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Abstract. The Ramer-Douglas-Peucker (RDP) algorithm applies a recursive split-
and-merge strategy, which can generate fast, compact and precise data compres-
sion for time-critical systems. The use of GPU parallelism accelerates the exe-
cution of RDP, but the recursive behavior and the dynamic size of the generated
sub-tasks, requires adapting the algorithm to use the GPU resources efficiently.
While previous research approaches propose the exploitation of task-based par-
allelism, our research advocates a general fine-grained solution, which avoids the
dynamic and recursive execution of kernels. The segmentation of depth images,
a typical application used on autonomous driving, reaches speeds of almost 1000
frames per second for typical workloads using our massively parallel proposal
on low-consumption, embedded GPUs. The GPU-accelerated solution is at least
an order of magnitude faster than the execution of the same program on multiple
CPU cores with similar energy consumption.
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1 Introduction

The line-simplification algorithm defined by Ramer-Douglas-Peucker (RDP) [3] trans-
forms the complex strokes described by a set of points into a set of a few connected
segments that capture the inherent structure of the data. This algorithm is defined with
a split-and-merge strategy, which increases the details of the representation recursively.
Although RDP was originally designed to simplify cartographic coastlines, nowadays
it applies to a multitude of computer vision problems that need to define or simplify the
perimeters of objects within a scene.

The low complexity and the high degree of underlying parallelism of the RDP al-
gorithm make it especially suitable for time-limited segmentation tasks. One usage sce-
nario is autonomous driving systems, which need to provide segmented data within a
real-time pipeline and with limited hardware resources. In this context, and compared
to a classical segmentation proposal as Stixels [7,6], the RDP algorithm reduces the ex-
ecution time, generating compressed and accurate representations, as shown in Figure
1. While most of nowadays proposals [18,4,16] follow a global maximization strategy,
with quadratic complexity, the RDP proposal allows solving the segmentation problem
also globally, but with linear-logarithmic complexity on the practical cases that are ad-
dressed. Moreover, the RDP algorithm only relies on a single configuration parameter
(¢), which allows adjusting the quality and compression levels of the segmentations.
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Fig. 2. Variation of the accuracy (left, lower is better) and compression (right, higher is better) of
the segmented depth representations depending on the € parameter.

Our preliminary work on this topic [2] focused mainly on the quality and compres-
sion capabilities of the RDP algorithm with respect to the Stixels proposal. We con-
cluded that the split-and-merge strategy allows to compute representations with similar
quality and compression to those obtained using expensive global maximization strate-
gies, as shown in Figure 2.

This paper focuses on defining an efficient implementation of the algorithm for
GPU acceleration rather than on evaluating the properties of the RDP segmentation,
which can be found in the research done by Heckbert et al. [S]. Previous approaches
propose the exploitation of task-based parallelism for CPU execution [11,20], which
represents a natural way to extract parallelism from a recursive algorithm. However,
the dynamic generation of tasks and its irregular size do not adapt well to the GPU
execution model. Instead, we propose to process the independent tasks generated in
the same recursive level together, using a segmented reduction pattern. This approach
matches better with the underlying SIMT (Single Instruction Multiple Threads) model
of a GPU architecture, but the algorithm must be refactored and the data structures must
be redesigned to be statically allocated. Our parallelization strategy transforms dynamic
and irregular parallel work into homogeneous work, more appropriate for GPUs.

This paper describes in detail our massively-parallel proposal and analyzes the op-
timization strategies applied to minimize its execution time. Also, we present: a the-
oretical evaluation of the computational behavior and the number of recursion levels
expected for our executions; an experimental evaluation of the performance in GPUs;
and a performance comparison with the recursive algorithm executed in CPUs. We be-
lieve that the methods and the analysis presented on this work can be very useful to
accelerate the execution on GPUs of similar recursive split-and-merge problems.
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Fig. 3. Segmentation process: the granularity of the representation is recursively refined until the
actual set of segments accurately represents the lineal structure contained in the data.

2 Analysis of the RDP Algorithm

This section describes the Ramer-Douglas-Peucker algorithm [3] and presents a quali-
tative and quantitative analysis of its computational complexity.

