
Analysis of Checkpoint I/O behavior

Betzabeth León1[0000−0003−1778−0237], Pilar
Gomez-Sanchez1[0000−0002−5993−7645], Daniel Franco1[0000−0003−0002−7046],

Dolores Rexachs1[0000−0001−5500−850X], and Emilio Luque1[0000−0002−2884−3232]

Computer Architecture and Operating Systems Department, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Barcelona, Spain

{betzabeth.leon, pilar.gomez, daniel.franco, dolores.rexachs,

emilio.luque}@uab.es

Abstract. Nowadays, checkpoints have gained some relevance, given
the increasing complexity of scientific applications for the use of many
resources over a long period of time. Thus, in fault tolerance strategies,
in addition to taking into account the impact that the application itself
has on HPC systems, we must add the impact of the checkpoint. The
checkpoint saves information about the application and the system in
order to be able to restore the application, if necessary, in stable storage.
The checkpoint can be considered as an intensive I/O application, so its
storage need can have a great impact on the application. Therefore, in
this paper, the analysis of the checkpoint’s I/O behavior is presented.
The number of checkpoints to be performed in an application is often
related to the maximum overhead that you want to introduce in the
application. If we know the maximum overload the user wants to pay
for and the overhead that a checkpoint introduces, we can calculate the
number of checkpoints to be performed. This overhead depends signifi-
cantly on the I/O operations. The PIOM-PX tool was used to analyze
the spatial and temporal I/O patterns of the checkpoint. Based on this
analysis, a model was designed to predict their behavior. This informa-
tion is used to calculate the number of checkpoints to be performed in
an application given a maximum overhead predefined by the user. This
will allow us to understand what happens when a checkpoint is created
in an HPC system, in order to make decisions that adapt to the user’s
requirements.

Keywords: Checkpoint · Fault Tolerance · I/O behavior · PIOM-PX.

1 Introduction
Input/Output (I/O) is an important element that greatly affects the performance
of parallel applications in High Performance Computing (HPC) systems. As
it generates a lot of readings and writes, if they are very frequent they could
impact significantly by collapsing storage and slowing down the execution of
applications. Among the elements related to I/O behavior are the design of the
same applications executed (I/O patterns), the HPC system and, especially, the
storage subsystem (workload and resource management).

In [1], the input and output is differentiated in two ways: productive I/O
and defensive I/O. Productive I/O is the writing of data that the user needs for

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


2 B. Leon et al.

actual science, such as visualization dumps and traces of key scientific variables
over time. Defensive I/O is employed to manage a large application executed over
a period of time much larger than the platform’s Mean-Time-Between-Failure
(MTBF). Defensive I/O is used for restarting a job in the event of application
failure in order to retain the state of the computation, and hence the forward
progress since the last checkpoint. Thus, one would like to balance the amount of
resources devoted to defensive I/O and computation lost due to platform failure,
which would require restarting the application. As the time spent on defensive
I/O (mechanisms for fault tolerance) is reduced, the time spent on useful com-
putations will increase. Checkpoints are a Fault Tolerance (FT) strategy which
require intensive large-scale access to the storage system, through I/O opera-
tions.

Checkpoints can be differentiated into several types depending on how the
processes involved in the execution of the application work with fault tolerance.
In this way, if the processes are coordinated to create and store the checkpoint,
they are said to be coordinated checkpoints. If each process performs the check-
point independently, they are non-coordinated checkpoints and if they are co-
ordinated by process groups the checkpoints are named semi-coordinated. In
this work, in order to study I/O, coordinated checkpoints will be used because,
when carrying out large amounts of simultaneous writes, they intensively access
the storage system, so the file system must manage all this information, which
can significantly affect the execution time of the application and influence its
scalability. In this way, to analyze the influence of scalability, mapping on the
size and time to make a checkpoint and having all the complete information of
these accesses to the file system can help you manage them better. It is required
to have the detailed information of the patterns generated to be able to repli-
cate them without performing the computation, to achieve the most appropriate
configuration and management of the file system and to be able to tune our ap-
plications with fault tolerance within the system, as well as to be able to carry
out an analysis of the performance. This paper will focus on the analysis of the
patterns generated by the checkpoint and its impact on the use of resources and
generated overheads.

