
Sparse Matrix-Based HPC Tomography

Stefano Marchesini1, Anuradha Trivedi2, Pablo Enfedaque3, Talita Perciano3,
and Dilworth Parkinson4

1 Sigray, Inc., 5750 Imhoff Drive, Ste I, Concord, CA 94520 USA
smarchesini@sigray.com http://sigray.com

2 Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
3 Computational Research Division, Lawrence Berkeley National Laboratory, 1

Cyclotron Rd. Berkeley, CA 94720 USA
4 Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd.

Berkeley, CA 94720 USA

Abstract. Tomographic imaging has benefited from advances in X-ray
sources, detectors and optics to enable novel observations in science, en-
gineering and medicine. These advances have come with a dramatic in-
crease of input data in the form of faster frame rates, larger fields of view
or higher resolution, so high performance solutions are currently widely
used for analysis. Tomographic instruments can vary significantly from
one to another, including the hardware employed for reconstruction: from
single CPU workstations to large scale hybrid CPU/GPU supercomput-
ers. Flexibility on the software interfaces and reconstruction engines are
also highly valued to allow for easy development and prototyping. This
paper presents a novel software framework for tomographic analysis that
tackles all aforementioned requirements. The proposed solution capital-
izes on the increased performance of sparse matrix-vector multiplication
and exploits multi-CPU and GPU reconstruction over MPI. The solution
is implemented in Python and relies on CuPy for fast GPU operators and
CUDA kernel integration, and on SciPy for CPU sparse matrix computa-
tion. As opposed to previous tomography solutions that are tailor-made
for specific use cases or hardware, the proposed software is designed
to provide flexible, portable and high-performance operators that can be
used for continuous integration at different production environments, but
also for prototyping new experimental settings or for algorithmic devel-
opment. The experimental results demonstrate how our implementation
can even outperform state-of-the-art software packages used at advanced
X-ray sources worldwide.

Keywords: Tomography · SpMV · X-ray imaging · HPC · GPU

1 Introduction

Ever since Wilhelm Röntgen shocked the world with a ghostly photograph of his
wife’s hand in 1896, the imaging power of X-rays has been exploited to help see
the unseen. Their penetrating power allows us to view the internal structure of
many objects. Because of this, X-ray sources are widely used in multiple imaging

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

http://sigray.com
https://dx.doi.org/10.1007/978-3-030-50371-0_18


2 S. Marchesini, A. Trivedi, P. Enfedaque, T. Perciano, D. Parkinson

and microscopy experiments, e.g. in Computed Tomography (CT), or simply to-
mography. A tomography experiment measures a transmission absorption image
(called radiograph) of a sample at multiple rotation angles. From 2D absorption
images we can reconstruct a stack of slices (tomos in Greek) perpendicular to
the radiographs measured, containing the 3D volumetric structure of the sample.
Tomography is used in a variety of fields such as medical imaging, semiconductor
technology, biology and materials science. Modern tomography instruments us-
ing synchrotron-based light sources can achieve measurement speeds of over 200
volumes per second using 40 kHz frame rate detectors [7]. Tomography can also
be combined with microscopy techniques to achieve resolutions down to a single
atom using electrons [17]. Its experimental versatility has also been exploited
by combining it with spectroscopic techniques, to provide chemical, magnetic or
even atomic orbital information about the sample.

Nowadays, tomographic analysis software faces three main challenges. 1) The
volume of the data is constantly increasing as X-ray sources become brighter and
newer generation detectors increase their resolution and acquisition frame rate.
2) Instruments from different facilities (or even from the same one) present a
variety of experimental settings that can be exclusive to said instrument, such as
the geometry of the measurements, the data layout and format, noise levels, etc.
3) New experimental use cases and algorithms are frequently explored and tested
to accommodate new science requisites. These three requirements strongly force
tomography analysis software to be HPC and flexible, both in terms of modu-
larity and interfaces, as well as in hardware portability. Currently, TomoPy [9]
and ASTRA [22] are the most popular solutions for tomographic reconstruction
at multiple synchrotron and tabletop instruments. TomoPy is a Python-based
open source framework optimized for performance using a C backend that can
process a variety of data formats and algorithms. ASTRA is a tomography tool-
box accelerated using both GPU and CPU computing and it is also available
through TomoPy [16]. Although both solutions are highly optimized at different
levels, they do not provide the level of flexibility required to be easily extendable
by third parties regarding solver modifications or accessing specific operators.