The algorithm approximates the one-dimensional data input, which contains n val-
ues, into a set of m connected linear segments. The cut-off points between segments
are calculated with a split-and-merge strategy, refining the details of the representation
recursively. A user-defined constant (¢) determines the accuracy and the compression
level of the final segmented description.

Figure 3 illustrates the dynamics of the algorithm. The input data points on the left
are substituted by a line drawn from the first to the last point. Then, a certain user-
defined distance with respect to the line is computed for each input data point, and the
point at the maximum distance is identified. If this maximum distance is greater than a
given ¢ value, the corresponding point is selected as a cut-off point to partition the initial
line into two connected segments. Then, the same process is performed recursively on
the two new segments created from the cut-off point. The algorithm stops when the
maximum distance in all segments is less than e, which provides control over the level of
detail of the segmentation. The higher the value of ¢, the lower the number of segments
required to represent the data (higher compression), but the lower the accuracy of the
segmentation of the data.

Algorithm 1 presents a recursive definition of RDP, and Figure 4 shows the binary
tree representing the recursively-generated tasks of a segmentation example. The bulk
of the computation work is done at lines 3 and 4, which is the calculation of a distance
and the comparison with the maximum distance, and is proportional to the number of
points involved in the current segment. The total computation work is the addition of the
work done on each task, and depends on the input vector size n, and on the topology of
the recursion tree. The number of levels in the tree and the size of each node in the tree
(see fig. 4) depends on the combination of the actual data values (i.e., the underlying
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structure of the data) and the tolerance . The total number of generated segments, m,
is not enough to fully determine the algorithm’s complexity.

Algorithm 1 Segmentation(data*, €, first, last, segments™)

1: maxld =0, maxDist =0

2: for i := first — last do

3 dist = computeDist(data™, first,last, i)

4 maxDist, maxld = maxArg(dist, maxDist,i, maxld)
5: if maxDist > € then

6 Segmentation(data™, e, first, maxId, segments™)

7 Segmentation(data™, €, maxId,last, segments™)

8: else

9 segments™.add([ first, last])

Segmentation
(data, £,0,100)

Segmentation
(data, £,0,70)

Segmentation
(data, £,70,100)

Segmentation Segmentation Segmentation Segmentation
(data, £,0,40) (data, £,40,70) (data, £,70,75) (data, £,75,100)

Segmentation Segmentation
(data, £,0,8) (data, €, 8,40)

Fig. 4. Recursion tree of an example of execution of RDP.

The best-case complexity, ©(n), occurs when the input data fits as single segment,
i.e, m=1. The worst-case complexity, @ (n?), occurs for very noisy input data that is
converted into m~n segments, and with a configuration that requires m — 1 levels of
recursive calls. In the average case the recursive tree should be quite balanced and the
computational complexity is ©(nlog m).

We focus our analysis on the data sets used in the segmentation of depth image
columns; like KITTI [14], which contains pairs of stereo images of autonomous-driving
scenes and their corresponding depth maps, captured with stereo cameras and LIDAR.
In this context, from hundreds to a thousand data columns must be processed, with
vector sizes ranging from 256 to 1024 values. The raw depth images obtained from
stereo matching algorithms usually contain outlier values, which are typically rectified
using median filters. This preprocessing step reduces the average amount of segments
generated by the RDP algorithm.

We next present an analysis of the actual execution complexity achieved when using
a typical autonomous driving dataset. Figure 5 shows, for different tolerance values (),
the average and standard deviation of the number of recursion levels required to process
the data columns.
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Fig. 5. Experimental analysis on the KITTI data set [14] (described later), with depth images
scaled to n = 1024 pixels/column, and using median filters. Complexity is measured indirectly
as the levels or recursion of the RDP algorithm.

As expected, smaller values of € generate more segments and then more recursion
levels. In the practical range of the application for computer vision, with ¢ between 4
and 8, most of the cases require less than 5 or 6 recursion levels, generating between
20 and 50 segments, while some exceptional cases may need at most 8 recursion levels.
The overall result is that the computation complexity for the data inputs considered
are far from the worst case. This result is key to design an efficient massively-parallel
algorithm that can perform all the tasks of the same recursion level simultaneously, even
when some tasks in the level are not required.

