, Institute for Mathematics and Scientific Computing, 8010 Graz,
Austria

2 Friedrich-Schiller-Universität Jena, Institut für Angewandte Mathematik, 07743
Jena, Germany

3 RWTH Aachen University, Software and Tools for Computational Engineering,
52062 Aachen, Germany

Abstract. Simulations in cardiac electrophysiology use the bidomain
equations to describe the electrical potential in the heart. If only the
electrical activation sequence in the heart is needed, then the full bido-
main equations can be substituted by the Eikonal equation which allows
much faster responses w.r.t. the changed material parameters in the
equation. We use our Eikonal solver optimized for memory usage and
parallelization. Patient-specific simulations in cardiac electrophysiology
require patient-specific conductivity parameters which are not accurately
available in vivo. One chance to improve the given conductivity parame-
ters consists in comparing the computed activation sequence on the heart
surface with the measured ECG on the torso mapped onto this surface.
By minimizing the squared distance between the measured solution and
the Eikonal computed solution we are able to determine the material
parameters more accurately. To reduce the number of optimization pa-
rameters in this process, we group the material parameters and intro-
duce a specific scaling parameter γk for each group. The minimization
takes place w.r.t. the scaling γ. We solve the minimization problem by
the BFGS method and adaptive step size control. The required gradient
∇γf(γ) is computed either via finite differences or algorithmic differen-
tiation using dco/c++ in tangent as well as in adjoint mode. We present
convergence behavior as well as runtime and scaling results.

Keywords: Eikonal equation · domain decomposition · tetrahedral mesh
· parallel algorithm · shared memory · optimization · algorithmic differ-
entiation · adjoints.

? Support from FWF project F32-N18, Erasmus Mundus JoinEUsee PENTA scholar-
ship and Horizon 2020 Project-Nr.: 671697 MONT-BLANC 3. The computational
results presented have been achieved in part using the Vienna Scientific Cluster
(VSC).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


2 D. Ganellari et al.

1 Introduction

Simulations in cardiac electrophysiology (EP) use the bidomain equations con-
sisting of two partial differential equations (PDEs) coupled nonlinearly by a set
of ordinary differential equations which describe the intercellular and the ex-
tracellular electrical potential. Its difference, the transmembrane potential, is
responsible for the excitation of the heart and its steepest gradients form an ex-
citation wavefront propagating in time. The arrival time ϕ(x) of this excitation
wavefront at some point x ∈ Ω can be approximated by the simpler Eikonal
equation with given heterogeneous, anisotropic velocity information M(x). The
domain Ω ⊂ R3 is discretized by planar-sided tetrahedrons with a piecewise
linear approximation of the solution ϕ(x) inside each of them.

It is almost impossible to consider the bidomain equation for inverse problems
such as determining the material parameters of a cardiac model. The Eikonal
equation reduces the computational intensity of the bidomain equation signifi-
cantly. It is much faster, and it can provide an activation sequence in seconds [18].

Recent work in [2, 5, 17] has shown that building an efficient 3D tetrahedral
Eikonal solver for multi-core and SIMD (single instruction multiple data) archi-
tectures poses many challenges. It is important to keep the memory footprint
low to reduce the costly memory accesses and achieve a good computational den-
sity on GPUs and other SIMD architectures with limited memory and register
capabilities. In this paper we briefly address our algorithms for shared mem-
ory parallelization and global solution algorithms for a fast many-core Eikonal
solver with a low memory footprint [3, 4] which makes it suitable for the inverse
problem we are considering.

Accurate patient specific conductivity measurements are still not possible.
Current clinical EP models lack patient-specificity as they rely on generic data
mostly obtained by generalized measurements done on dead tissues. One way
to accurately determine these parameters is to compare the computed solution
w.r.t. the Eikonal computed activation sequence on the heart surface with the
measured ECG. By minimizing the squared distance between the measured solu-
tion φ∗ and the Eikonal computed solution φ(γ, x) with material domains scaled
by the parameter γ ∈ Rm, we are able to determine the scaling parameters which
may identify heart tissues with a low conductivity that might indicate a dead or
ischemic tissue.

