
Reproducibility of computational experiments

on Kubernetes-managed container clouds with

HyperFlow

Michał Orzechowski1, Bartosz Baliś1, Renata G. Słota1, and Jacek Kitowski1,2

1AGH University of Science and Technology, Department of Computer Science,

Krakow, Poland
2AGH University of Science and Technology, ACK Cyfronet AGH, Krakow, Poland

{morzech, balis, rena, kito}@agh.edu.pl

Abstract. We propose a comprehensive solution for reproducibility of

scientific workflows. We focus particularly on Kubernetes-managed con-

tainer clouds, increasingly important in scientific computing. Our solution

addresses conservation of the scientific procedure, scientific data, execu-

tion environment and experiment deployment, while using standard tools

in order to avoid maintainability issues that can obstruct reproducibility.

We introduce an Experiment Digital Object (EDO), a record published in

an open science repository that contains artifacts required to reproduce

an experiment. We demonstrate a variety of reproducibility scenarios

including experiment repetition (same experiment and conditions), repli-

cation (same experiment, different conditions), and propose a smart reuse

scenario in which a previous experiment is partially replayed and partially

re-executed. The approach is implemented in the HyperFlow workflow

management system and experimentally evaluated using a genomic sci-

entific workflow. The experiment is published as an EDO record on the

Zenodo platform.

Keywords: scientific workflows, reproducibility, cloud computing, application
containers, container clouds, Kubernetes

1 Introduction

Reproducibility, a fundamental quality of the experimental scientific method,
requires conservation of three basic component of scientific experiments [15]:
scientific procedure describing the steps of the experiment, scientific data required
as input of the experiment and produced as its results, and scientific equipment
necessary to conduct the experiment. In the case of computational sciences, the
scientific procedure can be described as a scientific workflow [6], input data
are typically files, while the equipment is the execution environment of the
experiment.

Application containers are often viewed as a means to scientific workflow
reproducibility [3, 17], but containers alone solve only part of the problem en-
abling conservation of individual software components. Some approaches tackle

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

reproducibility of the broader execution environment, but propose non-standard
solutions that suffer from lack of maintainability [16], and do not support repro-
ducibility of complex experiment deployments. In this paper, we discuss modern
container clouds as a comprehensive solution for reproducibility of computational
experiments. We propose a solution for reproducibility of scientific workflows,
focusing on Kubernetes-managed container clouds. The main contributions of
this paper are as follows:

– We provide a solution that supports conservation of in silico experiments
at various levels: the scientific procedure, the scientific data, the execution
environment, and the experiment deployment.

– The solution covers a variety of reproducibility scenarios, including repetition,
replication, and smart reuse of in silico experiments.

– We introduce an Experiment Digital Object, a record that captures information
required to reproduce a scientific workflow experiment.

– We study the implementation of the solution in the context of Kubernetes-
managed container clouds, an increasingly important computing infrastruc-
ture for scientific computing.

– We show an evaluation of the solution by studying reproducibility scenarios
of a genomic scientific workflow. The experimental part is published as an
Experiment Digital Object on the Zenodo platform as a demonstration of
the solution.

In the paper, we adopt the following terminology for different types of repro-
ducibility (partially adopted from [5]):

– repetition: the experiment is reproduced in exactly the same conditions, in-
cluding the workflow specification, input data and the execution environment
(OS, libs, even machine types and cluster configuration).

– replication: the same experiment is reproduced but in a different execution
environment.

– (smart) reuse: intermediate results from a previous experiment are partially
reused (without re-computing them), whereas the rest is re-executed due to
changes, e.g. a new version of the scientific software.

– reproduction: broad term denoting any of the above cases.

The paper is organized as follows. Section 2 surveys current work on repro-
ducibility of scientific workflows. Section 3 describes the proposed reproducibility
solution, while section 4 contains its experimental evaluation. Section 5 concludes
the paper.