In this work we present a novel framework that focuses on providing multi-
CPU and GPU acceleration with flexible operators and interfaces for both 1-step
and iterative tomography reconstruction. The solution is based on Python 3 and
relies on CuPy, mpi4py, SciPy and NumPy to provide transparent CPU/GPU
computing and innocuous multiprocessing through MPI. The idea is to provide
easy HPC support without compromising the solution lightweight so that de-
velopment, integration and deployment is streamlined. The current operators
are based on sparse matrix-vector multiplication (SpMV) computation which
benefit from preexisting fast implementations on both CuPy and SciPy and
provide faster reconstruction time than direct dense computation [10]. By min-
imizing code complexity, we can efficiently implement advanced iterative tech-
niques [19,13] that are not normally implemented for production, also due to
their computational complexity; prior implementations could take up to a full
day of a supercomputer to reconstruct a single tomogram [20]. The high level

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


Sparse Matrix-Based HPC Tomography 3

technologies and modular design employed in this project permits the proposed
solution to be particularly flexible, both for exploratory uses (algorithm develop-
ment or new experimental settings), and also in terms of hardware: we can scale
the reconstruction from a single CPU, to a workstation using multiple CPU
and GPU processors, to large distributed memory systems. The experimental
results demonstrate how the proposed solution can reconstruct datasets of 68
GB in less than 5 seconds, even surpassing the performance of TomoPy’s fastest
reconstruction engine by 2.2X. This project is open source and available at [12].

The paper is structured as follows: Section 2 overviews the main concepts
regarding tomography reconstruction. Section 3 presents the proposed imple-
mentation with a detailed description of the challenges behind its design and
the techniques employed, and Section 4 assesses its performance through exper-
imental results. The last section summarizes this work.

2 Tomography

Tomography is an imaging technique based on measuring a series of 2D radio-
graphs of an object rotated at different angles relative to the direction of an
X-ray beam (Fig. 1). A radiograph of an object at a given angle is made up of
line integrals (or projections). The collection of projections from different angles
at the same slice of the object is called sinogram (2D); and the final recon-
structed volume is called tomogram (3D), which is generally assembled from the
independent reconstruction of each measured sinogram.

Fig. 1: Overview of a tomography experiment and reconstruction. A 3D sample is
rotated at angles θ = 0, . . . , 180◦ as X-rays produce 2D radiographs onto the de-
tector. The collection of radiographs is combined to provide a sinogram for each
detector row. Each sinogram is then processed to generate a 2D reconstructed
slice, the entire collection of which can be assembled into a 3D tomogram.

Physically, the collected data measures attenuation, which is the loss of flux
through a medium. When the X-ray beams are parallel along the optical axis,
the beam intensity impinging on the detector is given by:

Iθ(p, z) = I0e
−Pθ(p,z), Pθ(p, z) =

∫
u (p cos θ − s sin θ, p sin θ + s cos θ, z) ds,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


4 S. Marchesini, A. Trivedi, P. Enfedaque, T. Perciano, D. Parkinson

where u(x, y, z) is the attenuation coefficient as a function of position x =
(x, y, z) in the sample, I0 is the input intensity collected without a sample, Pθ is
the projection after rotating θ around the z axis, and (p, z) are the coordinates
on the detector that sample the data onto (np × nz) detector pixels. The neg-
ative log of the normalized data provides the projection, also known as X-ray
transform:

Pθ(p, z) = − ln

(
Iθ(p, z)

I0(p, z)

)
,

with element-wise log and division. The Radon transform (by H.A. Lorentz [2])
at a fixed z is then given by the set of nθ projections for a series of angles θ:

Radon(θ,p)←(x,y)u(x, y, z) = Sinogramz(p, θ) = Pθ(p, z).

2.1 Iterative Reconstruction Techniques

The tomography inverse problem can be expressed as follows:

To find u s.t. Radon(u) = − log(I/I0).

The pseudo-inverse iRadon(− log(I/I0)) described below provides the fastest
solution to this problem, and it is typically known as Filtered Back Projection
in the literature. When implemented in Fourier space, the algorithm is referred
to as non-uniform inverse FFT or gridrec.

The inverse problem can be under-determined and ill-conditioned when the
number of angles is small. The equivalent least squares problem is:

arg min
u
‖P (Radon(u) + log(I/I0)) ‖,

where P = F†D1/2F is a preconditioning matrix, with D a diagonal matrix, and
F denotes a 1D Fourier transform. Note that F does not need to be computed
when using the Fubini-Radon operator (see below). The model-based problem
is:

arg min
u
‖P̂ (Radon(u) + log(I/I0)) ‖w + µ · Reg(u),

where ‖·‖w is a weighted norm to account for the noise model, P̂ may incorporate
streak noise removal [11] as well as preconditioning, Reg is a regularization term
such as the Total Variation norm to account for prior knowledge about the
sample, and µ is a scalar parameter to balance the noise and prior models.

Many algorithms have been proposed over the years including Filtered Back
Projection (FBP), Simultaneous Iterative Reconstruction Technique (SIRT),
Conjugate Gradient Least Squares (CGLS), and Total Variation (TV) [3]. FBP
can be viewed as the first step of the preconditioned steepest descent when
starting from 0. To solve any of these problems, one needs to compute a Radon
transform and its (preconditioned) adjoint operation multiple times.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


Sparse Matrix-Based HPC Tomography 5

Fig. 2: Depiction of the Fubini-Radon transform (1), based on the Fourier slice
theorem. The projection Pθ(p, z) at a given angle θ, height z, is related to an
orthogonal 1D slice (different from the tomographic slice) by a Fourier trans-
form: Fp′←p (Pθ(u(x))) = Sliceθ⊥,p′Fp′←x(u(x)). The slicing interpolation be-
tween the Cartesian and polar grid is the key step in this procedure and can be
implemented with a sparse matrix operation.

