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Abstract. Exascale computing aspires to meet the increasing demands
from large scientific applications. Software targeting exascale is typically
designed for heterogeneous architectures; henceforth, it is not only im-
portant to develop well-designed software, but also make it aware of the
hardware architecture and efficiently exploit its power. Currently, several
and diverse applications, such as those part of the Exascale Computing
Project (ECP) in the United States, rely on efficient computation of the
Fast Fourier Transform (FFT). In this context, we present the design and
implementation of heFFTe (Highly Efficient FFT for Exascale) library,
which targets the upcoming exascale supercomputers. We provide highly
(linearly) scalable GPU kernels that achieve more than 40× speedup with
respect to local kernels from CPU state-of-the-art libraries, and over 2×
speedup for the whole FFT computation. A communication model for
parallel FFTs is also provided to analyze the bottleneck for large-scale
problems. We show experiments obtained on Summit supercomputer at
Oak Ridge National Laboratory, using up to 24,576 IBM Power9 cores
and 6,144 NVIDIA V-100 GPUs.

Keywords: Exascale · FFT · Scalable algorithm · GPUs.

1 Introduction

Considered one of the top 10 algorithms of the 20th century, the Fast Fourier
transform (FFT) is widely used by applications in science and engineering.
Such is the case of applications targeting exascale, e.g. LAMMPS (EXAALT-
ECP) [14], and diverse software ranging from particle applications [21] and
molecular dynamics, e.g. HACC [7], to applications in machine learning, e.g. [16].
For all these applications, it is critical to have access to an heterogeneous, fast
and scalable parallel FFT library, with an implementation that can take advan-
tage of novel hardware components, and efficiently exploit their benefits.

Highly efficient implementations to compute FFT on a single node have been
developed for a long time. One of the most widely used libraries is FFTW [10],

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_19

https://dx.doi.org/10.1007/978-3-030-50371-0_19


2 A. Ayala et al.

which has been tuned to optimally perform in several architectures. Vendor
libraries for this purpose have also been highly optimized, such is the case of
MKL (Intel) [13], ESSL (IBM) [8], clFFT (AMD) [1] and CUFFT (NVIDIA) [18].
Novel libraries are also being developed to further optimize single node FFT
computation, e.g. FFTX [9] and Spiral [22]. Most of the previous libraries have
been extended to distributed memory versions, some by the original developers,
and others by different authors.

1.1 Related work

In the realm of distributed-CPU libraries, FFTW supports MPI via slab de-
composition, however it has limited scalability and hence it is limited to a
small number of nodes. P3DFFT [19] extends FFTW functionalities and sup-
ports both pencil and slab decompositions. Large scale applications have built
their own FFT library, such as FFTMPI [20] (built-in on LAMMPS [14]) and
SWFFT [23] (built-in on HACC [7]). These libraries are currently being used by
several molecular-dynamics applications.

Concerning distributed-GPU libraries, the slab-approach introduced in [17]
is one of the first heterogeneous codes for large FFT computation on GPUs. Its
optimization approach is limited to small number of nodes and focus on reducing
tensor transposition cost (known to be the bottleneck) by exploiting infiniband-
interconnection using the IBverbs library, which makes it not portable. Further
improvements to scalablity have been presented in FFTE library [26] which sup-
ports pencil decompositions and includes several optimizations, although with
limited features and limited improvements on communication. Also, FFTE re-
lies on the commercial PGI compiler, which may limit its usage. Finally, one of
the most recent libraries is AccFFT [11], its approach consists in overlapping
computation and blocking collective communication by reducing the PCIe over-
head, they provide good (sublinear) scalability results for large real-to-complex
transforms using NVIDIA K20 GPUs.

Even though the fast development of GPUs has enabled great speedup on
local computations, the cost of communication between CPUs/GPUs on large-
scale computations remains as the bottleneck, and this is a major challenge
supercomputing has been facing over the last decade [6]. Large parallel FFT is
well-known to be communication bounded, experiments and models have shown
that for large node counts the impact on communication needs to be efficiently
managed to properly target exascale systems [5, 15].