The minimization problem is solved by the steepest descent and the BFGS
method. To compute accurate gradients up to machine accuracy, we use algo-
rithmic differentiation (AD) [16] based on the AD tool dco/c++ [12]. This paper
provides mathematical and implementational details of the method followed by
comparative results for the shared memory parallelization for the tangent as well
as for the adjoint AD approach.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


Patient-specific cardiac parametrization from Eikonal simulations 3

2 Eikonal solver

We used the following variational formulation of the Eikonal equation [5]√
(∇ϕ(x))

T
M(x)∇ϕ(x) = 1 x ∈ Ω (1)

to model an activation sequence on the heart mesh. It is an elliptic non-linear
PDE that does not depend on time and does not describe the shape of the wave-
front but only its position in time. The solution of the Eikonal equation presents
the arrival time of the wavefront at each point x in the discretized domain. In
this context it is less accurate in comparison to the bidomain equations which
describe both the shape and the position of the wavefront [20, 18]. On the other
hand, Eikonal equation provides a much lower computational intensity making
it a good candidate for the inverse problem that we are considering in this paper.

Our Eikonal solver [3, 4] builds on the fast iterative method (FIM) [1, 10] by
Fu, Kirby, and Whitaker [2] which is the state of the art for solving the Eikonal
equation 1 on fully unstructured tetrahedral meshes with given heterogeneous,
anisotropic velocity information M . We further improved the solver w.r.t. the
algorithm, memory footprint and parallelization. A task based parallel algorithm
for the Eikonal solver [5] is shown in Algorithm 1. The wavefront active list L is
dynamically partitioned into sublists which are assigned for further processing
to a number of processors. This strategy is particularly suitable for the OpenMP
shared memory parallelization. On top of that we build our parallel automatic
differentiation approach for computing the gradients needed to solve the inverse
problem. The solution to Eikonal equation representing a wave front propagation

Algorithm 1 Task based parallelism example

1: partition L dynamically into sub-sets Li
2: launch kernel on GPU processors or start threads on thread i
3: for all vertices x in Li do
4: Φx = min(Φx, Solver(t,Φ))
5: end for
6: wait for threads or processors to terminate

is depicted in Figure 1. Here we start with a single excitation point at the bottom
of the domain and the isosurfaces of the solution of the Eikonal equation travel
from the bottom to the top of the domain where are thereafter cut off.

Detailed numerical results can be found in our previous work [5], showing that
our code scales very well and provides an activation sequence in seconds. The low
memory footprint [4] of the solver makes it well suitable for the inverse problem
especially when considering an algorithmic differentiation approach where one
of the main bottlenecks in the adjoint implementation is the increased memory
footprint.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


4 D. Ganellari et al.

(a) (b)

Fig. 1: Arrival time ϕ(x) ranging from 0 (bottom (a), blue (b)) to 1 (top (a), red
(b)).

3 Cardiac parametrization

3.1 Eikonal equation with material domains

According to physiology, the human heart consists of different tissues, such as
the heart chamber, with different conductivity parameters. Let us denote these
different material domains by Ωk. Then our discretized domain can be expressed
as

Ω
tets−→ Ωh =

m⋃
k=1

Ωk, Ωl
⋂
k 6=l

Ωk = ∅ . (2)

The velocity information M(x) is specific but constant in each tetrahedron
τ ∈ Ωh. An additional tag indicates to which material domain Ωk that element
is assigned. It allows to scale the velocity information M(x) in each material do-
main Ωk by some γk ∈ R, i.e., the tetrahedron specific information is preserved
but all tetrahedrons in the same material class have the same scaling parameter.

The decomposition of the domain into material domains leads to an Eikonal
equation with material domains

√
(∇φ)T γk ·M · (∇φ) = 1 ∀x ∈ Ωk. (3)

Now the activation time φ depends on the scaling parameters γ ∈ Rm. Let
us emphasize that this change does not affect the runtime of the Eikonal solver.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


Patient-specific cardiac parametrization from Eikonal simulations 5

Fig. 2: Domain decomposition. Computational domain Ω and sub-domains Ωi.

The domain Ω is statically partitioned into a number of non-overlapping
sub-domains Ωk, see Fig. 2, and a scaling parameter γk is assigned to each of
them. We use two different ways to partition the domains into subdomains. The
first approach uses ParMETIS to achieve an equal size subdomain partitioning
and the second approach follows the physiology of the heart strictly. The latter
produces currently worse optimization results, and therefore we focus on the first
approach.