2.2 The Fubini-Radon transform

One of the most efficient ways to perform Radon(u) is to use the Fourier central
slice theorem by Fubini [5]. It consists on performing first a 2D Fourier transform,
denoted by F of u, and then interpolating the transform onto a polar grid, to
finally 1D inverse Fourier transforming the points along the radial lines:

Radon(θ,p)←(x,y) = F∗p←p′Slice(θ⊥,p′)←(p′x,p
′
y)
F(p′x,p

′
y)←(x,y) (1)

We will refer to this approach as the Fubini-Radon transform (Fig. 2). Nu-
merically, the slicing interpolation between the Cartesian and polar grid in the
Fubini-Radon transform is the key step in the procedure. It can be carried out
using a gridding algorithm that maintains the desired accuracy with low com-
putational complexity. The gridding algorithm essentially allows us to perform a
non-uniform FFT. The projection operations require O(n2) ·nθ arithmetic oper-
ations when computed directly using n = np = nx = ny discretization of the line
integrals, while the Fubini-Radon version requires O(n) · nθ+O(n2 log(n)) oper-
ations, where the first term is due to the slicing operation and the second term
is due to the two dimensional FFT. For sufficiently large nθ, the Fubini-Radon
transform requires fewer arithmetic operations than the standard Radon trans-
form using projections. Early implementations on GPUs used ad hoc kernels
to deal with atomic operations and load-balancing of the highly non-uniform
distribution of the polar sampling points [11], but became obsolete with new
compute architectures. In this work we implement the slicing interpolation us-
ing a sparse matrix-vector multiplication. The SpMV and SpMM operations are
level 2 and level 3 BLAS functions which have been heavily optimized (see e.g.
[21]) on numerous architectures for both CPUs and GPUs.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


6 S. Marchesini, A. Trivedi, P. Enfedaque, T. Perciano, D. Parkinson

Scol = [0, . . . , 0, 1, . . . , N � 1, . . . , N � 1]

Srow = mapi p([p1,p2, . . . ,pN ] � s)

Sval = K (frac[p1,p2, ...,pN ] � s) � �s(p, c)

�s = exp
⇣
⇡i

⇣
(rint(px) � sx) � (rint(py) � sy) �

⇣
2c
np

⌘
· p

⌘⌘

<latexit sha1_base64="mZY3MORRZMV/59E3sDWbvzJSCV8=">AAAD+XicbVNdb9MwFPUSPkb5WAePvFhUTKkUqqSqBC+TJnhBQqqKoNukOoocz2mt5cOyndHK8k/gFZ55Q7zya3jkn+CmWWm7WYpy7rn3+hzfOAnPmFRB8GfPce/cvXd//0Hr4aPHTw7ah09PZVkJQsekzEpxnmBJM1bQsWIqo+dcUJwnGT1LLt8t82dXVEhWFp/VgtMox9OCpYxgZan40AEtlGM1IzjTn0xcY5Fru7E5Op4EProolfQDP2zQ8NUGihC6tVuUX2w3RIrOlc4xN7FmEGU0VVjYHKzrklRzY7xJXVUHcejDjahvo1ppkxxGEJU8q+SalKa7a6PWvcLLI8APta634lKBiblWhHxD0Aa6b/xer+dvMEMTbatBiQSbzlQXESYIRKMZi/U6Z7x1r09qVzt5eHSM6Jw3ljiDzVi8xp9ghTIej+fdRlau4U7F4n/FGq62slaXx9R9SIwuYm5gYxkiYscJ+fUJVq9W3O4EvaBe8CYIG9ABzRrF7b/2s5Aqp4UiGZZyEgZcRRoLxUhGTQtVknJMLvGUTiwscE5lpOurauBLy1zAtBT2KRSs2c0OjXMpF3liK5dfVO7mluRtuUml0jeRZgWvFC3ISiitMqhKuLz38IIJSlS2sAATwaxXSGbYDkrZv2NLJcmNnUm4O4Gb4LTfCwe9wcdB5+RtM5198By8AB4IwWtwAt6DERgD4kydr84357ur3R/uT/fXqtTZa3qega3l/v4HGElQ1w==</latexit>

Interpolation geometry

<latexit sha1_base64="I9qloo52C1jd4P6aa7kM9Hl/BQA=">AAACGHicbVA9SwNBEN3z2/MrammzGASrcCcBLUUb7RSMEZIQ9jaTZMl+HLtzYjjS+iP8DbZa24mtnaX/xM1HYYwPBh7vzTAzL0mlcBhFX8Hc/MLi0vLKari2vrG5VdjeuXUmsxwq3Ehj7xLmQAoNFRQo4S61wFQioZr0zod+9R6sE0bfYD+FhmIdLdqCM/RSs0DrCA+YX2oEmxo5UmkHjAK0/UEYhs1CMSpFI9BZEk9IkUxw1Sx811uGZwo0csmcq8VRio2cWRRcwiCsZw5SxnusAzVPNVPgGvnokwE98EqLto31pZGO1N8TOVPO9VXiOxXDrvvrDcX/vFqG7ZNGLnSaIWg+XtTOJEVDh7HQlrDAUfY9YdwKfyvlXWYZ97lMb0nUwGcS/01gltweleJyqXxdLp6eTdJZIXtknxySmByTU3JBrkiFcPJInskLeQ2egrfgPfgYt84Fk5ldMoXg8we+waCz</latexit>