In this context, we introduce heFFTe (pronounced “hefty”), which provides
very good (linear) scalability for large node count, it is open-source and consists
of C++ and CUDA kernels with (CUDA-aware) MPI and OpenMP interface for
communication. It has a user-friendly interface and does not require any commer-
cial compiler. Wrappers to interface with C, Fortran and Python are available.
It is publicly available in [2] and documented in [24,27–29]. Its main objective is
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Fig. 1. heFFTe in the Exascale Computing Project (ECP) software stack.

to become the standard for large FFT computations on the upcoming exascale
systems. Fig. 1 shows how heFFTe is positioned on the ECP software stack, and
some of its target exascale applications (gray boxes).

This paper is organized as follows, Section 2 describes the classical FFT
multi-dimensional algorithm and its implementation phases within heFFTe. We
then present heFFTe’s main features and functionalities. Next, Section 3 presents
a multi-node communication model for parallel FFTs and an approach to reduce
its computational complexity for a small number of nodes. Section 4 presents
numerical experiments on Summit supercomputer, and evaluates the multi-GPU
communication impact on performance. Finally, Section 5 concludes our paper.

2 Methodology and Algorithmic Design

Multidimensional FFTs can be performed by a sequence of low-dimensional
FFTs (see e.g. [12]). Typical approaches used by parallel libraries are the pencil
and slab decompositions. Algorithm 1 presents the pencil decomposition ap-
proach, which computes 3D FFTs by means of three 1D FFTs. This approach
is schematically shown in Fig. 2. On the other hand, slab decomposition relies
on computing sets of 2D and 1D FFTs.

Fig. 2 schematically shows the steps during a 3D FFT computation in paral-
lel, using a 3D partition of processors. On the top part of this figure, we present
the pencil methodology, as described in Algorithm 1, in which N̂i denotes out-
put data obtained from applying 1D FFT of size Ni on the i-th direction. This
approach can be summarized as follows, the input data of size N0 × N1 × N2

is initially distributed into a grid processors, Pi0 × Pi1 × Pi2, in what is known
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Fig. 2. 3D FFT computation steps via pencil decomposition approach (top) and via
slab-pencil decomposition (bottom), c.f., Algorithm 1.

Algorithm 1 3D FFT algorithm via pencil decomposition approach

Require: Initial and final processor grids, Pi0 × Pi1 × Pi2 – Po0 × Po1 × Po2.
Data in spatial domain, N0/Pi0 ×N1/Pi1 ×N2/Pi2

Ensure: FFT transform in frequency domain, N̂0/Pi0 × N̂1/Pi1 × N̂2/Pi2.
Calculate a 2D grid Q0 and Q1 s.t. Q0 ×Q1 = Pi0 × Pi1 × Pi2.

N0/Pi0 ×N1/Pi1 ×N2/Pi2
Reshape−−−−−→ N0 × N1/Q0 × N2/Q1

N0 × N1/Q0 × N2/Q1
First Dimension 1D FFTs−−−−−−−−−−−−−−−−→ N̂0 × N1/Q0 × N2/Q1

N̂0 × N1/Q0 × N2/Q1
Reshape−−−−−→ N̂0/Q0 × N1 × N2/Q1

N̂0/Q0 × N1 × N2/Q1
Second Dimension 1D FFTs−−−−−−−−−−−−−−−−−→ N̂0/Q0 × N̂1 × N2/Q1

N̂0/Q0 × N̂1 × N2/Q1
Reshape−−−−−→ N̂0/Q0 × N̂1/Q1 × N2

N̂0/Q0 × N̂1/Q1 × N2
Third Dimension 1D FFTs−−−−−−−−−−−−−−−−−→ N̂0/Q0 × N̂1/Q1 × N̂2

N̂0/Q0 × N̂1/Q1 × N̂2
Reshape−−−−−→ N̂0/Po0 × N̂1/Po1 × N̂2/Po2

as brick decomposition. Then, a reshape (transposition) puts data into pencils
on the first direction where the first set of 1D FFTs are performed. These two
steps are repeated for the second and third direction. Observe that intermediate
reshaped data is handled in new processor grids which must be appropriately
created to ensure load-balancing, for simplicity a single Q0 × Q1 grid is used
in Algorithm 1. Finally, a last data-reshape takes pencils on the third direction
into the output brick decomposition.
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Table 1. MPI routines required by parallel FFT libraries.