3 Background

The RDP algorithm has been revised several times, either to apply the algorithm as
a subroutine of some scene-understanding task, such as Romadi or Hu investigations
[17,8]; or with the aim of selecting the best points of start and end for closed segments,
such as the proposals of Li or Mahmoudi [10,12].

Researches focused on parallelization and computation efficiency, such as Jingsong
et al. [11], proposes a task-based parallelization strategy for multicore CPU systems,
where processors receive the segments on which to apply RDP from a list of tasks
in which they add segmentation sub-tasks dynamically. On the other hand, Scherger
et al. [20] transform the split-and merge or top-down strategy of the RDP algorithm
to an only-merge or bottom-up strategy, initializing as many segments as pixels in the
column, and defining their own multiple associative computing (MASC) model to make
iterative merging of the segments.

Other approaches have been suggested for solving the split-and-merge strategy, but
not directly related with the RDP algorithm.

Paravecino’s research [15] studies the nested parallelism of GPU systems, and ana-
lyzes the execution of several well-known algorithms with recursive kernels.

Argtiello et al. [1] treat the split-and-merge problem with a bottom-up strategy by
calling a single GPU kernel. However, his research is more related to convolutional
filters and the amount of boundary data (thus, repeated) that they require for the blocks

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50371-0_17 |



https://dx.doi.org/10.1007/978-3-030-50371-0_17

to be independent. Applying bottom up strategies in our problem, as they did, can lead
us to obtain non-global solutions, and then losing accuracy. Also, our problem benefits
from needing only 2 boundary points per segment regardless of the recursion level, and
from being able to store the boundary points in local registers.

Mei et al. [13] proposes the parallelization of the QuickHull algorithm, another
split-and-merge strategy similar to RDP, which looks for the furthest points for a series
of segments. They focus on the use of a single GPU kernel, applying the collaborative
and segmented patterns defined by Shubhabrata et al. [19] to nest recursion. In addition,
they propose rearranging the data so that the resolved points are packed at the end of
the block of blocks, and intra-warp divergence is minimized.

Our work focuses on the use of collaborative strategies at the segment level to solve
segmentation with a single GPU kernel. Our strategy allows to reduce the collaborative
work of the computer patterns proposed by Shubhabrata et al. [19], and benefits from
operating on a fixed number of columns containing open segments, performing dynamic
and recursive work in a homogeneous and iterative manner.

4 RDP Parallelization

This section summarizes the working behaviour of GPU architectures, for those readers
who are not familiar with these systems, and describes our proposal to parallelize the
RDP algorithm, as well as the optimization strategies applied to minimize its execution
time.

4.1 Summary of the GPU Parallel Architecture

GPU systems are composed by tens of streaming multiprocessors (SMs), where each
SM is made up of shared memory areas, schedulers for massively parallel execution,
and thousands of registers, to be distributed among the execution threads. These systems
are specialized in performing homogeneous computing, executing the instructions in a
vectorized way (SIMD).

The CUDA programming model was designed as a logical layer over the GPU hard-
ware to ease the use of parallel resources. CUDA allows to define kernels, C/C++ func-
tions for which you can specify the number of parallel instances of the code that will
be executed as threads. In addition, CUDA allows the creation of CTAs (Cooperative
Thread Arrays), blocks of threads that can perform collaborative work, and with areas
of low-latency shared memory. Each thread has its own local memory space, consisting
of tens of registers, a shared memory area with quick access at the CTA level, and a
global memory area, public for all the threads in the kernel, but with a large latency.
Finally, unlike CPU threads, GPU threads are not completely independent; CUDA ex-
ecutes the threads of a block in warps, sub-groups of almost-synchronous threads that
share execution instructions in SIMD fashion.

The efficiency of a parallel implementation is directly related to the level of local or
shared memory usage versus global memory usage, the level of computation dependen-
cies and divergences between threads, and the amount of hardware used to do the job.
The objective of this work is to define an efficient GPU version of data segmentation,
adapting the RDP algorithm to massively parallel systems.
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4.2 Parallelism Granularity of Our Proposal

Our proposal defines a single kernel to generate the segmentation of all the columns of
the image, and assigns a single execution thread to each pixel of the image. Each thread
calculates (iteratively) if a pixel is a cut-off point, and the threads corresponding to the
pixels of the same data column are grouped into CTAs. This allows all the segmentation
tasks on the same iteration to be performed in parallel, limiting the cooperative work at
the segment level within a CTA.