Fig. 3: Sparse matrix S ∈ CM×N (right) representation of a set of convolutional
kernel windows of width kw = 3 with stencils s = (sx, sy), sx = (−1, 0, 1), sy =
sTx (top), centered around a set of coordinates pi = pi(cos θi, sin θi) + 1

2 (nx, ny)
of each input point of the sinogram on the output image (left).

3 Radon Transform by Sparse Matrix Multiplication

The gridding operation requires the convolution between regular samples and
a kernel to be calculated at irregular sample positions, and vice versa for the
inverse gridding operation. To maintain high numerical accuracy and minimize
the number of arithmetic operations, we want to limit the width of the convolu-
tion kernel. Small kernel width can be achieved by exploiting the finite sample
dimensions (u(x) > 0 in the field of view) using a pair of functions k?(x), k(x)
so that k?(x)k(x) = {1 if u(x) > 0, 0 otherwise}. By the convolution theorem:

u = (k? ◦ k) ◦ u = k? ◦ F−1(K ~ Fu), K = F(k),

where ~ is the convolution operator, ◦ denotes the Hadamard or elementwise
product, K = Fk is called the convolution kernel and k? the deapodization
factor. We choose K with finite width kw, and the deapodization factor can be
pre-computed as k? = {(F∗K(x))−1 if u(x) > 0, 0 otherwise}. Several kernel
functions have been proposed and employed in the literature, including truncated
Gaussian, Kaiser-Bessel, or an interpolation kernel to minimize the worst-case
approximation error over all signals of unit norm [6].

The Fubini-Radon transform operator and its pseudo-inverse iRadon can be
expressed using a sparse matrix (Fig. 3) to perform the interpolation [14]:

Radon(u(x)) = F†p←p′S†(θ,p′)←(p′)F(p′)←(x)k
?(x) ◦ u(x),

iRadon(Sino(p, θ)) = k?(x) ◦ F†(x)←(p′)S(p′)←(θ,p′)DFp′←psino(p, θ), (2)

where bold indicates 2D vectors such as p = (px, py), x = (x, y), and D is a
diagonal matrix to account for the density of sampling points in the polar grid.

Fourier transforms and multiplication of S ∈ CM×N with a sinogram in vec-
tor form (1 × N , N = nθ · np), (sparse matrix-vector multiplication or SpMV)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


Sparse Matrix-Based HPC Tomography 7

produces a tomogram of dimension (1 ×M → ny × nx); multiplication with a
stack of sinograms (sparse matrix-matrix multiplication or SpMM) produces the
3D tomogram(nz, ny, nx)). The diagonal matrix D can incorporate standard fil-
ters such as the Ram-Lak ramp, Shepp-Logan, Hamming, or a minimum residual
filter based on the data itself [15]. We can also employ the density filter solution
that minimizes the difference with the impulse response (a constant 1 in Fourier
space) as arg minDv ‖SDv − 1nx·ny‖, with Dv as the vector of the diagonal ele-
ments of D. Note that in this case, the matrix D = Diag(Dv) can be incorporated
directly into S for better performance.

The row indices and values of the sparse matrix are related to the coor-
dinates where the kernel windows are added up on the output 2D image as
pi = pi(cos θi, sin θi) + 1

2 (nx, ny), with kernel window stencil s = (sx, sy), and
sx = (−1, 0, 1), sy = sTx (for kw = 3) . The column index is simply given by the
consecutive sequence of natural numbers NN1 = [0, 1, . . . , N − 1], repeated k2w
times, and the row index and value are given by:

Scol = NN−10 ⊗ 1k2w = [0, 0, . . . , 0, 1, 1, · · · , N − 1, . . . , N − 1],

Srow = mapi←p([p1,p2, ...,pN ]⊕ s),

Sval = K (frac[p1,p2, ...,pN ]⊕ s) ◦ Φs(p, c),

Φs(p, c) = exp
(
πi
(

(rint(px)⊕ sx)⊕ (rint(py)⊕ sy)⊕
(

2c
np

)
· p
))

,

where ⊕s is the broadcasting sum with the window stencil reshaped to dimen-
sions (1, 1, kw, kw), mapi←p(p) = rint(px) ∗ ny + rint(py) is the lexicographical
mapping from 2D to 1D index, K is the kernel function and frac[p] = p−round[p]
is the decimal part, and ⊗1 represents the Kronecker product with the unit
vector 1(kw)2 = [1, 1, . . . , 1], for a window of width kw (see Fig. 3). S has at
most nnz = nθ · np · k2w non-zero elements, and the sparsity ratio is at most
N ·k2w
N ·M =

k2w
nx·ny , or (kw−1)2

nx·ny when the kernel is set to 0 at the borders. We account

for a possible shift c of the rotation axis and avoid FFTshifts in the tomogram
and radon spaces by applying a phase ramp as Φs(p, c), with c =

np
2 when the

projected rotation axis matches the central column of the detector. For better
performance, FFTshifts in Fourier space are incorporated in the sparse matrix
by applying an FFTshift of the p coordinate, and by using a

(
+1 −1...
−1 +1...