This article is structured as follows: In Section 2 related work related to this
research will be presented. As a next step, in Section 3 we present the tools
used to obtain this information and we will justify the selection of the tool used
in this work. In Section 4 we will make a comparison between some I/O in-
strumentation tools, thus selecting the most suitable for our work. In Section
5 the Analysis of the checkpoint generated by the Distributed MultiThreaded
CheckPointing (DMTCP) will be presented. In Section 6, a model to estimate
the size and storage time of the checkpoint will be implemented. We finish with
the conclusions and future work.

2 Related Work
Different authors have studied the I/O behavior and fault tolerance and its
impact generating overhead in the applications. Below are some studies related
to this research.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


Analysis of Checkpoint I/O behavior 3

In [2] the authors indicate that among the elements that determine the fre-
quency of the checkpoint I/O depend on the choice of the checkpoint interval,
the period between checkpoints and the number of checkpoint I/O operations
performed by the application. This work is similar to the proposed objective,
the authors analyze the I/O operations but they do not consider the behav-
ior (spatial and temporal patterns of the I/O operations). The authors propose
an analytical model designed for the simulation, while we propose a behavior
model that allows the replication of the behavior in different systems or system
configurations. In [3], a checkpointing technique is presented that significantly
reduces the checkpoint overhead and is highly scalable. For this asynchronous
checkpointing technique, a theoretical model is developed to estimate the check-
point overhead. In this paper, we propose a model that permits replicating the
behavior of the checkpoint in different systems or system configurations, so that
with reduced resources we can obtain information that allows us to predict the
overhead. In [4], the goal of this research has been to develop a strategy for
optimizing parallel I/O over the wide variety of possible access patterns. They
have demonstrated that, with the two-phase access strategy for parallel I/O, it
is possible to obtain significant improvements in performance over previously
used methods. Data distribution and storage distribution have been decoupled,
enabling the most effective configuration to be used for parallel. Overlapping
and parallel I/O strategies are also compatible with our proposal.

3 Previous analysis
The coordinated checkpoint requires the coordination of the processes involved
in the execution of the application with fault tolerance. For each process a file
is generated relative to the work done by that process. There are several factors
that influence the size of the checkpoint files that have been generated and
the time they have used, among which is the number of accesses to the files
and the pattern of these accesses, which is immersed in the workload handled.
These patterns can be analyzed or described by their spatial behavior (related
to the type of access), the mode (sequential, striped, random), the size of the
access, among others, and their temporal behavior (related to the number and
frequency of access). Therefore, the checkpoint storage time depends on the size
and pattern, as shown below:

Tstorageckpt
= f(size, pattern) (1)

This checkpoint storage time (see expression 1) is part of the total time (see
expression 2) required to perform the coordinated checkpoint, as follows:

Tckpt = Tcoordckpt
+ Tstorageckpt

(2)

The coordination time (Tcoordckpt
) consists of the preparation and management

time at which the checkpoint starts, after this the storage time begins, where
it carries out the storage of the content that concentrates the state of the pro-
cess at a specific time. The storage stage is where the checkpoint spends more
time. Another element that influences the storage time of the checkpoint is the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


4 B. Leon et al.

place where it will be stored in the I/O subsystem, such as device type (SSD,
HDD) and file system (ext3, NFS, PVFS). But the patterns generated are de-
pendent on the application and therefore independent of the system. Once we
have the pattern, we can analyze its behavior in different systems or different
configurations. It is important to study it, as it does not only influence the size
of the checkpoint, it is also important in relation to the pattern consisting of the
frequency, size and amount of writes made in the time of storage, management
files, mapping dependence, the number of nodes and the files generated. All these
factors become important when the number of processes increases. In our case,
one file is generated per process.