Libraries
Point-to-point routines Collective routines

Process Topology
Blocking Non-blocking Blocking Non-blocking

FFTMPI MPI Send MPI Irecv
MPI Allreduce

None
MPI Group

MPI Allttoallv MPI Comm create

SWFFT MPI Sendrecv
MPI Isend MPI Allreduce

None
MPI Cart create

MPI Irecv MPI Barrier MPI Cart sub

AccFFT MPI Sendrecv
MPI Isend MPI Alltoallv

None MPI Cart create
MPI Irecv MPI Bcast

FFTE None None
MPI Alltoallv

None None
MPI Bcast

MPI Send MPI Isend MPI Allttoallv MPI Comm create
heFFTe MPI Recv MPI Irecv MPI Allreduce heFFTe Alltoall MPI Group

MPI Sendrecv MPI Barrier MPI Cart sub

Several applications provide input data already on pencil distribution on the
first direction and require the output written as pencils on the third direction. In
this case, only two data-reshapes are required, this is the default for FFTE [26]
and AccFFT [11] libraries. On the other hand, heFFTe can treat input and out-
put shapes with high flexibility, generalizing features of modern libraries, and
with a friendly interface as presented in Section 2.3.

Finally, in the bottom part of Fig. 2, we show the slab approach which saves
one step of data reshape by performing 2D FFTs, this has a considerable impact
in performance for a small number of nodes [25].

2.1 Kernels implementation

Two main sets of kernels intervene into a parallel FFT computation:

1. Computation of low dimensional FFTs, which can be obtained by optimized
libraries for single node FFT, as those described in Section 1.

2. Data reshape, which essentially consists on a tensor transposition, and takes
a great part of the computation time.

To compute low-dimensional FFTs, heFFTe supports several open-source
and vendor libraries for single node, as those described in Section 1. And it also
provides templates to select types and precision of data. For direct integration
to applications, heFFTe provides example wrappers and templates to help users
to easily link with their libraries.

Data reshape is essentially built with two sets of routines, the first one con-
sists in packing and unpacking kernels which, respectively, manage data to be
sent and to be received among processors. Generally, these set of kernels account
for less than 10% of the reshaping time. Several options for packing and unpack-
ing data are available in heFFTe, and there is an option to tune and find the
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Fig. 3. Standard approach of packing and synchronous data transfer (left), and its
asynchronous approach coupling packing and communication (right).

best one for a given problem on a given architecture. The last set of routines
correspond to communication kernels, heFFTe supports binary and collective
communications as presented in Table 1.

The main impact on performance obtained by heFFTe in comparison to stan-
dard libraries, comes from the kernels optimization (> 40× speedup w.r.t CPU
libraries, c.f. Fig. 6), and also by a novel efficient asynchronously-management
of packing and communication, as shown in Fig. 3, where we can observe the
classical packing process supported by most libraries and a novel approach via
routine heFFTe alltoallv, introduced in [4], which overlaps packing/unpacking
with MPI communication.

2.2 Communication design and optimization

Parallel FFT libraries typically handle communication by moving data struc-
tures on the shape of pencils, bricks, and slabs of data. For each of these options
the total amount of data communicated is always the same. Hence, decreasing
the number of messages between processors yields to increasing the size of the
messages they send. On the other hand, for modern hardware architectures, it
is well-known that latency and bandwidth improvements do not grow as quickly
as the arithmetic computation power [6]. Therefore, it is important to choose
the appropriate communication scheme. For instance, reshaping brick to pencil
data requires O(P 1/3) messages, this can be verified by overlapping both grids.
Analogously, the number of messages for reshaping pencil to pencil is O(P 1/2),
while O(P 2/3) for brick to slab, and O(P ) for slab to pencil.

Choosing the right communication scheme highly depends on the problem
size and hardware features, heFFTe supports standard MPI Alltoallv within
subgroups, which generally yields better performance compared to poin-to-point
communication. However, optimizations of all-to-all routines on heterogeneous
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clusters are still not available (e.g. on the NVIDIA Collective Communications
Library [3]), even though, as can be regarded in Fig. 6, improvements to all-to-
all communication are critical. For this reason, we developed a routine called
heFFTe alltoallv [4] which includes several all-to-all communication kernels and
can be used for tuning and selecting the best one for a given architecture. This
routines aimed to provide a better management of multi-rail communication.
The asynchronous approach of heFFTe alltoallv was proved efficient for up to 32
nodes, and the multi-rail management, although promising, negatively impacts
the performance when increasing node count, degrading the potential benefit of
the multi-rail optimization [4]. Work on communication avoiding frameworks is
ongoing, targeting large node count on heterogeneous clusters.