)
checker-

board pattern in the deapodization factor k?.

3.1 Parallel workflow

The Fubini-Radon transform operates independently on each tomo and sino-
gram, so we can aggregate sinograms into chunks and distribute them over
multiple processes operating in parallel. Denoising methods that operate across
multiple slices can be handled using halos with negligible reduction in the fi-
nal Signal-to-Noise-Ratio (SNR), while reducing or avoiding MPI neighborhood
communication.

Pairs of sinograms are combined into a complex sinogram which is processed
simultaneously, by means of complex arithmetic operations, and is split back at

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


8 S. Marchesini, A. Trivedi, P. Enfedaque, T. Perciano, D. Parkinson

the end of the reconstruction. We can limit the amount of chunks assigned to
each process in order to avoid memory constraints. Then, when the data has
more slices than what can be handled by all processes, it is divided up ensuring
that each process operates on similar size chunks of data and all processes loop
through the data. When the number of slices cannot be distributed equally to
all processes, only the last loop chunk is split unequally with the last MPI ranks
receiving one less slice than the first ones.

The setup stage uses the experimental parameters of the data (number of
pixels, slices and angles) and the choice of filters and kernels to compute the
sparse matrix entries, deapodization factors and slice distribution across MPI
ranks. During the setup stage, the output tomogram is initialized as either a
memory mapped file, a shared memory window (whenever possible) or an array
in rank-0 to gather all the results.

Several matrix formats and conversion routines exist to perform the SpMV
operation efficiently. In our implementation, the sparse matrix entries are first
computed in Coordinate list (COO) format which contains a list of (row, col-
umn, value) tuples. Zero-valued and out-of-bound entries are removed, and then
the sparse matrix is converted to compressed sparse row (CSR) format, where
the entries are sorted by column and row, and the row index is replaced by a
compressed pointer. The sparse matrix and its transpose are stored separately
and incorporate preconditioning filters and phase ramps to avoid all FFTshifts.
The CSR matrix entries are saved in a cache file for reuse, with a hash function
derived from the experimental parameters and filters to identify the correspond-
ing sparse matrix from file. The FFT plans are computed at the first application
and stored in memory until the reconstruction is restarted. When the data is
loaded from file and/or the results are saved to disk, parallel processes pre-load
the input to memory or flush the output from a double buffer as the next section
of the data is processed.

Our implementation uses cuSPARSE and MKL libraries for the SpMV and
FFT operations, MPI for distributed parallelism through shared memory when
available, or scatterv/gatherv and non-blocking double buffers for I/O and MPI
operations. All these libraries are accessed through Python, NumPy, CuPy, SciPy
and mpi4py; we also rely on h5py or tifffile modules to interface with data files.
This framework also provides the capability to call TomoPy and ASTRA solvers
on distributed architectures using MPI.

We used this framework to implement the most popular algorithms described
in Sec. 2.1, namely FBP, SIRT, CGLS, and TV. To achieve high throughput,
our implementation of SIRT uses the Hamming preconditioning and the BB-step
acceleration [1], which provides 10-fold convergence rate speedup and makes it
comparable to the conjugate gradient method but with fewer reductions and
lower memory footprint. The CGLS implementation is based on the conjugate
gradient squared method [18], and the TV denoising employs the split-Bregman
[8] technique.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


Sparse Matrix-Based HPC Tomography 9

4 Experiments and Results

The experimental evaluation presented herein is two-fold. We assess the perfor-
mance of our implementation on both shared and distributed memory systems
and on CPU and GPU architectures, and we also study how it compares to To-
moPy, the state-of-the-art solution on X-ray sources, in terms of run time and
quality of reconstruction.

We employ two different datasets for this analysis. The first one is a sim-
ulated Shepp-Logan phantom generated using TomoPy, with varying sizes to
analyze the performance and scalability of the solution. The second one is an
experimental dataset generated at Lawrence Berkeley National Laboratory’s Ad-
vanced Light Source during an outreach program with local schools out of a
bread-crumb inserted at the micro-tomography beamline 8.3.2. The specifics
of the experiments were: 25 keV X-rays, pixel size 0.65 microns, 200ms per
image and 1313 angles over 180 degrees. The detector consisted of 20 micron
LuAG:Ce scintillator and Optique Peter lens system with Olympus 10x lens,
and PCO.edge sCMOS detector. The total experiment time, including camera
readout/overhead, was around 6 minutes, generating a sinogram stack of dimen-
sion (nz, nθ, np) = (2160, 1313, 3620).