2 Related Work

Container clouds are increasingly adopted as an infrastructure for computational
experiments [4,9]. A container cloud adds an additional layer on top of virtual
machines, in which clusters of nodes are formed from VMs and are managed by

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

a container management platform. Container managers such as Mesos, Docker
Swarm and Kubernetes have been studied in the context of scientific workflow
management [11,18]. However, while many papers focus on application containers
as a tool for achieving reproducibility of computational experiments [3, 17],
containers alone address only the conservation of the runtime environment of
individual software components, not the entire execution environment.

Several approaches employ logical conservation of the target execution envi-
ronment for scientific workflows. In [16], a custom OWL ontology for describing
the computational infrastructure used in a computational experiment is proposed.
In [14], TOSCA specifications of the underlying infrastructure are used to deploy
workflows on different cloud platforms in a portable way. The problem with such
proprietary solutions that focus on portability and abstraction [1, 12] is their
maintainability, a very important quality crucial for reproducibility. Given the
complexity and dynamic evolution of computing infrastructures, it is difficult to
maintain in-house provisioning and configuration management tools dedicated
for scientific computing. In our experience, even industry-leading tools, such as
Terraform, sometimes have this problem and cannot be treated as a universal solu-
tion in every situation. Finally, existing approaches do not address reproducibility
of the entire complex experiment deployment.

Our approach supports conservation of the experiment procedure, data, exe-
cution environment, and experiment deployment. First, using Docker containers
ensures conservation of the operating system and software packages. For pro-
visioning of the computing infrastructure (virtual machines, storage resources),
we rely on standard tools that fit best the particular computing environment
and satisfy infrastructure reproducibility requirements, such as Terraform, Kube-
spray, or native tools of the cloud provider. Finally, we argue that configuration
management of individual components and nodes is not enough. Complex experi-
ment deployments – orchestration of component startup, dynamic provisioning
of persistent volumes, replication and fault tolerance strategies, etc. – also need
to be described in a reproducible way. That is where Kubernetes comes into
play as a universal application deployment and execution platform. We chose
Kubernetes [13] because it is supported by virtually all major cloud providers
(Amazon EKS, Azure AKS, Google GKE) and because it is portable and universal
– complex deployments can be reproduced using the same Kubernetes description
files on various infrastructures. Kubernetes is also increasingly used in scientific
computing [4]. The advantage of this approach is not only high reproducibility,
but also portability and maintainability.

3 Experiment reproducibility with HyperFlow

This section describes the overall methodology for reproducibility of scientific
workflows on Kubernetes-managed container clouds using the HyperFlow workflow
management system. Details regarding reproducibility capabilities of HyperFlow
on the level of workflow description, workflow execution and workflow deployment
are also described.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

3.1 Experiment digital object record

Fig. 1 presents an overview of the Experiment Digital Object (EDO) record,
a collection of data and executable files that contain information on all software
and data artifacts involved in the experiment, execution traces, and scripts for
their basic analysis. This record is created after the experiment and can be
published on an Open Science Platform. We have chosen Zenodo because of its
relative popularity. Zenodo allocates a unique DOI identifier to the record which
can be used in references. Records published in Zenodo are immutable which
is important for reproducibility. Changes can be made and published as a new
version of the record.

Deployment artifacts

Experiment Deployment Specs

GitHubRepo

Hyperflow Engine Container Workflow Worker Container

DockerHubDockerHub

Workflow Data Container

DockerHub

Version

Version

Version Version WF TypeWF Type

Workflow software

Experiment Digital Object record
Experiment DOI

Tags
Execution
Trace(s)

Workflow Results
and

Intermediate Data

Reproduction
Steps Manual

Experiment Scientific
Description

Experiment
Analysis Scripts

Workflow graph
description

(JSON)

Fig. 1. Experiment Digital Object (EDO) record contains all information required to

reproduce a computational experiment managed by the HyperFlow WMS.