2.3 Application programming interface (API) for heFFTe

heFFTe’s software design is built on C and C++, and provides wrappers to be
used in Fortran and Python. The API aims to be user-friendly and portable
among several architectures, allowing users to easily link it to their applications.
The API follows styles from FFTW3 and CUFFT libraries, adding novel features,
such as templates for multitype and multiprecision data.

Define FFT parameters. Distributed FFT requires data split on a processors
grid. In 3D, input/output arrays are typically defined by the six vertices of a
brick, e.g. (ilo, ihi), as shown in Fig. 2; heFFTe allows this definition using any
MPI sub-communicator, fft_comm, which has to be provided by user together
with data definition.

#include <heffte.h>

int main(int argc, char *argv[]) {

MPI_Init(&argc, &argv);

MPI_Comm fft_comm = MPI_COMM_WORLD;

heffte_init(); /* heFFTe initialization */

float *work; /* Single precision input */

FFT3d <float> *fft = new FFT3d <float> (fft_comm);

FFT Plan definition. Once data and processors grids are locally defined, user
can create an FFT plan by simply providing the following parameters,

– dim: Problem dimension, e.g., dim=3

– N : Array size, e.g., N=[nx,ny,nz]

– permute : Permutation storage of output array.
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Next, we show how a heFFTe plan is created; memory requirements are
returned to the user as a workspace array.

...

/* Create FFT plan */

heffte_plan_create(dim, work, fft, N, i_lo, i_hi, o_lo, o_hi, permute,

workspace);

Note that a single plan can be used for several FFT computations, which is
typical for several applications where grids are fixed.

FFT execution. One of heFFTe’s most important kernels is the one in charge
of the FFT computation. This kernel has the same syntax for any type of data
and its usage follows APIs from CUFFT and FFTW3.

...

/* Compute an in-place complex-to-complex (C2C) forward FFT */

heffte_execute(fft, work, work);

Similar execution function is available for the case of real-to-complex (R2C)
transforms, heffte_execute_r2c.

3 Multi-node communication model

To describe the bottleneck FFT computation targeting exascale, communication
models for different type of cluster architectures can be deduced and experimen-
tally verified [5]. These models can be built for specific communication frame-
works, as for pencil and slab data exchanges [25]; or they could be oriented to
the hardware architecture [11].

In this section, we propose an inter-node communication model for large
FFTs. We focus on inter-node effects since fast interconnection is typically avail-
able intra-node, e.g. NVLINK. And properly scheduling intra-node communica-
tions can overlap their cost with the inter-node communications. In Table 2, we
summarize the parameters to be used for the communication model.

To create a communication model, we analyze the computational intensity
(ϕ) in Flops/Byte. For the case of FFT, we have that the number of FLOPS is
5N log(N) and the volume of data moved at each reshape is αN , then for the
total FFT computation using P nodes, we get,

ϕ := P
C

M
=

5P log(N)

αr
, (1)

and the peak performance (in GFlops) is defined as,

Ψ := ϕB =
5P log(N)B

αr
. (2)
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Table 2. Parameters for communication model

Symbol Description

N Size of FFT
P Number of Nodes
r Number of reshapes (tensor transpose)
α Size of datatype (Bytes)
M Message size per node (Bytes)
W Inter-node bandwidth (GB/s)

For the case of Summit supercomputer, we have a node interconnection of
B = 25 GB/s, considering r = 4 (c.f. Fig. 2) and data-type as double-precision
complex (i.e. α = 16). Then,

ΨSummit =
5P log(N) ∗ 25

16 ∗ 4
= 1.953P log(N). (3)

Fig. 8, shows heFFTe’s performance for a typical FFT of size N = 10243,
and compares it to the roofline peak for increasing number of nodes, getting
about to 90% close to peak value.