We use two different systems for this evaluation. The first is the Cori su-
percomputer (Cori.nersc.gov), a Cray XC40 system comprised of 2,388 nodes
containing two 2.3 GHz 16-core Intel Haswell processors and 128 GB DDR4
2133 MHz memory, and 9,688 nodes containing a single 68-core 1.4 GHz Intel
Xeon Phi 7250 (Knights Landing) processor and 96 GB DDR4 2400 GHz mem-
ory. Cori also provides 18 GPU nodes, where each node contains two sockets
of 20-core Intel Xeon Gold 6148 2.40 GHz, 384 GB DDR4 memory, 8 NVIDIA
V100 GPUs (each with 16GB HBM2 memory). For our experiments, we use the
Haswell processor and the GPU nodes.5 The second system employed is CAM,
a single node dual socket Intel Xeon CPU E5-2683 v4 @ 2.10GHz with 16 cores
32 threads each, 128 GB DDR4 and 4 NVIDIA K80 (dual GPU with 12 GB of
GDDR5 memory each).

The first experiment reports the performance results and scaling studies of
our iRadon implementation and of TomoPy-Gridrec, when executed on both
Cori and CAM, over the simulated dataset. The primary objective is to compare
their scalability using both CPUs and GPUs. We executed both algorithms at
varying levels of concurrency using a simulation size of (2048, 2048, 2048). On
Cori, we used up to 8 Haswell nodes in a distributed fashion, only using physical
cores in each node. On CAM, we ran all the experiments on a single node, dual
socket. The speedup plots are shown in Fig. 4. The reported speedup is defined

as S(n, p) = T∗(n)
T (n,p) where T (n, p) is the time it takes to run the parallel algorithm

on p processes with an input size of n, and T ∗(n) is the time for the best serial
algorithm on the same input.

First, we notice that the iRadon algorithm running on GPU has a super-linear
speedup on both platforms. This is unusual in general, however possible in some

5 Cori configuration page: https://docs.nersc.gov/systems/cori/

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://docs.nersc.gov/systems/cori/
https://dx.doi.org/10.1007/978-3-030-50371-0_18


10 S. Marchesini, A. Trivedi, P. Enfedaque, T. Perciano, D. Parkinson

Fig. 4: Speedup of iRadon and TomoPy-Gridrec algorithms on CPU Cori (left),
CPU CAM (center) and GPU Cori and CAM (right) for a (nz, nθ, np) =
(2048, 2048, 2048) simulation. The horizontal axis is the concurrency level and
the vertical axis measures the speedup.

Fig. 5: Performance on Cori (left) and CAM (right), for varying sizes of simu-
lated datasets as (nz, nθ, np) = (N, 2048, 2048), running both the iRadon and
TomoPy-Gridrec algorithms. The horizontal axis is the number of slices (sino-
grams) of the input data, and the vertical axis measures performance as slices
reconstructed per second. CPU experiments employ 64 processes and GPU ex-
periments use 8 on CAM and 16 on Cori.

cases. One known reason is the cache effect, i.e. the number of GPU changes,
and so does the size of accumulated caches from different GPUs. Specifically, in
a multi-GPU implementation, super-linear speedup can happen due to config-
urable cache memory. In the CPU case, we see a close to linear speedup. On
CAM, the performance decreases because of MPI oversubscribe, i.e. when the
number of processes is higher than the actual number of processors available.

Finally, there is a clear difference in speedup results compared to the TomoPy-
Gridrec implementation. We believe that the main difference here is due to the
fact that TomoPy only uses a multithreaded implementation with OpenMP,
while our implementation relies on MPI. For the purpose of comparison with
our implementation, we use MPI to run TomoPy across nodes.

We also evaluate our implementation by running multiple simulations with a
fixed number of angles and rays (2048) and varying number of slices (128−2048)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


Sparse Matrix-Based HPC Tomography 11

on 64 CPUs and 8 GPUs. Performance results in slices per second are shown
in Fig. 5. One can notice that the GPU implementation of iRadon presents an
increase in performance when the number of GPU increases. This is a known
behavior of GPU performance when the problem is too small compared to the
capabilities of the GPU, and the device is not completely saturated with data,
not taking full advantage of the parallelized computations. For both platforms,
our CPU implementation of iRadon performs significantly better than TomoPy.

In terms of raw execution time, TomoPy-Gridrec outperforms our iRadon
implementation by a factor of 2.3X when running on a single CPU on Cori. On
the other hand, the iRadon execution time using 256 CPU cores on Cori is 4.11
seconds, outperforming TomoPy by a factor of 2.2X. Our iRadon version also
ourperforms TomoPy by a factor of 1.9X using 32 cores. Our GPU implemen-
tation of iRadon runs in 1.55 seconds using 16 V100 GPUs, which improves the
CPU implementation (1 core) by a factor of 600X, and runs 2.6X faster com-
pared with 256 CPU cores. Finally, our GPU version of iRadon runs 7.5X faster
(using 2 GPUs) than TomoPy (using 32 CPUs), which could be considered the
level of hardware resources accessible to average users.