The characterization model of the checkpoint I/O patterns shows that it
makes different writes of different sizes, both in the coordination and in the
content that the checkpoint stores, and these form the total checkpoint size.
This stored information is composed of the following three zones: (1) A data
zone which depends on the application and where, if we increase the number
of processes, the zone decreases. This is because when increasing the degree
of parallelism, the same amount of data is split into smaller pieces for each
process. (2) A library zone which remains fixed, because it depends on what the
application needs functionally from the system. (3) A shared memory zone in
which, as we increase the number of processes within the same node, the size
of this zone increases. This is because, depending on the number of processes
used, a variable amount of memory is reserved for inter-process communications
within the same node. This memory reserve depends on the MPI implementation
used.

Therefore, the storage times of each zone depend on the size of each write
made. Adapting this ratio to the Pearson correlation coefficient (see equation 3),
whilst the size of the checkpoint zones increases, so does storage time.

rxy =

∑
ZxZy

N
(3)

In our case, ”x” corresponds to the size of each write, ”y” corresponds to the
operation write time and ”N” is the number of writes made. In this way, the
larger the size, the more time it takes and this also depends on the congestion
for the number of files. Likewise, for analysis, it is important to have the right
tool that can implement all the necessary information to perform the required
analysis of these patterns generated by fault tolerance. To get the information
about the behavior, we must monitor the application’s I/O. There are different
trace and analysis tools that help describe the application’s I/O behavior. In
Section 4, a comparative study of three important tools capable of tracing the
I/O of the applications is carried out the coordinated checkpoint will also be
taken as the case of central use as an application with intensive access to the
storage system.

4 Tools used

According to the parameters obtained above and to have information about
their I/O behavior, different tools have been used. Below are the details of the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


Analysis of Checkpoint I/O behavior 5

information provided by each and a comparison, taking into account the type of
information we need.

4.1 Experimentation environment

The experiments have been carried out on: AMD OpteronTM 6200 @ CPU 1,56
GHz, Processors: 4, CPU cores: 16, Memory: 256 GiB, File system: ext3 and Disk
type: HDD. The MPI implementation used was MPICH 3.2.1. For checkpoints
the DMTCP-2.4.5 (Distributed MultiThreaded Checkpointing) has been used
for this study [5].

4.2 Application I/O behavior tools

To perform the analysis of the checkpoint I/O patterns, it is necessary to have
a tool that provides all the information required to study the checkpoint and its
structure, how it is formed and what the information it stores is. In this way,
there are a large number of tools that can trace the I/O of an application. In this
work, we have used and compared three tools widely referenced in the literature
used in HPC: Darshan, PIOM and Strace.

Darshan captures information about each file opened by the application.
Rather than trace all operation parameters, however, Darshan captures key
characteristics that can be processed and stored in a compact format. Darshan
instruments POSIX, MPI-IO, Parallel netCDF, and HDF5 functions in order to
collect a variety of information [6].

PIOM allows us to define an I/O behavior model based on the I/O phases
of HPC applications at MPI-IO and POSIX-IO level. For every file used by
the application, an I/O file is created. The spatial and temporal patterns are
extracted from information contained in the I/O file [7].

Strace is a diagnostic, debugging and instructional user space utility for
Linux. It is used to monitor and tamper with interactions between processes
and the Linux kernel, which include system calls, signal deliveries, and changes
of process state. Strace works by using the ptrace system call which causes the
kernel to halt the program being traced each time it enters or exits the kernel
via a system call [8].

In the following tables we will make a comparison between Darshan, PIOM
and Strace; and we show some general characteristics that are important for
the user. In Table 1 we can observe the characteristics related to its installation
and operation. The selected criteria were the following: Table 1 shows the ele-
ments that the tool traces. -File Access Type: This corresponds to the type of
operation that is identified, for example: open, close, write, read, among others.
-I/O Bursts: A burst is the grouping of I/O operations of the same type. -Trace
the checkpoint: This indicates the type of fault tolerance strategy being imple-
mented. -Trace the restart: This indicates whether there is a trace if the starting
point is a restart.