4 Numerical Experiments

In this section we present numerical experiments on Summit supercomputer,
which has 4,608 nodes, each composed by 2 IBM Power9 CPUs and 6 Nvidia
V100 GPUs. For our experiments, we use the pencil decomposition approach,
which is commonly available in classical libraries and can be shown to be faster
than the slab approach for large node count [25]. In Fig. 4, we first show strong
scalability comparison between heFFTe GPU and CPU implementations, being
the former ∼ 2× faster than the latter. We observe very good linear scalability in
both curves. Also, since heFFTe CPU version was based on improved versions of
kernels from FFTMPI and SWFFT libraries [29], then its performance is at least
as good as them. Therefore, heFFTe GPU is also ∼ 2× faster than FFTMPI
and SWFFT libraries. Drop in performance for the CPU implementation after
512 nodes (12,288 cores) is due to latency impact, which we verified with several
experiments. This is because for a 10243 size, the number of messages become
very large while their size becomes very small. When increasing the problem
size, the CPU version keeps scaling very well as shown in Fig. 5.

Next, Fig. 5 shows weak scalability comparison of heFFTe GPU and CPU
implementations for different 3D FFT sizes, showing over 2× speedup and very
good scaling.

In order to show the impact of local kernels acceleration, Fig. 6 shows a pro-
file of a single 3D FFT using both, CPU and GPU, versions of heFFTe, where
over 40× speedup of local kernels and the great impact of communication are
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clearly displayed.

Next, in Fig. 7, we compare strong and weak scalability of heFFTe and FFTE
libraries. Concluding that heFFTe overcomes FFTE in performance (by a factor
> 2) and having better scalability. We do not include results with AccFFT
library, since its GPU version did not verify correctness on several experiments
performed in Summit. However, AccFFT reported a fairly constant speedup of
∼ 1.5 compared with FFTE, while having very similar scalability [11].

4.1 Multi-node communication model

In Fig. 8, we numerically analyze how we approach to the roofline peak perfor-
mance as described in Section 3. We observe that by appropriately choosing the
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Fig. 6. Profile of a 3D FFT of size 10243 on 32 Summit nodes with all-to-all commu-
nication – using 40 MPI processes per node (left) and 6 MPIs per node with 1 GPU
per MPI (right)

transform size and the number of nodes, we approach to the proposed peak, and
hence a correlation could be established between these two parameters to ensure
that maximum resources are being used, while still leaving GPU resources to
simultaneously run other computations needed by applications.
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Fig. 8. Roofline performance from Eq. 3 and heFFTe performance on a 3D FFT of
size 10243; using 40 MPI processes, 1MPI/core, per node (blue), and 6 MPI/node,
1MPI/1GPU-Volta100, per node (red).

4.2 Using heFFTe with applications

Diverse applications targeting exascale make use of FFT within their models. In
this section, we consider LAMMPS [14], part of the EXAALT ECP project. Its
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KSPACE package provides a variety of long-range Coulombic solvers, as well as
pair styles which compute the corresponding pairwise Coulombic interactions.
This package heavily rely on efficient FFT computations, with the purpose to
compute the energy of a molecular system.
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Fig. 9. LAMMPS Rhodopsin protein benchmark on a 1283 FFT grid, using 2 nodes, 4
MPI processes per node. For FFTMPI we use 1 MPI per core plus 16 OpenMP threads,
and for heFFTe we use 1 MPI per GPU.

In Fig. 9 we present an experiment obtained using a LAMMPS benchmark
experiment, where we compare the performance when using its built-in FFTMPI
library, and then using the GPU version of heFFTe library. As shown in Fig.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_19

https://dx.doi.org/10.1007/978-3-030-50371-0_19


heFFTe: Highly Efficient FFT for Exascale 13

4, it is expected that even for large runs, using LAMMPS with heFFTe would
provide a 2× speedup of its KSPACE routine.

5 Conclusions

In this article, we presented the methodology, implementation and performance
results of heFFTe library, which performs FFT computation on heterogeneous
systems targeting exascale. We have provided experiments showing considerable
speedups compared to state-of-the-art libraries, and that linear scalability is
achievable. We have greatly speedup local kernels getting very close to the ex-
perimental roofline peak on Summit (a large heterogeneous cluster which ranks
first on the top 500 supercomputers). Our results show that further optimiza-
tions would require better hardware interconnection and/or new communication-
avoiding algorithmic approaches.
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