An EDO record is an entry point to experiment reproduction. It describes
specific steps required to reproduce the experiment, but also points to specific
versions of all deployment artifacts involved in this particular experiment. It also
contains execution traces collected during the experiment run, for convenience
converted to a CSV format. Experiment analysis scripts are also provided that
process the execution trace as a data frame and produce useful charts.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

3.2 Workflow description language

HyperFlow introduces a simple workflow description language with strong seman-
tics [2]. HyperFlow has been shown to successfully convert and run workflows
from such system as Pegasus [7]. Such workflow interoperability is an important
aspect of reproducibility. Listing 1.1 shows a fragment of a HyperFlow workflow
description. The description contains mainly two sections: an array of processes
(workflow tasks), and an array of signals (inputs and outputs of tasks). The
listing shows an example process entry in which the name identifies the type of
processing performed by the task, while config contains information passed to the
executor on a remote node in order to run the task. The signal entry describes
a file which is one of the inputs of the shown task.

Listing 1.1. HyperFlow workflow description (fragment).

1 p ro c e s s e s : [{

2 "name" : " a l ignment_to_reference " ,

3 " f unc t i on " : "k8sCommand" ,

4 " c on f i g " : {

5 " executor " : {

6 " executab l e " : "bwa−wrapper " ,

7 " args " : ["mem" , "− t " , "2 " , "−M" ,

8 "Gmax_275_v2 . 0 . f a " ,

9 "USB−001_1 . f a s t q " ,

10 "USB−001_2. f a s t q "

11] ,

12 " cpuRequest " : " 1 " ,

13 "memRequest " : "500M" ,

14 " s tdout " : "20180321−083514−USB−001_aligned_reads . sam"

15 }

16 } ,

17 " i n s " : [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 1 1 , 12] ,

18 " outs " : [13]

19 } , . . .] ,

20 s i g n a l s : [{

21 "name" : "Gmax_275_v2 . 0 . f a " ,

22 " type " : " f i l e " ,

23 " s i z e " : "990744229" ,

24 "md5sum" : "3 aa6cf1962f5260cf1405e82efb25c71 "

25 } , . . .]

Such workflow representation is flexible and annotations can be easily (man-
ually or automatically) added to the workflow description without interfering
with other parts of the description. Several such annotations are shown in this
example:

– CPU and memory requests (lines 12-13) are inserted by an execution planner
(on the basis of historical execution traces or a prediction model) and are
used by the underlying Kubernetes scheduler to optimize the placement of
workflow jobs. During experiment replication these values can be changed to

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

perform controlled experiments regarding observation of their effect, e.g., on
the execution time.

– Detailed information about file size and its md5 hash (lines 23-24) are useful
during experiment reproduction to verify if the file has not been changed or
corrupted.

3.3 Workflow execution

Workflow execution traces. During workflow execution, HyperFlow collects var-
ious information, such as job execution events (creation, pending, start and
completion), resource usage metrics (time series) and provenance records. This
information is converted to data frames and saved as CSV files which are included
in the Experiment Digital Object record, along with the description of columns.
Such an approach is quite versatile. Data from many experiments can be analyzed
in a data frame parallel processing framework (e.g. Pyspark), or imported into
a chosen database. Addition of new columns preserves backward compatibility,
provided that the format and semantics of ”old” columns remain unchanged.
Simple data analysis tools (python scripts) are included in the EDO record for
quick and simple presentation of the experiment.

Workflow persistence and smart reuse. HyperFlow provides mechanisms for
persistence and recovery of workflow executions using the event sourcing approach.
In event sourcing, all changes made to the system during the execution are
recorded as events. To recover the state of the system, events are replayed and
the state changes are applied again but without repeating the side effects of the
original operations. In the case of scientific workflows, the record of execution
events contains information about completed job executions along with inputs
consumed and outputs produced by them. The side effects not repeated during
the recovery are actual running of the jobs and creation of their output files.