3.2 Optimization

Accurate patient specific conductivity measurements are still not possible. Cur-
rent clinical EP models lack patient-specificity as they rely on generic data
mostly obtained by generalized measurements done on dead tissues. One way
to accurately determine these parameters consists in comparing the computed
solution w.r.t. the Eikonal computed activation sequence on the heart surface
with the measured ECG on the torso which is mapped onto the heart surface.
Doing so one needs to solve a minimization problem with the objective functional
as follows

f(γ) :=‖ φ∗(x)− φ(γ, x) ‖2`2(ωh)

with ωh denoting the vertices in the discretization of Ωh.
By minimizing the squared distance between the measured solution φ∗ and

the Eikonal computed solution φ(γ, x) with material domains scaled by the pa-
rameter γ ∈ Rm, we are able to determine the scaling parameters which identify
heart tissues with low conductivity that might indicate a dead or ischemic tissue.
The scaling parameters γ do not only determine low conductivity tissues but also
scale the generalized conductivity measurements to the accurate patient-specific
conductivity parameters.

The mapping γ → φ in (3) is nonlinear and nonconvex which results in a
nonconvex optimization problem. It requires a good initial guess γ0 and equal
sized material domains as regularization. We consider generalized measurements
done on dead tissues as an initial guess for the scaling.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


6 D. Ganellari et al.

The minimization problem is solved either by the steepest descent or the
BFGS method. Both methods include an adaptive step size control and require
the calculation of the gradient ∇γf(γ). The gradient calculation is done in two
ways. First, we use finite differences as a verification method. The second ap-
proach uses AD that delivers gradients up to machine accuracy. We implemented
a shared memory parallelization for both the tangent and the adjoint model. Ad-
joint shared memory optimizations are still ongoing work.

4 Implementation details using algorithmic differentiation

Algorithmic differentiation [7, 16] is a semantic program transformation tech-
nique that yields robust and efficient derivative code. For a given implementation
of a k-times continuously differentiable function f : Rn → R, y = f(γ) for γ ∈ Rn
and y ∈ R, AD generates implementations of corresponding tangent and ad-
joint models automatically. The tangent model computes directional derivatives
ẏ = ∇γf ·γ̇, whereas the adjoint model computes gradients γ = [∇γf(γ)]

T ·y. The
vectors γ̇, γ ∈ Rn and the scalars ẏ, y ∈ R are first-order tangents and adjoints
of input and output variables, respectively, see [16] for more details. The com-
putational cost of evaluating either of both models is a constant multiple of the
cost of the original function evaluation. This observation becomes particularly
advantageous when computing the gradient of f for n� 1. In this case, instead
of n evaluations of the tangent model to compute the gradient element by ele-
ment, only one evaluation of the adjoint model is required. Nonetheless, it needs
to be mentioned that the adjoint mode of AD usually requires a lot more mem-
ory, which makes further techniques like checkpointing [6], preaccumulation, or
hybrid algorithmic/symbolic approaches necessary [15]. Higher derivatives can
be obtained by recursive instantiations of the tangent and adjoint models. In the
optimization problem defined in Section 3.2, only first derivatives are required.

In addition to the scalar modes presented above, vector modes can be used.
The tangent scalar mode evaluates the tangent model once, i.e., performs one
matrix-vector multiplication. The tangent vector mode, on the other hand, is able
to perform multiple matrix-vector multiplications in one go, being more efficient
than doing multiple scalar tangent evaluations by avoiding recomputation of
temporary results. More details on scalar and vector mode can also be found in
[16].

AD can be implemented either via source code transformation or operator
overloading techniques. In this project, we use the AD overloading tool dco/c++.
It has been successfully applied to a number of problems in, for example, com-
putational fluid dynamics [19, 23], optimal control [13], or computational finance
[22]. dco/c++ supports a wide range of features, two of which are used in this
project: Checkpointing as well as advanced preaccumulation techniques on differ-
ent levels (automatically on assignment-level, user-driven on higher level). Both
techniques help to bring down memory requirements for the adjoint necessary
to get a feasible code. The performance of AD tools is usually measured by the
run time factor, which is the ratio of the runtime of one gradient computation

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


Patient-specific cardiac parametrization from Eikonal simulations 7

w.r.t. one primal function evaluation, i.e.