The usage of a single kernel allows maximizing parallelism at the column level, and
minimizing global memory transactions between kernels. The task-level parallelization
alternative entails dynamic kernel creation and, therefore, the serialization of the ker-
nels, which requires many data transactions over the long-latency global memory.

Another way to parallelize at the task level could be to assign to each CTA the
calculation of a single segment. However, this requires the dynamic creation of CTAs
of different sizes, which can only be done by calling new kernels. Our proposal avoids
the dynamic creation of blocks. Treating the segmentation as a single function, instead
of a task-level function, minimizes the amount of memory transactions and maximizes
parallelism.

Our proposal redefines the recursive segmentation as a global and iterative process,
detecting the boundaries between segments instead of creating new segments. Algo-
rithm 2 shows a high-level view of our proposed segmentation strategy.

Algorithm 2 IterativeSegmentation

1: Set initial segment

2: repeat

3 Compute the distance of each data value w.r.t. their segments.

4: Find the position of the data at maximum distance on its corresponding segment

5 Update list of segments for those segments whose maximum distance if larger than ¢
6: until no new segments

4.3 Description of Our Parallel Proposal

We redefine the recursive algorithm iteratively, to avoid dynamic task generation. The
calculation of the maximum distance performed on lines 2 to 4 of Algorithm 1, is now
performed in parallel by all the threads, for each input data point. Each thread computes
the distance to its corresponding segment using copies of the segment ends, stored in
local registers, as shown in lines 6 to 9 of the Algorithm 3. By applying a parallel reduce
computing pattern at the segment level, the last thread of each segment obtains the
position of the data point at maximum distance in [og n steps. Then, each thread reads
the position of the maximum distance of its segment, and updates the local information
of its ends.

The exit condition from the convergence loop is controlled at the CTA level, using
a single register in shared memory, which is updated in parallel for each new cut-off
point found. The loop stops when no modification is done in this convergence register.
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Algorithm 3 ParallelSegmentation(data, cuts, €)

1: i = threadldzx, first =0, last = colSize — 1, localCut = 1
2: if i == first or ¢ == last then localCut =0

3: repeat
4: cut PointsConvergence[0] = yes
5:
6: idx =1 — first
7: slope = (data[last] — data[first])/(last — first)
8: maxCost[i| = |(slope * idz + data]first]) — datal[d]|
9: if localCut == 0 or maxzCost[i] <  then maxCost[i] =0
10: argMazx[i| =i
11: __syncthreads()
12:
13: for stride := colSize/2 — 1; stride = stride/2 do
14: if idz > stride and maxCost[i] <= maxCost[i — stride] then
15: mazCost[i] = maxCost[i — stride])
16: argMazx[i| = argMaz[i — stride]
17: __syncthreads()
18:
19: if argM azx[last] == i then
20: cut PointsConvergence[0] = no
21: localCut =0
22: else if argMax[last] < i then first = argMax[last]
23: else if argMaz[last] > i then last = argMazx[last)
24: __syncthreads()
25: until cutsConvergence|0] == yes

26: cuts[i] = localCut

4.4 Optimization Strategies Applied in Our Proposal

The parallel reduce computing pattern is a basic subroutine for many of the tasks per-
formed with GPUs, and has been studied in depth by the community to take advantage
of hardware features efficiently. The stride strategy shown in Figure 6 has become a de
facto standard; since it allows maximizing the bandwidth of memory transactions, the
warp occupancy, and the thread parallelism.

Fig. 6. Strided Reduction Pattern

On the one hand, every time a thread makes a memory access, the system loads a

chunk of memory that contains the required data and some of its adjacent ones. When

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50371-0_17 |



https://dx.doi.org/10.1007/978-3-030-50371-0_17

GPU-accelerated RDP Algorithm for Data Segmentation 9

adjacent threads access adjacent memory locations, then the number of chunks loads
is minimized. On the other hand, as the threads are executed in warps (adjacent thread
groups), the stride strategy allows to maximize the use of intra-warp operations, and
reduces synchronization latencies.