The three tools can identify the types of file access, but Darshan summarizes
the total operations of the same type (burst) while PIOM and Strace show the
operations separately, thus being able to identify the size and time of each one, as
well as other indicators. With respect to the checkpoint, the three tools can trace

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


6 B. Leon et al.

Table 1. Elements traced by the tool

Input

Tool File Access Bursts Trace the Trace the
Type checkpoint restart

Darshan Yes together Yes No

PIOM Yes Independent Yes No

Strace Yes Independent Yes Yes

their information, but with respect to the restart, only Strace can do it. How-
ever, this aspect does not present a major problem because the restart behaves in
the same way as the checkpoint but instead of being ”writings” they are ”read-
ings”. Table 2 shows some elements of the monitoring considered. -Overhead:
Corresponding to the overhead introduced by the tool. -Administrative Privi-
leges: Corresponding to whether it is necessary for the tool to be executed with
administrator privileges. -Transparent: Not interfering in the application execu-
tion. The overhead introduced by Darshan and PIOM is smaller than the one

Table 2. Monitoring Tool

Monitoring

Tool Overhead Administrative Privileges Transparent

Darshan Small No Yes

PIOM Small No Yes

Strace Medium No Yes

introduced by Strace, because it implements a lot of information related to the
monitoring and manipulation of interactions between processes and the Linux
kernel, which includes system calls, deliveries of signals and changes in the state
of the process. Regarding the administration privileges for its use, once they
are already installed, the three tools can be used without having administrator
privileges, as none of the three hinder the execution of the application.

Table 3 shows the execution times of the NAS parallel benchmarks with one
checkpoint, the execution times with fault tolerance, as well as the instrumenta-
tion tool used in each case. The purpose of this is to be able to check the time
overhead generated by each of them.

Table 3. Overhead introduced by each of the tools

App Time (sec.)
APP DARSHAN STRACE PIOM

BT.B.4 N:1 139.93 140.12 142.15 141.52
BT.C.4 N:4 431.12 432.16 433.81 432.71
BT.D.25 N:1 2568.30 2834.91 3508.72 2641.45
SP.D.25 N:1 3810.71 4032.89 5221.62 4011.14
LU.D.25 N:1 3947.86 4186.34 4378.81 4097.10

In Table 3 it can be seen that the executions of the application BT, SP and
LU applications class B [9] with fault tolerance implemented with Strace is the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


Analysis of Checkpoint I/O behavior 7

longest execution. As for the other two tools, Darshan and PIOM, it remained
similar, that is, in the cases studied, half the time was less with PIOM and
the other half with Darshan. This indicates that these two tools introduce less
overhead when they are implementing the application with checkpoint.

I/O Information: Other important information to be analyzed is that gener-
ated by the I/O when the checkpoint is being stored. In the case of the PIOM
tool, spatial information (number and size of writes), type of access (sequential,
random) and temporal information (frequency of accesses) are analyzed in order
to identify the bursts or consecutive accesses to the disk. Darshan gives profile
information with a number of writes grouped by size and does not allow us to
identify bursts.

Table 4 shows the difference in the I/O behavior identified in the BT, SP and
LU class B applications with 4 processes with DMTCP, identified by the PIOM
and Darshan tools. It also shows the writes identified, which present a difference
between both tools of less than 4% and for the size of less than 3%. In addition,
it shows the information per file (each process generates a file), that is, for BT,
SP and LU class B applications with 4 processes executed on a single node (N:
1), the information for each of the four files (Fx). As all four files have similar
behavior, to present the information in the table, only two files are shown for
each application.