F =
Cost(∇γf(γ))

Cost(f(γ))
. (4)

This factor and its scaling behavior is shown in Section 5.
As mentioned earlier, the Eikonal solver is OpenMP parallelized. Assuming

that the original code is correctly parallelized, i.e., no data races, the (vector) tan-
gent code can safely be run in parallel as well. Producing an adjoint of OpenMP
parallel code, on the other hand, is a major challenge since computing the ad-
joint requires a data flow reversal of the original code. Reversing the flow of data
of parallel code introduces additional race conditions. Handling those automat-
ically is not trivial and still actively researched [9, 14]. We resolved this issue
by splitting the code into active and passive segments, where only the active
segment influences the derivative. As shown in Algorithm 1, in each parallel sec-
tion, a minimum over many elements is computed. A simplified representation is
given by v = mini (Si), where each Si is calculated by an expensive solver call.
Decomposing this into

k = arg min
i

(Si) (5)

v = Sk (6)

clearly shows, that we can compute Equation 5 passively and only calculate
Equation 6 actively. This has the drawback that Sk is calculated twice. However,
since only the data flow of the active segment needs to be reversed in adjoint
mode AD, we can run the passive segment safely in parallel and keep the active
segments sequential. This code version is referred to by the term most-passive
in Section 5 where runtime results and scaling factors are analyzed. In contrast
to this, the basic approach of running all segments actively is called all-active.
The all-active version needs to run sequentially if computing adjoints. In case
of running the tangent (vector) code, both, the most-passive and the all-active
versions are executed fully in parallel.

5 Numerical tests and performance analysis

5.1 Steepest Descent vs. BFGS

This section presents numerical results related to the dco/c++ implementation
for both, tangent and adjoint models, tested on Intel(R) Xeon(R) CPU E5-2690
v4 @ 2.60GHz, 512 GB RAM. Initially we test with a small number of material
domains and the coarsest mesh, Tbunny C2, with 266,846 tetrahedrons in order
to analyze the different behaviors of the steepest descent and BFGS. We test
for γ ∈ R6, γ0 = (2 3 1 4 2 3) and convergence criteria ε = 0.5 with an exact
solution of γ∗ = (1 1 1 1 1 1). The run time and the resulting γ are presented in
Table 1. Tangent and adjoint are based on all-active version described in the
previous section. It can be seen that the BFGS method is faster and converges

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


8 D. Ganellari et al.

Method FD Tangent Adjoint Result γ

Steepest Descent 623 1570 1469 (1.003 0.980 1.003 0.958 1.002 1.227)

BFGS 194 684 696 (1.005 1.004 0.997 0.984 0.993 1.031)

Table 1: Single-threaded run times in seconds and results.

in less iterations. Please note that the tangent (vector) model and the adjoint
model have a similar run time for the small number of material domains. The
adjoint model makes use of its advantage only for a larger number of parameters
as shown later.

Based on the actual physiology, the larger case has 21 material domains.
The decomposition itself is currently not based on the physiology but using
ParMETIS for an equally sized subdomain decomposition. Later on, we discuss
what happens if we use a decomposition based on the physiology. The initial
scaling was set to γ0 = 1 ∈ R21, i.e. the velocity information computed from the
measurements done on dead tissues is not changing. Then we set the measured
solution to be: γ∗ = (1 1 1 1 1 1 0.2 0.2 0.2 0.2 0.2 1 1 1 1 1 1 1 1 1 1). The scaling pa-
rameters differ only in 5 subdomains in which we assume lower conductivity
measured from the electrocardiogram.
The simulation in Fig. 3 shows in four steps how the material scaling changes
throughout the optimization process. The whole optimization takes 19 iterations
in total, but we only present four: the first, the last and two iterations in be-
tween to give an idea of the optimization process. Each subfigure represents the
material scaling for each material domain of the Tbunny C2 mesh. Here one
can identify low conductivity tissue in the heart and in this case these material
domains are exactly the ones in blue color as shown in the last step.

5.2 Gradient verification and BFGS convergence

To verify the AD implementation, we compare the gradient with finite differences
results. The derivatives using tangent and adjoint AD are expected to be accurate
up to machine precision. Since finite differences suffer from truncation and round-
off errors a ’V’-shape is expected as error for varying perturbations h. As error,
we compute the difference between finite difference and AD gradient, since we
assume the AD gradient to be correct. This is indeed supported by observing
the ’V’-shape as shown in Figure 4a.