Fig. 6: Comparison of execution time
(seconds in log10 scale) for different al-
gorithms, reconstructing 128 slices of the
bread-crumb dataset on CAM. SIRT and
TV run for 10 iterations.

Table 1: Execution times
for CPU and GPU (min-
utes) and SNR values for
each reconstruction algo-
rithm implemented. SNR is
computed for a simulation
of size (256, 1024, 1024).

Alg. CPU GPU SNR

iRadon 0.14 0.07 3.51
SIRT 3.13 0.19 17.11
TV 57.8 2.07 17.78

The last experiment focuses on the analysis of the different algorithms im-
plemented in this work, in terms of execution time and reconstruction quality.
Fig. 6 shows the reconstruction of 128 slices of the bread-crumb experimental
dataset on CAM (32 CPUs and 8 GPUs), for 3 different implemented algorithms:
iRadon, SIRT, and TV, and also for TomoPy-Gridrec and TomoPy-SIRT. All
iterative implementations (SIRT and TV) run for 10 iterations. Our iRadon im-
plementation presents the best execution time for CPU (9 seconds), while on
GPU, it runs in 4 seconds. Our SIRT implementation outperforms TomoPy’s
by a factor of 175X. We report the SNR values (and corresponding execution
times) of our implemented algorithms in Table 1, using a simulation dataset of

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


12 S. Marchesini, A. Trivedi, P. Enfedaque, T. Perciano, D. Parkinson

size (256, 1024, 1024). We can observe how both SIRT and TV present the best
results in terms of reconstruction quality.

Fig. 7: Example of reconstructed slice from the bread-crumb dataset using the
iRadon and the TV algorithms. This visual result shows a better quality of
reconstruction obtained using iRadon.

Fig. 7 shows a reconstructed slice of the bread-crumb data using the iRadon
and the TV algorithms, along with a zoomed-in region of the same slice. The
difference in reconstruction quality is minor in this case due to the dataset pre-
senting high contrast and a large number of angles. Still, in the zoomed-out
image we can appreciate higher contrast fine features on the TV reconstruction.
Sparser datasets would be analyzed in the future to assess the performance of
TV and iterative solutions on more challenging scenarios.

It is important to remark that all the execution times presented in this section
refer to the solver portion of the calculations. When running the TV algorithm on
the complete bread-crumb data using 8 GPUs on CAM, for example, the solver
time takes approximately 78% of the total execution time (44.82 minutes). Most
of the remaining time is taken by I/O (18%) and gather (2%).

5 Conclusions

This paper presents a novel solution for tomography analysis based on fast SpMV
operators. The proposed software is implemented in Python relying on CuPy,
SciPy and MPI for high performance and flexible CPU and GPU reconstruc-
tion. As opposed to existing solutions, the software presented tackles the main
requirements existing in tomography analysis: it can run over most hardware
setups and can be easily adapted and extended into new solvers and techniques,
while greatly simplifying deployment at new beamlines. The experimental results
of this work demonstrate the remarkable performance of the solution, being able
to iteratively reconstruct datasets of 68 GB in less than 5 seconds using 256
cores and in less than 2 seconds using 16 GPUs. For the simulated datasets ana-
lyzed, the proposed software outperforms the reference tomography solution by

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


Sparse Matrix-Based HPC Tomography 13

a factor of up to 2.7X, while running on CPU. When reconstructing the exper-
imental data, our implementation of the SIRT algorithm outperforms TomoPy
by a factor of 175X running on CPU. The code of this project is also open source
and available at [12].

As future work, we will employ CPU and GPU co-processing, Block Com-
pressed Row (BSR) format and sparse matrix-dense matrix multiplication (SpMM)
to enhance the throughout of the solution. We will also explore the Toeplitz ap-
proach [14], which permits combining the Radon transform with its adjoint into
a single operation, while also avoiding the forward and backward 1D FFTs.
Half-precision arithmetic is also probably sufficient to deal with experimental
data with photon counting noise obtained with 16 bits detectors and can further
improve performance by up to an order of magnitude using tensor cores. Gen-
eralization to cone-beam, fan beam or helical scan geometries using generalized
Fourier slice methods [23] will also be subject of future work. We will also ex-
plore the implementation of advanced denoising schemes based on wavelets or
BM3D [4], combining the operators presented in this work.

Acknowledgments

Work by S. M. was supported by Sigray, Inc. A. T. work was in part sponsored
by Sustainable Research Pathways of the Sustainable Horizons Institute. P. E.
was funded through the Center for Applied Mathematics for Energy Research
Applications. T. P. is supported by the grant “Scalable Data-Computing Conver-
gence and Scientific Knowledge Discovery”, program manager Dr. Laura Biven.
D. P. is supported by the Advanced Light Source. This research used resources
of the National Energy Research Scientific Computing Center (NERSC) and the
Advanced Light Source, U.S. DOE Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231.