Table 4. I/O information identified by PIOM and Darshan by file

App Files PIOM Darshan
Difference

%Num.
writes

PIOM Darshan
Difference

%MiB

No.writes MiB

BT.B.4 F0 209 216 3.24 155.14 156.59 0.93
N: 1 F1 209 216 3.24 154.56 156.00 0.92

SP.B.4 F0 215 228 4.44 139.55 141.02 1.05
N: 1 F1 221 226 1.34 138.99 140.43 1.02

LU.B.4 F0 219 225 2.67 93.16 95.57 2.52
N: 1 F1 217 224 3.13 93.16 94.68 1.60

In Table 5, a comparison is made between PIOM and Strace with respect
to the “writes” generated and the bursts, considering a burst as a number of
continuous operations of the same type, in this case of “writes”, as well as the
size of each of them. Table 5 shows that, in terms of the first burst, both tools
detect the same number of ”writes” 44 writes and a size of 0.0078 MiB for the
checkpoint. On the other hand, for burst two there is a difference between 0 to
5% between the number of writes that detect these tools and in terms of size, it
is very similar, so this aspect is less than 1% difference.

Table 6 shows some aspects related to the output report: Postprocessing (It
implies what must be done after the tool is executed in order to analyze the
information), Temporary Pattern (Informing on the order that the access events
are carried out to the file), Space Pattern (Providing information about what file
is used by the application, which process accessed a file and where (File positions)
it was accessed by the process during the application execution), Generated

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


8 B. Leon et al.

Table 5. I/O information identified by PIOM and Strace by file

App File PIOM Strace Difference
Burst 1 Burst 2 Total Burst 1 Burst 2 Total % Num.

No. writes No. writes No.writes

BT.B.4 F0 44 165 209 44 155 199 5.03
N: 1 F1 44 165 209 44 157 201 3.98

File MiB MiB % MiB
F0 0.0078 155.13 155.14 0.0078 154.52 154.48 0.43
F1 0.0078 154.55 154.56 0.0078 154.56 154.49 0.05

SP.B.4 File No. writes No. writes % No. writes
N: 1 F0 44 171 215 44 173 217 0.92

F1 44 177 221 44 173 217 1.84
File MiB MiB % MiB
F0 0.0078 139.54 139.55 0.0078 138.97 138.98 0.41
F1 0.0078 138.98 138.99 0.0078 138.97 138.98 0.01

LU.B.4 File No. writes No. writes % No. writes
N: 1 F0 44 175 219 44 167 211 3.79

F1 44 173 217 44 166 210 3.33
File MiB MiB % MiB
F0 0.0078 93.22 93.23 0.0078 93.15 93.16 0.07
F1 0.0078 93.22 93.23 0.0078 93.14 93.15 0.08

File (Referring to the amount of trace files generated) and Size Generated File
(Referring to the size of trace files generated).

Table 6. Output Tool

Output

Tool Post- Show Show Generated Size
processing Temporary Space File Generated

Pattern Pattern File

Darshan Easy Summarized Summarized 1 Small

PIOM Medium By operation All 1 per process Medium

Strace Complex By operation All 1 Large

With respect to the reports generated by these three tools, Darshan does not
need a post-processing, because with the same utility programs that it features,
several ready reports can be generated that show the information in a summary
way. With respect to PIOM, post-processing is medium because it presents an or-
derly report with each of the operations identified, as well as generating a report
for each process executed with all its information. However, certain calculations
must be made to obtain the total operations, total size and time. As for Strace,
post-processing must be carried out by the user, because it is only a monitoring
tool and it is much more complex because it generates a lot of information and as
it issues a single report, the required information must be thoroughly searched.
The three tools show the temporal and spatial patterns, PIOM and Strace show
them by operation, although Darshan shows them summarized. In relation to
the size of the reports generated, the smallest is Darshan, on average. In the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


Analysis of Checkpoint I/O behavior 9

case of PIOM and Strace, as they generate so much information, the size of the
report is larger.

We consider that the three tools used adequately instrument the I/O of the
applications with checkpoint. But based on the results of these experiments and
the qualitative comparison, we consider that PIOM is the tool of instrumentation
that most adapts to the study we want to perform in relation to the analysis of
the generated patterns of the I/O of the applications with fault tolerance.