HyperFlow supports advanced smart reuse scenarios in which a previously
recorded experiment is partially replayed (by reusing intermediate data from
the experiment record), while other parts of it have been changed and need to
be re-executed. To support smart reuse, intermediate data produced during the
experiment must be persisted. Smart reuse scenarios include the following cases:
– Some input data files have been updated. Consequently, tasks consuming

these inputs and all their successors (dependent tasks) need to be re-executed.
– Part of the workflow software has been upgraded to a new version. Tasks

using this software and all their successors need re-execution in this case.
– Some intermediate data has been corrupted, so it cannot be reused during

experiment reproduction. In this case, the intermediate data needs to be
re-created, but only if it is needed by the parts of the workflow that must be
re-executed. This can lead to a cascade re-execution of some or all predecessor
tasks of the affected task that produces the intermediate data in question.
HyperFlow provides a tool called hflow-recovery-analysis which annotates

an existing experiment execution records with information on which tasks need
re-execution based on a configuration file consisting of the following entries:

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

1 changed : {

2 " s e l e c t o r " : <spec>,

3 " va lue " : "<value >"

4 }

Each entry specifies one or more workflow objects (processes or data) that
have been changed. For example {" selector " :"process.name", "value":"foo"}

selects all processes whose name is foo. Consequently all tasks invoked by such
processes and their successors will be re-executed. Since the selector may apply
to any attribute found in the workflow description and can address groups of
objects, this mechanism is flexible and effective even for very large workflow
graphs. Moreover, the tool can also be pointed to a directory where workflow
intermediate data is located to check if it is not missing or corrupt. If this is the
case, additional tasks can be be marked for re-execution.

3.4 Workflow deployment and execution environment

The final aspect of reproducibility concerns the computing environment and the
deployment of the experiment in this environment. Let us describe this aspect at
different levels in the context of Kubernetes-managed container clouds.

Computing infrastructure. The computing infrastructure level comprises Virtual
Machines, storage resources, and the Kubernetes cluster. There are several options
to address reproducibility at this layer, depending on the target infrastructure.
In fact, we argue that choosing the right tool in the right situation is crucial.

– Terraform1 is a widely used Infrastructure-as-Code tool designed to provision
reproducible infrastructures, and supporting a large number of providers,
including all major clouds.2

– Kubespray a tool that automates deployment of ”bare-metal” Kubernetes
clusters (that includes deployments on IaaS clouds). 3

– Native clients of a particular infrastructure. This approach can be very
effective for managed Kubernetes clusters offered in the PaaS model, such as
Google GKE, Amazon EKS, or Azure AKS.

In the experiments shown in this paper we use the third option as it is
sufficient and effective.

OS, libs and application software. This layer is where application containers
come into play. We use Docker containers for the software involved in the
workflow execution: HyperFlow engine, Redis server, workflow workers, and – in
the particular deployment used in this paper – the NFS server. Versioning of

1 https://www.terraform.io
2 https://www.terraform.io/docs/providers/type/major-index.html
3 https://github.com/kubernetes-sigs/kubespray

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

container images is crucial for reproducibility. We employ a Continuous Integration
/ Deployment (CI/CD) pipeline which automatically builds and publishes new
container images whenever a tagged commit is pushed into the appropriate
repository.

Workflow data. We support conservation of workflow data by employing data
containers. A data container contains input files of the workflow or, alternatively,
provisions them before the execution. Data containers with specific input data
sets can be prepared, versioned and published. They can be generic and used in
a family of similar workflows, or very specific, created for a particular workflow,
and even contain the workflow graph description file. The image of the workflow
data container contains metadata information regarding such details. Moreover,
data containers can be created to conserve output and intermediate data of
a particular experiment run.

Experiment deployment. A computational experiment is not only a collection of
software and data artifacts, but rather their concrete, complex deployment which
also must be reproducible. For this purpose, we use the Kubernetes YAML mani-
fests which allow reproducible, declarative deployment approach. The structure
of the deployment used in the experimental evaluation is depicted in Fig. 2. The
HyperFlow engine container runs the workflow described in the workflow.json

file and creates Workflow worker containers running workflow jobs. A job con-
tainer runs a HyperFlow job executor which communicates with the HyperFlow
engine through a Redis service running in a separate container. Workflow data is
shared through a Persistent volume which uses an NFS server running in another
container. The NFS server is populated with workflow data via the Workflow
data container. A deployment contains many important configuration parameters
that needs to be preserved, e.g. environment variables that influence the behavior
of individual components.