Results of running BFGS using the three different methods for derivative
calculation is shown in Figure 4b. Though the gradients are expected to match up
to machine precision for the two AD versions, BFGS shows different convergence
behavior. Embedded into an iterative optimizer, the small differences in the
gradients can lead to reaching a local stopping criterion earlier. This is the
case here for iteration five. Nonetheless, both AD modes then fulfil the global
convergence criteria of ε = 0.5 after 16 and 18 iterations respectively. In contrast

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


Patient-specific cardiac parametrization from Eikonal simulations 9

Fig. 3: Four steps from the simulation of the optimization using the BFGS algo-
rithm with 21 material domains on the Tbunny C2 mesh.

10−2 10−1 100
0

2

4

6

8

10

12

h

R
es
id
u
u
m

(a)

2 4 6 8 10 12 14 16 18 2010−1

100

101

102

Iteration Number

R
es
id
u
u
m

finite differences
tangent

adjoint
ε

(b)

Fig. 4: Error of finite difference gradient (a) and convergence behavior of BFGS
(b).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


10 D. Ganellari et al.

to that, the finite difference version fails to converge and requires a less strict
convergence criteria.

5.3 Sequential timings for gradient computation

Fig. 5: Run time comparison for sequential gradient computations.

In the following, we measure the run time and the factor F (see Equation
4) of a single gradient computation of the objective function. As introduced in
Chapter 4, two different variants are implemented: most-passive and all-active.
As shown in Figure 5 tangent and adjoint codes give better run times for the
most-passive version. In fact, the factor of the adjoint mode w.r.t. the primal
run time was successfully improved from 23.8 to 2.7 in the most-passive variant
which can be considered as very good. Besides this, the adjoint mode clearly
wins over the tangent mode.

vector size all-active [s] most-passive [s]

7 50.9 9.6

11 54.0 8.6

21 50.6 6.5

Table 2: Sequential run times for different tangent vector sizes.

While the above-shown run times correspond to the scalar tangent mode,
measurements have also been made for the tangent vector mode. The gradient
has been computed sequentially for both code variants for a vector size of 7,
11 and 21. To compute the full gradient, three tangent model evaluations are
needed for a vector size of 7, two for 11, and only one for a vector size of
21. The runtime results are shown in Table 2. As the tangent vector mode by
principle avoids some passive evaluations, a better runtime compared to the
scalar mode can be expected. Therefore, the speedup compared to the previously

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


Patient-specific cardiac parametrization from Eikonal simulations 11

shown tangent scalar run time of 76 seconds is reasonable. Since the problem
size is a multiple of 7 and equals exactly 21, running with these two vector sizes
perform the minimum amount of required tangent direction computations for
the full gradient. Using a vector size of 11 ends up calculating one extra tangent
direction, which results in slightly worse runtime. The most-passive variants on
the other hand only run a small segment of the code actively. The slow-down
due to additional directions only affect the active segment, which results in the
run times shown in Table 2.

5.4 Scaling

For analyzing the OpenMP scaling behavior, we compare the AD versions to
the scaling of the primal code, see Figure 6a. Ideally, the AD code should show
a similar scaling behavior as the primal. Since the most-passive implementation
is the more efficient one, the following scaling analysis uses this version. Figure

(a) (b)

Fig. 6: Scaling behavior of the primal code (a) and scaling factors for the most-
passive AD variant (b).

6b contains scaling information for tangent and adjoint mode. One interesting
aspect is the runtime factor for increasing number of threads. As one can see,
the tangent and adjoint factors increase for more threads. This indicates a worse
scaling behavior, which is reflected in the scaling factors. Recalling the intro-
duction given in Section 4, the tangent (vector) mode can be fully parallelized.
However, although the scaling is similar to the primal scaling, it is a little worse
(6.7 compared to 5.7 with 16 threads). The adjoint code on the other hand can
only be parallelized for the passive segment. For a further discussion, detailed
adjoint measurements are shown in Figure 7. An AD adjoint code by overloading
consists of two sweeps, the forward and the reverse sweep. During the forward
sweep, a data structure is build up (the tape) while executing the overloaded
function. This data structure is then used during the reverse sweep to actually
propagate adjoints. The reverse sweep can not be parallelized at all, i.e. the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