5 Analysis of the Checkpoint generated by the DMTCP

5.1 Spatial and Temporal Pattens

Figure 1 shows the information identified by PIOM of a checkpoint of a BT.D.25
application. We can observe the moment in which the checkpoint began to be
stored and each of the zones that compose it, that is, the zone of data (DTAPP),
the library zone (LB) and the shared memory zone (SHMEM), as well as the
size of each zone. Knowing this, we can know the time it took to store each zone
and the total time to store all the zones.

Fig. 1. Spatial and temporal patterns identified by PIOM

Likewise, PIOM also provides us with information about the total execution
time of the application plus the checkpoint and the total size that will be stored.
All this information has been validated with the information generated by the
DMTCP, which is the following: Checkpoint time: 138.57 sec. Checkpoint size:
1205.51 MiB (This size is per file, as is a BT.D.25 must be multiplied by 25
processes, to obtain the total stored). App time + checkpoint: 2641.45 sec.

In the case of this example, it indicates that the time to store the checkpoint
is 138.57 seconds, which is similar to that shown by PIOM when adding the three
zones 138.33 seconds. In addition to the total size stored by each checkpoint file
1205.51 MiB and is also similar to the information identified by PIOM 1209.51
MiB. In this sense, the total time of the application with fault tolerance in this
case is 2641.45 seconds and the one identified by PIOM for this example was
2237.03 seconds. With this information generated by PIOM, we obtain important

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


10 B. Leon et al.

details of the patterns, being able to identify and compare them with great
congruence with what the DMTCP generates.

Table 7 shows a comparison between the times and sizes of each zone in the
execution of the BT benchmark with class D, with 64 and 16 processes and with
I/O. In this table we can see some elements which impact the execution time of
the application with fault tolerance.

Table 7. Elements that affect the temporal and spatial pattern

App Ckpt zones
Data zone Library zone Shared

Memory zone

BT.D.64.mpi io full time 327.96 2.67 537.28
size per file 478.16 2.53 533.86
total size 30602.25 161.75 34167.04

BT.D.16.mpi io full time 135.28 0.12 3.01
size per file 1662.89 2.52 108.76
total size 26606.24 40.32 1740.16

If we analyze the results presented by each zone, we can observe the following:
the data zone with 64 processes occupied a larger amount of time than in the
other case with 16 processes, although the workload was equal in all two cases.
When distributing it among the 64 processes, the size to handle for each process
was smaller. Therefore, this data zone is impacted by the amount of information
that must be stored from the application itself and the number of processes that
it handles, producing congestion in the storage system.

In relation to the library zone, it can be observed that when it is handling
16 processes, the size per file is the same, regardless of the workload, but when
increasing the number of processes to 64, the time also increases, as does the
total to be stored in to this zone.

With respect to the shared memory zone, it can be seen that this is directly
impacted by the number of processes used within the same node. In the case
of 64 processes, it can be observed that the size is much larger than that of 16
processes, although the workload handled is the same. Therefore this zone is
independent of the workload handled, so the time increases as the number of
processes increases, because the size also grows.

In the case shown in Table 7, all the files generated by the checkpoint have
been stored locally and an ext3 file has been used (Experiments have been carried
out on several file systems, but we have illustrated this with ext3). In this way,
the number of processes used is an element that significantly impacts the runtime
of the application with fault tolerance, because a bottleneck is formed when all
processes try to access the storage system at the same time because it is a
coordinated checkpoint.

5.2 A comparative analysis of the I/O patterns of applications with
fault tolerance

In order to compare the I/O of an application with the I/O of the checkpoint of
the same application, the first graph in Figure 2 shows the behavior of the I/O of

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


Analysis of Checkpoint I/O behavior 11

BT.C.16.mpi io full. In this case, it made a total of 440 writes in forty bursts of
10 writes, each write of 16 MiB, and the last of each burst 2.18 MiB. Therefore,
the number of writes and their sizes exhibit regular behavior. In the second graph
in Figure 2, the I/O behavior of a checkpoint executed in BT.C.16.mpi io full
can be observed. In this case, it made a total of 241 writes, and we can observe
that the writes have different sizes; there are a great number of very small 4
KiB ones and few large ones of up to 111.73 MiB. In the same way, the time
varies if we compare when making the small writes, which can take thousandths
of seconds, whereas a big write can take more than 12 seconds. Therefore, the
I/O behavior of the checkpoint is not regular. In both cases, we can observe that
the time depends on the writing size.