Listing 1.2. Example customization of the experiment deployment configuration.

1 ap iVers ion : apps/v1

2 kind : Deployment

3 metadata :

4 name : hyperf low−eng ine

5 spec :

6 template :

7 spec :

8 con ta i n e r s :

9 − name : hyper f low

10 env :

11 − name : HF_VAR_WORKER_CONTAINER

12 value : " hyperflowwms/soykb−workflow−worker : v1 . 0 . 6 "

To version the deployment, we simply point to a particular commit in the
github repository and use Kustomize4 to configure the deployment with specific
4 https://github.com/kubernetes-sigs/kustomize

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

Persistent volume (nfs)

Worfklow
software

Worfklow
software

Workflow worker
(job)

HyperFlow
Engine

(deployment)

Redis server
(service)

Job executor

Workflow
software

NFS Server

Workflow
worker (job)

Software
package

Container

Multi-container
Pod

create

Worker template
(config map)

workflow.json
workflow data

Persistent
volume

NFS server
(service)

Workflow
data

Fig. 2. Scientific workflow deployment used in the reproduction experiments.

versions of the containers. Kustomize allows one to create declarative customiza-
tions of the base Kubernetes YAML manifests. A customization is simply one or
more YAML files that change (patch) specific parts of their counterparts from the
chosen base. In our case, the customization captures specific parameters of the
deployment of the original experiment, mainly the containers and their versions,
as shown in the example on Listing 1.2. A customization is also a convenient place
to modify these parameters and reproduce the experiment in different conditions,
e.g. using new software versions. Finally, a customization can be published as an
artifact documenting the experiment conditions and enabling its reproducibility.

4 Experimental evaluation

4.1 Methodology, experiment setup and original run

In the experiments, we have used the SoyKB genomic workflow [10]. Four experi-
ments have been conducted:

– The original run of the workflow on a Google Kubernetes Engine with four
nodes, each having 2 virtual CPUs and 1.93 GB memory. This run produced
the Experiment Digital Object record along with other artifacts.

– The repetition run in which the experiment was repeated exactly in the same
conditions.

– The replication run wherein the experiment was replicated on our in-house
Kubernetes cluster deployed at the Cyfronet Computing Centre. For this
experiment, we set up a 4-node cluster, where each node had 6 vCPUs and
22GB of memory.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

– The reuse run wherein the smart reuse capabilities of HyperFlow were
demonstrated using the GKE cluster.

Fig. 3. Visualization of the experimental SoyKB workflow (simplified).

The experimental workflow consists of 52 tasks, as depicted in Fig. 3, and
requires 2.6 GB of input data. The EDO record of the original experiment run
was assigned a DOI and was published on Zenodo5. The execution of the original
run is visualized in Fig. 4 (top). The chart, produced from the execution traces
using a python script (published as part of the EDO record), shows the execution
time of all workflow tasks, type of tasks (denoted by different colors), and their
mapping to nodes whose names are indicated on the 𝑦 axis. Note that the same
node occurs multiple times, denoted as nodeName-𝑛, if tasks run in parallel on
this node. In this case, all tasks were configured with a cpuRequest of 0.5 vCPU.
Since each node provided 1.93 vCPU and about 0.5 of it was reserved by the
middleware, only two parallel tasks could fit in a node without exceeding the 1.93
vCPU supply, which is visible on the graph. We have tried to lower the vCPU

5 https://doi.org/10.5281/zenodo.3659211

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://doi.org/10.5281/zenodo.3659211
https://dx.doi.org/10.1007/978-3-030-50371-0_16

Fig. 4. Visualization of the original and repeated run of the SoyKB workflow on a 4-node

Google Kubernetes Engine cluster.

requests so that more tasks would fit a node, but it resulted in job evictions due
to out of memory errors.

4.2 Experiment repetition and replication

Fig. 4 (bottom) shows a visualization of the repetition of the experiment in the
same infrastructure, while Fig. 5 shows its replicated execution on the Kubernetes
cluster in the Cyfronet Computing Centre.