12 D. Ganellari et al.

Fig. 7: Forward and reverse run time and scaling factor for the most-passive
variant.

scaling factor is expected to be one. However, due to data allocated on different
physical memory banks (first-touch policy during forward sweep), multithread-
ing eventually slows down the reverse section. Since the run time of the reverse
sweep is shorter than of the forward sweep, the impact on the overall scaling
behavior is so as well. As stated before, the forward sweep timings include the
execution of the passive segment, which explains a descent scaling. However,
at some point (in this case already with 8 threads), the sequential active seg-
ment, running in an OpenMP critical section, leads to stalling of threads, which
results in a decreasing scaling factor. Combining this insight for forward and
reverse mode explains the adjoint scaling factor displayed in 6b.

6 Conclusions and future work

Patient-specific simulations in cardiac electrophysiology require patient-specific
conductivity parameters which are not accurately available in vivo. In this ar-
ticle, we have shown algorithms and a proper software stack for improving the
given conductivity parameters by minimizing the squared distance between the
measured solution and the Eikonal computed solution. An efficient parallelized
Eikonal solver has successfully been coupled with the AD tool dco/c++ to not only
speed up the optimization, but also to get more accurate answers. As demon-
strated by carrying out numerical run time tests, the scaling behavior of the
tangent model implementation is similar to the original scaling behavior. The
adjoint model on the other hand only scales up to a small amount of cores
with the current approach. Nontheless, small to medium sized problems can be
processed much faster using the adjoint model implementation.

Further work needs to be done towards a scalable adjoint model implemen-
tation not only for use with OpenMP but special care needs to be taken for
getting a working GPU adjoint. Usually, adjoint GPU code cannot be generated
automatically but has to be written by hand. Nonetheless, there exist tools that
support the developer in writing adjoint GPU code, e.g., using source transfor-
mation [8] or overloading [11]. None of those tools are as automatic as state-
of-the-art tools for CPU code currently are. In addition, we are considering an

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


Patient-specific cardiac parametrization from Eikonal simulations 13

analytic approach to compute the gradient using the adjoint-state method [21].
The analytic approach shall not suffer from excessive memory requirements as
does the adjoint model using AD tool [16]. From the problem definition perspec-
tive, the decomposition with equally sized subdomains where the regularization
holds is not only much more accurate, but it also converges in fewer iterations.
It is preferable to the pure physiological decomposition. Mapping the equal sizes
subdomains to the physiology is ongoing work. Possible solution strategies could
be:

– Refine the physiologically based material domain decomposition.
– Interpret the information dy

dM returned without additional costs from the
adjoint model.

The first idea relates to the equally sized subdomains. It means that we split
the larger subdomains into smaller subdomains similar to the smallest one and
preserve the same scaling parameter therein to end up with equally sized subdo-
mains in which case the regularization holds. The second idea tells us what the
problem is and leads the way to a more global regularization which shall apply
in all cases. The information returned without additional costs from the adjoint
model, dy

dM , shows how each component of the velocity information changes for
each tetrahedron. This sensitivity analysis from the detailed element-wise infor-
mation shall give us hints for an improved regularization.

References

1. Fu, Z., Jeong, W.K., Pan, Y., Kirby, R.M., Whitaker, R.T.: A fast iterative method
for solving the Eikonal equation on triangulated surfaces. SIAM J. Sci. Comput.
33, 2468–2488 (2011)

2. Fu, Z., Kirby, R.M., Whitaker, R.T.: Fast iterative method for solving the Eikonal
equation on tetrahedral domains. SIAM J. Sci. Comput. 35(5), C473–C494 (2013)

3. Ganellari, D., Haase, G.: Fast many-core solvers for the Eikonal equa-
tions in cardiovascular simulations. In: 2016 International Conference on
High Performance Computing Simulation (HPCS). pp. 278–285. IEEE (2016).
https://doi.org/10.1109/HPCSim.2016.7568347, peer-reviewed

4. Ganellari, D., Haase, G.: Reducing the memory footprint of an Eikonal solver.
In: 2017 International Conference on High Performance Computing Simulation
(HPCS). IEEE (2017), accepted