Fig. 2. I/O behavior (writes size and time)

After observing the trace generated by PIOM, we need to know the correla-
tion between the size of each writing with the time it took to make. In this way,
we can find this if we use the Pearson correlation coefficient, which is defined
as the covariance between two typified variables. By applying Equation 3 to our
traces to understand the correlation between the size and time of the checkpoint
scripts, we can see an association level of 0.992. Therefore, a positive correlation
between both variables is observed whereas the write size increases the time.
Therefore, the size of each write is an important element to study because it
significantly affects the time of the checkpoint.

5.3 Checkpoint Storage Time Estimation

In [10] a study was conducted to predict the size of the checkpoint. In this
article, equations were obtained to calculate the size of the areas that make up
the checkpoint. In the case of the DTAPP Zone, it was calculated through an
equation that was made from the number of processes and the size of the zone.
In this way, the size of this zone could be estimated with a different number of
processes. With respect to the LB zone in all cases, the size of this zone of 2.45
MiB was obtained. In this case, it was recommended to identify the area in a
run and verify the size, because if it is the same application it does not change
even if the number of processes and the workload change. With regards to the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


12 B. Leon et al.

SHMEM zone, as the size of this zone depends on the number of processes, the
equation obtained was as follows:

SHMEMSize = 0.0617x2 + 3.9983x + 25.47 (4)

The storage time of the checkpoint depends on the size and as noted above, we
can already predict the size of each of the checkpoint zones. Therefore, we can
estimate the storage time approximately. In order to try to get closer to the
value of time, we have calculated the regression equation for each of the zones,
obtaining the following equations:

DTAPPTime = 1.46041308E − 07x− 0.00404367 (5)

LBTime = 1.3205654E − 07x− 0.00014156 (6)

SHMEMTime = 1.5359626E − 07x− 0.0109242 (7)

In these equations ”x” corresponds to the size of each of the zones. So as to
validate the three equations shown above 6, 7, 5, the execution of the following
applications was executed and measured with a checkpoint: BT.C.16, BT.C.25,
BT.C.36, BT.C.49, BT.C.64 , BT.D.25, BT.D.36, BT.D.49, BT.D.64, SP.C.64,
LU.C.36 on one node and BT.D.64 on two nodes. These applications were used

Fig. 3. Comparison between measured and calculated time

with different workloads, number of processes and nodes, in order to be able to
vary the sizes of the checkpoint zones and check the validity of the equations.
In Figure 3 you can see the time in which the data zone was stored, the library
zone, the shared memory zone and the total time of the checkpoint. In general,
it is observed that the time calculated with the equations increases as the size
grows; with respect to the measured time this also remains similar, but in some
cases there is variability that occurs because it is being stored on the hard disk
and this can impact on the variability of the storage time.

In this way the calculated results obtained from the equations presented an
approximation with the actual measured values. The variability in the times can
be considered acceptable to estimate the storage time of the checkpoint.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


Analysis of Checkpoint I/O behavior 13

5.4 Approximate model the number of checkpoints to execute

This section presents an approximate model for obtaining the number of check-
points in a given execution (Fig. 4). For this, the checkpoint size must first be
calculated, identifying and calculating the zones that integrate it. The DTAPP
zone, depending on the application, should look for the regression equation, the
LB zone is constant and once verified it is sufficient and the SHMEM zone is
calculated using the equation indicated in the model. As a next step, the storage

Fig. 4. Approximate model of the number of checkpoints to execute

time of each zone must be calculated, since the time depends on the size of the
zone, three regression equations have been obtained which are approximate when
there is no congestion in the node, because if there were congestion the values
could vary a lot. In order to calculate the estimated checkpoint number given an
overhead percentage over the application time, the application execution time,
the estimated checkpoint storage time obtained with the previous equations must
be known. Then you enter the percentage of overhead you want to have on the
execution of the application and you get the total time of the application with
fault tolerance, the number of checkpoints that must be performed in a given
time interval.