The repeated run is very similar, even the general mapping of tasks to nodes
is much the same, albeit with some differences. This hints that the execution
environment behaves in a relatively predictable way despite its complexity. This
was proven by more runs which yielded similar results. The replicated experiment
runs on much faster nodes, so all concurrent workflow tasks could run in parallel
in the cluster. The resulting makespan is therefore significantly better.

4.3 Smart experiment reuse

The final experiment demonstrates the smart reuse scenario. This scenario is made
possible by HyperFlow’s capability to persist its execution state. In compliance

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

Fig. 5. Visualization of the replicated experiment run on Cyfronet Kubernetes cluster.

with the event sourcing model, this is done in the following steps: (1) run
a workflow job to completion; here, job represents an operation that changes the
workflow execution state but also causes side effects (writes files); (2) persist an
event job completed in an execution journal file; (3) update the internal state of
the workflow engine. The execution journal file can be used to replay a previous
workflow execution, either in part or in full. A common scenario is fault tolerance
where the workflow is restarted from a point its execution failed, after the cause
of the failure has been resolved. The smart reuse scenario involves a full replay
of the workflow, but some its parts are marked as changed and these are forced
to be re-executed. To this end, the user prepares an appropriate configuration
file which in our case looks as follows:

1 [changed : {

2 " s e l e c t o r " : " p roce s s . name" ,

3 " va lue " : " genotype_gvcfs "

4 }]

This configuration indicates that all workflow tasks whose name is geno-

type_gvcfs have been changed. The nature of the change can vary, e.g. it can
denote the upgrade of the workflow software used by the tasks. The user runs the
hflow-recovery-analysis tool which annotates the execution journal file marking
all genotype_gvcfs tasks and their successors (task subtree) for re-execution.

The visualization of this execution is shown in Fig. 6. As one can see, only
the last 25 tasks of the workflow have been repeated. It must be noted that the
workflow can be re-executed in such a way from an arbitrary point only as long as
the side effects of the original run – i.e. the intermediate data – are persisted and
can be reused. The annotation tool can optionally verify if this is the case and,
if some intermediate data are missing, analyze the execution graph and mark
additional predecessor tasks for re-execution. In our case, we simply reused the
storage volume of the original run which contained the intermediate data, but
in a production setting a more robust storage solution would be required. Also,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

Fig. 6. Visualization of the experiment reuse scenario.

a trade-off should be considered whether it is more cost-effective to re-execute
a task and generate its intermediate data again, or persist the data for future
reuse. This is, however, out of scope of this paper.

5 Conclusions and Future Work

The reproducibility of the computational experiments is important not only for the
domain scientists, but also very useful for workflow research, e.g. for conducting
controlled experiments in the area of distributed computing management. We
have shown a solution which facilitates repetition and replication of in silico
experiments, focusing on scientific workflows and container cloud infrastructures
managed by Kubernetes. Our solution supports conservation of not only the
scientific procedure, but also the execution environment and the experiment
deployment. We have also proposed a smart reuse scenario which supports partial
reuse of previous experimental runs while configuring which parts have changed
and need re-execution. An Experiment Digital Object that we have introduced
contributes to open science and the idea of so called executable papers whose
results are fully reproducible. Future work involves enrichment of the EDO record
with more useful data and software for presentation of the experiment, and
integration with a more robust storage solution combined with transparent data
access using the Onedata platform [8].
Acknowledgements. The research presented in this paper has been partially supported

by the funds of Polish Ministry of Science and Higher Education assigned to the AGH

University of Science and Technology.

References

1. Azarnoosh, S., Rynge, M., Juve, G., Deelman, E., Niec, M., Malawski, M., Da Silva,

R.F.: Introducing precip: an API for managing repeatable experiments in the cloud.

In: 2013 IEEE 5th international conference on cloud computing technology and

science (CloudCom). pp. 19–26. IEEE (2013)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

2. Balis, B.: Hyperflow: A model of computation, programming approach and en-

actment engine for complex distributed workflows. Future Generation Computer

Systems 55, 147 – 162 (2016)
3. Bartusch, F., Hanussek, M., Kruger, J., Kohlbacher, O.: Reproducible scientific

workflows for high performance and cloud computing. In: 19th IEEE/ACM Int.