5. Ganellari, D., Haase, G., Zumbusch, G.: A massively parallel eikonal solver on un-
structured meshes. Computing and Visualization in Science pp. 1–16 (Feb 2018).
https://doi.org/10.1007/s00791-018-0288-z, https://doi.org/10.1007/s00791-018-
0288-z

6. Griewank, A., Walther, A.: Algorithm 799: revolve: An implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM
Trans. Math. Softw. 26(1), 19–45 (2000). https://doi.org/10.1145/347837.347846

7. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. No. 105 in Other Titles in Applied Mathematics,
SIAM, Philadelphia, PA, 2nd edn. (2008)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21


14 D. Ganellari et al.

8. Hascoët, L., Pascual, V.: The Tapenade automatic differentiation tool: Principles,
model, and specification. ACM Transactions on Mathematical Software 39(3),
20:1–20:43 (2013)

9. Hückelheim, J., Hovland, P., Strout, M.M., Mller, J.D.: Reverse-mode algorithmic
differentiation of an openmp-parallel compressible flow solver. The International
Journal of High Performance Computing Applications 0(0), 1094342017712060 (0).
https://doi.org/10.1177/1094342017712060

10. Jeong, W.K., Whitaker, R.T.: A fast iterative method for Eikonal equations. SIAM
J. Sci. Comput. 30, 2512–2534 (2008)

11. Leppkes, K., Lotz, J., Naumann, U., du Toit, J.: Meta adjoint programming in
C++. Tech. Rep. AIB-2017-07, Department of Computer Science, RWTH Aachen
University (2017)

12. Lotz, J.: Hybrid Approaches to Adjoint Code Generation with dco/c++. Disser-
tation, RWTH Aachen University (2016)

13. Lotz, J., Naumann, U., Hannemann-Tamas, R., Ploch, T., Mitsos, A.: Higher-order
discrete adjoint ODE solver in C++ for dynamic optimization. Procedia Computer
Science 51, 256–265 (2015)

14. Lotz, J., Naumann, U., Sagebaum, M., Schanen, M.: Discrete adjoints of petsc
through dco/c++ and adjoint MPI . Euro-Par 2013 Parallel Processing pp. 497–
507 (2013)

15. Naumann, U., Lotz, J., Leppkes, K., Towara, M.: Algorithmic differentiation of
numerical methods: Tangent and adjoint solvers for parameterized systems of non-
linear equations. ACM Transactions on Mathematical Software (to appear 2015)

16. Naumann, U.: The Art of Differentiating Computer Programs: An Introduction
to Algorithmic Differentiation. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (2012)

17. Noack, M.: A two-scale method using a list of active sub-domains for a fully par-
allelized solution of wave equations. Journal of Computational Science 11, 91–101
(2015)

18. Pezzuto, S., Kal’avsk, P., Potse, M., Prinzen, F.W., Auricchio, A., Krause,
R.: Evaluation of a rapid anisotropic model for ecg simulation. Fron-
tiers in Physiology 8, 265 (2017). https://doi.org/10.3389/fphys.2017.00265,
https://www.frontiersin.org/article/10.3389/fphys.2017.00265

19. Sagebaum, M., Gauger, N.R., Naumann, U., Lotz, J., Leppkes, K.: Algorithmic dif-
ferentiation of a complex C++ code with underlying libraries. Procedia Computer
Science 18, 208–217 (2013)

20. Sali, A.: Coupling of Monodomain and Eikonal Models for Cardiac
Electrophysiology. Master’s thesis (2016), https://opus4.kobv.de/opus4-
zib/frontdoor/index/index/docId/6051

21. Taillandier, C., Noble, M., Chauris, H., Calandra, H.: First-arrival traveltime to-
mography based on the adjoint-state method. Geophysics 74(6) (2009)

22. du Toit, J., Lotz, J., Naumann, U.: Adjoint algorithmic differentiation of a GPU ac-
celerated application http://www.nag.co.uk/Market/articles/adjoint-algorithmic-
differentiation-of-gpu-accelerated-app.pdf

23. Towara, M., Naumann, U.: A discrete adjoint model for OpenFOAM. Procedia
Computer Science 18, 429–438 (2013)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_21

https://dx.doi.org/10.1007/978-3-030-50371-0_21