6 Conclusions and Future Work
The defensive I/O that generates fault tolerance directly affects the application,
increasing the execution time. We have observed in this article that the pattern
generated by the checkpoint is very irregular, which makes it difficult to predict.
The storage time of the checkpoint depends on the size and patterns. In this
way, knowledge of these spatial and temporal patterns will allow us to predict

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14


14 B. Leon et al.

the size and storage time of the checkpoint so that with this information you
can calculate the number of approximate checkpoints that can be made in a
given time, when there is no congestion in the node. In addition, it allows us to
establish policies and develop tools that help to replicate their behavior in any
system as well as being able to establish configuration methods and strategies
to reduce the overload generated by the fault tolerance I/O. In this way, as a
future work, we plan to obtain a more exact model of prediction, taking into
consideration the elements that affect the congestion of the node. In addition,
we will continue to research with other types of fault tolerance strategies and
develop utilities that focus on the behavior of defensive I/O in order to assess
its impact and reduce it.

7 Acknowledgment
This publication is supported under contract TIN2017-84875-P, funded by the
Agencia Estatal de Investigación (AEI), Spain and the Fondo Europeo de De-
sarrollo Regional (FEDER) UE and partially funded by a research collaboration
agreement with the Fundación Escuelas Universitarias Gimbernat (EUG).

References

1. R. Subramaniyan, E. Grobelny, and S. et. Studham. Optimization of Checkpointing
-related I/O for high-performance parallel and distributed computing. J Supercom-
puting, page 150–180, 2008.

2. Arunagiri S., Daly J.T., and Teller P.J. Modeling and Analysis of Checkpoint
I/O Operations. Analytical and Stochastic Modeling Techniques and Applications,
pages 386–400, 2009.

3. F. Shahzad, M. Wittmann, T. Zeiser, G. Hager, and G. Wellein. An Evaluation
of Different I/O Techniques for Checkpoint/Restart. 2013 IEEE International
Symposium on Parallel Distributed Processing, pages 1708–1716, 2013.

4. Juan Miguel del Rosario, R. Bordawekar, and A. Choudhary. Modeling and Analy-
sis of Checkpoint I/O Operations. ACM SIGARCH Computer Architecture News,
pages 31–38, 1993.

5. Kapil A. Jason A. and G. Cooperman. DMTCP: Transparent Checkpointing for
Cluster Computations and the Desktop. 23rd IEEE International Parallel and
Distributed Processing Symposium, 2007.

6. P. Carns, K. Harms, W. Allcock, Ch. Bacon, S. Lang, R. Latham, and R. Ross. Un-
derstanding and Improving Computational Science Storage Access through Con-
tinuous Characterization. ACM Transactions on Storage (TOS), pages 1–26, 2011.

7. P. Gomez-Sanchez, S. Mendez, D. Rexachs, and E. Luque. PIOM-PX: A Frame-
work for Modeling the I/O Behavior of Parallel Scientific Applications. In Julian
M. et al. Kunkel, editor, High Performance Computing, pages 160–173, 2017.

8. The strace developers. Strace. https://strace.io/, 2001-2019.
9. D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum,

R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon,
V. Venkatakrishnan, and S.K. Weeratunga. The Nas Parallel Benchmarks. Inter-
national Journal of High Performance Computing Applications, page 63–73, 1991.

10. B. Leon, D. Franco, D. Rexachs, and E. Luque. Impact of the Checkpoint on the
Scalability of the Parallel Applications. The 2019 International Conference on
High Performance Computing & Simulation (HPCS 2019)(Accepted), 2019.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_14

https://dx.doi.org/10.1007/978-3-030-50371-0_14