Our segmentation proposal applies the reduce computing pattern for each segment
of the same block in parallel. In addition, we limit the cooperation of segments with
copies of the indexes of the ends for each thread of the segment. As segments are inde-
pendent between them, all reductions in the same column can be calculated in parallel,
but some strategy must be defined so that the reductions do not use elements from other
segments. This problem was previously discussed by Shubhabrata er al. [19], whose
proposal uses variables with the ID of the segment to limit segmented-scans within a
block. However, in an algorithm with recursive behavior like RDP, the ID of the seg-
ment needs to be recalculated for each level of recursion, and the calculation of the IDs
requires [og n steps. Our strategy allows to limit the cooperative work with the informa-
tion of the ends of the segment stored locally in each thread, in this way we can avoid
the calculation of the IDs of segment to limit the cooperative work.

The main downside of our proposal is that the hardware efficiency decreases as
the segmentation of Algorithm 3 progresses; as some segments are solved, they do not
require more useful computation, as shown in Figure 7. We have found that including
specific conditions for these cases can decrease the number of floating-point operations
and memory communication processes, but it represents a significant increase in control
flow instructions and an increase in the execution time.

N M step 0
4_.———'__'_'_'_'__'___._'__'— \\“

N M N step 1
M /\

X P4 =4 X X step 2
¥ — 4 N

X X X X X X BX step 3
v AN v v v v

X XK X X X XI X  Xstep s
¥ v v v v v v

X X X X X KL X Ksters

Fig. 7. Computation utility as segmentation progresses. Blue stands for useful computation, and
green stands for threads whose segment is already computed.

5 Experimental Study and Results

This section evaluates the performance of our proposal for RDP parallelization. Our
evaluation focuses on the performance of the proposal defined in Algorithm 3 (un-
rolling the last 5 iterations of the loop of lines 13 to 17); and in the performance gained
on the parallel implementation with respect to the recursive implementation from Al-
gorithm 1 executed in CPU. Our GPU proposal has been evaluated using nvprof, which
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allows to capture metrics of the kernels, such as the number of instructions, memory
transactions, or percentage of hardware usage. The CPU version has been evaluated us-
ing perf and the C++11 library chrono, in order to capture only the execution time of
the recursive segmentation algorithm.

Since the underlying structure of the data determines the behavior of the RDP pro-
posal, the input used for the experiments has been obtained by applying the SGM al-
gorithm [9] to the stereo images of the KITTI [14] dataset. This dataset is composed
by 200 images with 1242 columns of 375 pixels, with realistic structures on which to
analyze the average performance of our proposal. Depth images generated with SGM
have been scaled vertically so that each column has 1024 pixels, the maximum num-
ber of threads per block in Jetson’s Xavier GPUs, in order to evaluate the maximum
performance of our GPU algorithm.

The Jetson’s Xavier architecture used for the experiments integrates a 512-core
Volta GPU with 64 tensor cores, and a 8-core Carmel ARM CPU. This architecture al-
lows to operate with different energy modes by specifying the clock frequencies for the
internal GPU cores and CPU cores, the number of usable CPUs, and the level of power
usage. Table 1 summarizes an evaluation of the execution time required for modes with
maximum and minimum power consumption.

Low Energy  Default Energy  Max Energy

GPU Max. Frequency (MHz) 520 670 1337
CPU Max. Frequency (MHz) 1200 1200 2265.5
Number of Online CPUs 2 4 8
Memory Max. Frequency (MHz) 1066 1333 2133
Total Power Budget (W) 10 15 30+
GPU Time (ms) 5.66 2.33 1.09
CPU Single-Core Time (ms) 43.9 40.10 21.15
CPU Multi-Core Time (ms) 23.3 14.31 4.97

Table 1. Energy mode configurations for the GPU and CPU cores (top). Execution time in
miliseconds of the average input for columns of n=1024 pixels for GPU execution and for single-
core and multi-core CPU execution (bottom).

Table 1 shows that our proposal can be executed in real time in a GPU regardless the
energy mode. Assuming a target frame rate for real-time of 20 fps, a maximum slot of
50 ms per image, our proposal leaves, as average, from 28.5 to 23 ms of margin to the
rest of the pipeline tasks, i.e. it occupies from 3.35% to 17.4% of the pipeline’s time.