References

1. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA journal of
numerical analysis 8(1), 141–148 (1988)

2. Bockwinkel, H.: On the propagation of light in a biaxial crystal about a midpoint
of oscillation. Verh. Konink Acad. V. Wet. Wissen. Natur 14(636), 20 (1906)

3. Bouman, C., Sauer, K.: A generalized gaussian image model for edge-preserving
map estimation. IEEE Transactions on image processing 2(3), 296–310 (1993)

4. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d
transform-domain collaborative filtering. IEEE Transactions on image processing
16(8), 2080–2095 (2007)

5. Davison, M., Grunbaum, F.: Tomographic reconstruction with arbitrary directions.
Communications on Pure and Applied Mathematics 34(1), 77–119 (1981)

6. Fessler, J.A., Sutton, B.P.: Nonuniform fast Fourier transforms using min-max
interpolation. IEEE transactions on signal processing 51(2), 560–574 (2003)

7. Garćıa-Moreno, F., Kamm, P.H., Neu, T.R., Bülk, F., Mokso, R., Schlepütz, C.M.,
Stampanoni, M., Banhart, J.: Using x-ray tomoscopy to explore the dynamics of
foaming metal. Nature communications 10(1), 1–9 (2019)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18


14 S. Marchesini, A. Trivedi, P. Enfedaque, T. Perciano, D. Parkinson

8. Goldstein, T., Osher, S.: The split Bregman method for l1-regularized problems.
SIAM journal on imaging sciences 2(2), 323–343 (2009)

9. Gürsoy, D., De Carlo, F., Xiao, X., Jacobsen, C.: TomoPy: a framework for the
analysis of synchrotron tomographic data. Journal of Synchrotron Radiation 21(5),
1188–1193 (Sep 2014)

10. Jackson, J.I., Meyer, C.H., Nishimura, D.G., Macovski, A.: Selection of a con-
volution function for Fourier inversion using gridding (computerised tomography
application). IEEE transactions on medical imaging 10(3), 473–478 (1991)

11. Maia, F., MacDowell, A., Marchesini, S., Parkinson, D.Y., Pien, J., Schirotzek, A.,
Yang, C.: Compressive phase contrast tomography. In: Image Reconstruction from
Incomplete Data VI. vol. 7800, p. 78000F. SPIE, International Society for Optics
and Photonics (2010)

12. Marchesini, S., Trivedi, A., Enfedaque, P.: https://github.com/smarkesini/xpack
13. Mohan, K.A., Venkatakrishnan, S., Drummy, L.F., Simmons, J., Parkinson, D.Y.,

Bouman, C.A.: Model-based iterative reconstruction for synchrotron x-ray tomog-
raphy. In: 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). pp. 6909–6913. IEEE (2014)

14. Ou, T.: gNUFFTW: Auto-tuning for high-performance GPU-accelerated non-
uniform fast Fourier transforms. Tech. Rep. UCB/EECS-2017-90, University of
California, Berkeley (May 2017)

15. Pelt, D.M., Batenburg, K.J.: Improving filtered backprojection reconstruction by
data-dependent filtering. IEEE Transactions on Image Processing 23(11), 4750–
4762 (2014)

16. Pelt, D.M., Gürsoy, D., Palenstijn, W.J., Sijbers, J., De Carlo, F., Batenburg,
K.J.: Integration of tomopy and the astra toolbox for advanced processing and
reconstruction of tomographic synchrotron data. Journal of synchrotron radiation
23(3), 842–849 (2016)

17. Scott, M., Chen, C.C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen,
U., Regan, B., Miao, J.: Electron tomography at 2.4-̊angström resolution. Nature
483(7390), 444 (2012)

18. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems.
SIAM journal on scientific and statistical computing 10(1), 36–52 (1989)

19. Venkatakrishnan, S.V., Bouman, C.A., Wohlberg, B.: Plug-and-play priors for
model based reconstruction. In: 2013 IEEE Global Conference on Signal and In-
formation Processing. pp. 945–948. IEEE (2013)

20. Venkatakrishnan, S., Mohan, K.A., Beattie, K., Correa, J., Dart, E., Deslippe,
J.R., Hexemer, A., Krishnan, H., MacDowell, A.A., Marchesini, S., et al.: Making
advanced scientific algorithms and big scientific data management more accessible.
Electronic Imaging 2016(19), 1–7 (2016)

21. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. In: SC’07:
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. pp. 1–12.
IEEE (2007)

22. Wim, v.A., Palenstijn, W.J., Cant, J., Janssens, E., Bleichrodt, F., Dabravolski, A.,
Beenhouwer, J.D., Batenburg, K.J., Sijbers, J.: Fast and flexible X-ray tomography
using the ASTRA toolbox. Opt. Express 24(22), 25129–25147 (2016)

23. Zhao, S.R., Jiang, D., Yang, K., Yang, K.: Generalized fourier slice theorem for
cone-beam image reconstruction. Journal of X-ray science and technology 23(2),
157–188 (2015)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_18

https://dx.doi.org/10.1007/978-3-030-50371-0_18