Symposium on Cluster, Cloud and Grid Computing (CCGRID). pp. 161–164 (2019)
4. Beltre, A.M., Saha, P., Govindaraju, M., Younge, A., Grant, R.E.: Enabling hpc

workloads on cloud infrastructure using kubernetes container orchestration mech-

anisms. In: IEEE/ACM Int. Workshop on Containers and New Orchestration

Paradigms for Isolated Environments in HPC. pp. 11–20. IEEE (2019)
5. Cohen-Boulakia, S., Belhajjame, K., et al.: Scientific workflows for computational

reproducibility in the life sciences: Status, challenges and opportunities. Future

Generation Computer Systems 75, 284–298 (2017)
6. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: An

overview of workflow system features and capabilities. Future Generation Computer

Systems 25(5), 528–540 (2009)
7. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani,

R., Chen, W., da Silva, R.F., Livny, M., et al.: Pegasus, a workflow management

system for science automation. Future Generation Computer Systems (2014)
8. Łukasz Dutka, Wrzeszcz, M., Lichoń, T., Słota, R., Zemek, K., Trzepla, K., Łukasz

Opioła, Słota, R., Kitowski, J.: Onedata – a step forward towards globalization of

data access for computing infrastructures. Procedia Computer Science 51, 2843 –

2847 (2015), international Conference On Computational Science, ICCS 2015
9. Herbein, S., Dusia, A., Landwehr, A., McDaniel, S., Monsalve, J., Yang, Y., Seelam,

S.R., Taufer, M.: Resource management for running hpc applications in container

clouds. In: Int. Conf. on High Perf. Computing. pp. 261–278. Springer (2016)
10. Joshi, T., Valliyodan, B., Khan, et al.: Next generation resequencing of soybean

germplasm for trait discovery on xsede using pegasus workflows and iplant infras-

tructure (2014)
11. Liu, K., Aida, K., Yokoyama, S., Masatani, Y.: Flexible container-based computing

platform on cloud for scientific workflows. In: 2016 International Conference on

Cloud Computing Research and Innovations (ICCCRI). pp. 56–63. IEEE (2016)
12. Nguyen Minh, B., Tran, V., Hluchy, L.: Abstraction layer for development and

deployment of cloud services. Computer Science 13, 79–88 (2012)
13. Orzechowski, M., Balis, B., Pawlik, K., Pawlik, M., Malawski, M.: Transparent de-

ployment of scientific workflows across clouds-kubernetes approach. In: IEEE/ACM

Int. Conf. on Utility and Cloud Computing Companion. pp. 9–10. IEEE (2018)
14. Qasha, R., Cała, J., Watson, P.: A framework for scientific workflow reproducibility

in the cloud. In: 2016 IEEE 12th International Conference on e-Science (e-Science).

pp. 81–90. IEEE (2016)
15. Santana-Perez, I., Pérez-Hernández, M.S.: Towards reproducibility in scientific

workflows: An infrastructure-based approach. Scientific Programming 2015 (2015)
16. Santana-Perez, I., da Silva, R.F., Rynge, M., Deelman, E., Pérez-Hernández, M.S.,

Corcho, O.: Reproducibility of execution environments in computational science

using semantics and clouds. Fut. Generation Computer Systems 67, 354–367 (2017)
17. Stubbs, J., Talley, S., Moreira, W., Dooley, R., Stapleton, A.: Endofday: A container

workflow engine for scalable, reproducible computation. In: Proceedings of the 8th

International Workshop on Science Gateways, IWSG (2016)
18. Zheng, C., Tovar, B., Thain, D.: Deploying high throughput scientific workflows on

container schedulers with makeflow and mesos. In: 17th IEEE/ACM Int. Symposium

on Cluster, Cloud and Grid Computing (CCGRID). pp. 130–139. IEEE (2017)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_16

https://dx.doi.org/10.1007/978-3-030-50371-0_16