Figure 8 shows the selected input cases with the best and worst performance, and
a full-noise input such as those that can be generated by unexpected SGM errors. We
have found that even our proposal is able to ignore unknown depth points, unknown
points are usually surrounded by errors. Smoothing depth pixels near unknown values
could increase our proposal performance.

Figure 9 includes the average execution time (ms) of our proposal for different data
sizes, and the execution times for the best and worst case of the SGM evaluation data.
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Fig. 8. Selected input cases used in our evaluations. From left to right: a corrupt input case, the
worst input case from our dataset, one average input case, and the best input case.
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Fig. 9. Execution times of our GPU proposal for different input cases, and images with fixed
width (1242px) and variable height (n); tested with max energy mode.

The columns sizes chosen for this evaluation ranges from n=256 to n=1024 pixels, the
expected input size for autonomous driving systems. We aware that images with column
sizes of 256px may include data smoothness given to the reduction of the original size
(378px). This figure shows that by doubling the size of the column from 256 to 512,
the execution time increases x2.5; while doubling the size from 512 to 1024, increases
the execution time by x6. Also, it shows that the content of the depth image that is
segmented has a great influence on the execution time: the higher the quality of the
input, the shorter the execution time. The most remarkable result is that the execution
times required by our proposal (< 5ms) are good enough for real-time applications,
even in our worst case scenarios.

Finally, Figure 10 summarizes and ranks the execution time required by the CPU
and GPU proposals for different energy modes. This figure shows that the GPU im-
plementation is 4.6 times faster than the best CPU option, in maximum power mode
and for 1242x1024px images; and that this speedup can increase to 6.8 for 1242x256px
images. This can be a great advantage in autonomous driving systems, where images
have few rows (short columns), or are horizontally cropped. The small speed-up of the
GPU execution with respect to the multi-core execution is due to the fact that number of
operations per second of the CPUs, and therefore, the CPU energy consumption, is con-
siderably higher. The energy efficiency of GPU cores implies that a GPU-accelerated
solution is at least an order of magnitude faster than the execution of the same pro-
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Fig. 10. Ranked execution times on CPUs and GPUs with different energy modes. At the top for
1242x256px images; at the bottom images with 1242x1024px.

gram on multiple CPU cores with similar energy consumption. This is another great
advantage for autonomous driving systems.

6 Conclusions

In this paper we have presented a fine-grained parallelization of the RDP algorithm for
the segmentation the multiple data vectors, a common task on many computer vision
applications. Our research adapts the dynamic and recursive execution of the RDP al-
gorithm to massively parallel environments, minimizing the execution of kernels, and
using collaborative computing strategies to reduce its execution time. The great advan-
tage of our proposal is the capability to manage the segmented-collaboration patterns
with local registers, and avoiding the computation of the segment ids.

Our GPU proposal is from 3.8x to 6.8x times faster than an standard RDP recursive
implementation executed on a multi-core CPU, and also consumes much less energy.
Its low energy consumption, and its high execution speed (up to 1000 frames per second
in 1024x1242px images), make it especially suitable for latency-limited environments
such as autonomous driving systems. Using more CPU-cores allows to reach the same
speed as our GPU solution, but this implies a significant increase in energy consump-
tion, which might be critical in autonomous systems.

The experimental results also show that our proposal is sensitive to the contents of
the input data, i.e. the execution time reduces as the structure of the input data is simpler
and smoother. This can be taken as an advantage, by defining filters with which to pre-
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process the segmentation inputs. For example, we can add filters to detect undefined
outliers and delete them from the input data.

Future work could also focus on extending the size of the input data to values higher
than n = 1024. This will require assigning more than one data point to each thread
and carefully redistributing the larger amount of program’s data among the different
memory spaces (private, shared and global). In the same line of research, we can include
specific conditions for the worst-case input cases, which generate many recursive levels.
In this situation, most of the threads are doing redundant work, since their associated
data points have already been fitted into a segment. When the RDP algorithm reaches
a deep recursion level, detecting those threads doing redundant work and setting them
idle could save resources that will benefit the execution of other thread blocks executing
on the same SM.

We finally hope that our research will serve as base for studies on increasing the
dimensionality of parallel split-and-merge strategies, so it can also be applied over 2D
and 3D data.
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