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Abstract. Recently, researchers usually use the elastic scaling tech-
niques as a powerful means of the distributed stream processing systems
to deal with the high-speed data stream which arrives continuously and
fluctuates constantly. The existing methods allocate the same amount
of resources to the instances of the same operator, but they ignore the
correlation between the operator performance and resource provision.
It may lead to the waste of the resources caused by the over-provision
or the huge overhead of the scheduling caused by the under-provision.
To solve the above problems, we present a quantitative elastic scaling
framework, named QEScalor, to allocate resources for the operator in-
stances quantitatively based on the actual performance requirements.
The experimental results show that compared with the existing works,
the QEScalor can not only achieve resource-efficient elastic scaling with
lower cost, but also it can enhance the total performance of the DSPAs.

Keywords: Data stream processing · Elastic scaling · Random forest.

1 Introduction

Recently, the distributed stream processing systems (DSPSs) [1–4] offer a pow-
erful means to extract the valuable information from the data streams in time.
We usually use the directed acyclic graph (DAG)[5] to model the data stream
processing application (DSPA) in DSPSs. In the DAG, each vertex represents
a kind of operations, named as the operator, and each edge represents a data
stream between two operators. At the run time, the DSPS initiates a certain
number of operator instances for each operator and deploy them on the run-
time environment.

Considering the constant fluctuating data stream, we adopt the elastic scaling
in the DSPSs, which adjusts the number of the operators dynamically, to satisfy
the QoS requirements. There have been many researches on the elastic scaling.
Zacheilas et al. [6] adjusts the number of operators based on the state transition
⋆ Corresponding author
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graph. Hidalgo et al. [7] evaluates the processing power of the operator through
the benchmarking, and adjusts the number of the operator instances based on
the threshold and the workload prediction. Wei et al. [8] only adjusts the CPU
frequency of the virtual machines as the workload fluctuates to reduce the en-
ergy cost. Marangozova-Martin et al. [9] presents the method to allocate three
levels of resources to the operator instances including virtual machines, processes
and threads. The above methods allocate the same amount of resources to the
instances of the same operator, but they ignore the correlation between the op-
erator performance and resource provision. Actually, the unreasonable resources
provision for the operator instance will cause some severe problems. For example,
over-provision will result in a waste of resources. Besides, the under-provision
means that the DSPSs will create a lot of instances to achieve high processing
performance, which results in the huge overhead of the scheduling and the state
transition.

In this paper, we present a quantitative elastic scaling framework, named
QEScalor, to allocate the resources for the operator instances quantitatively
based on the actual performance requirements. This framework firstly builds the
operator performance and resource provision model (OPRPM), then it generates
the low-cost elastic scaling plan based on the OPRPM. The contributions of this
paper are as follows:

– We use the QEScalor, which first considers the correlation between the op-
erator performance and resource provision, to enhance the performance of
the resource provision.

– We propose an online algorithm, named DSA. It learns the correlation sam-
ples of the operator performance and resource provision based on the gradi-
ent strategy and re-sampling mechanism. Besides, we use the random forest
regression model (RFR) [10] to build the OPRPM to get the suitable resource
provision options for the operator performance requirement.

– We present a quantitative and cost-based elastic scaling algorithm, QCESA.
It refers to the prediction of the workload[11] and the operator perfor-
mance[12] to generate the low-cost scaling plan based on the OPRPM to
achieve the resource-efficient elastic scaling to improve the performance.

– We implement the QEScalor as a key part of our DataDock [11]. The ex-
periment results show that our QEScalor can enhance the performance with
the lower scaling cost on the real-world datasets.

We organize the rest of our paper as follows. Section 2 describes the design
of QEScalor. Section 3 shows the experimental results of our framework. Finally,
Section 4 concludes our paper.

2 System Design

2.1 Overview

In this subsection, we describe our framework QEScalor in detail in Fig. 1, which
contains three modules: the online operator performance sampler (OOPSer),
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the operator performance and resource provision modeler (OPRPMer) and the
quantitative elasticity controller (QECer). As is shown in Fig. 1, the QEScalor is
an important module in the DataDock. In our previous work [11], we present our
distributed stream processing system, DataDock, mainly aiming at processing
the heterogeneous data in real-time.
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Fig. 1. QEScalor Architecture

We use the OOPSer to learn the correlation samples of the operator perfor-
mance and resource provision online. Then we use these samples as the input of
the OPRPMer to build the operator performance and resource provision model
(OPRPM). At last, we use the QECer to adjust the scaling plan according to the
workload prediction of the BGElasor [11], the operator performance prediction
of the OMOPredictor [12] and the OPRPM.
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As is shown in Fig. 1, we take the DSPA including the new operator O1 as
an example to describe the work process of the QEScalor. The process contains
three main stages.

– Correlation Samples Online Learning. When we use the QECer to ex-
ecute the DSPA including the new operator O1 at time t0, it registers the
O1 on the OOPSer. The QECer starts enough instances of the O1 with
the default resources provision based on the cost-based elastic-scaling al-
gorithm [11] and a single sampling instance with the RP_A depended on
the OOPSer. Then the OOPSer interacts with the Stream Distributor (SD)
to allocate the workload between the normal instances and the sampling
instance. The OOPSer continues to collect the operator performance and
resource utilization metrics until the current sampling process convergences
at time ti. The above sampling process will continue several rounds based
on the gradient strategy until the operator performance no longer increases
with the growth of resources. For example, the OOPSer learns the correla-
tion samples of resource group RP_A, RP_B and RP_C from time t0 to
tk.

– Operator Performance and Resource Provision Modeling. During
the sampling process, we use the OOPSer to invoke the OPRPMer to build
the OPRPM using the RFR, when it completes the learning process of one
kind of source provision.

– Quantitative Elastic Scaling. We run the QECer periodically. It takes
the workload prediction of the BGELasor and the operator performance
prediction of the OMOPredictor as the input and makes the quantitative
scaling decision based on the OPRPM. As is shown in Fig. 1, from time t0
to tj , the OPRPMer has learned the OPRPM of resource provision RP_A
and RP_B. To process the workload from tj to tk, the QECer allocates two
normal instances with the resource provision RP_A and one instance with
the resource provision RP_B. And from tk to tl, the QECer allocates three
instances with the resource provision RP_A, RP_B and RP_C respectively.

2.2 OOPSer: Online Operator Performance Sampler

We adopt the OOPSer to collect the correlation samples of the operator perfor-
mance and resource provision to build the OPRPM. We focus on the two types
of resources: the CPU and the memory. We do not consider the network band-
width in our work, because the network bandwidth is more sufficient and cheaper
than the CPU and the memory in the data center. Therefore, we only consider
the correlation samples learning of two types of operators [12]: the compute-
intensive Operator(COperator) and the compute-intensive operator mixed with
the memory I/O(CMOperator).

We propose the Dynamic-Sampling-Algorithm(DSA) to collect the correla-
tion samples online. We show it in Algorithm 1. The sampling process consists
of three steps: Firstly, we create the sampling operator instance with specific
resource provision. Secondly, we do not stress test on the sampling operator
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instance until the performance of the operator instance converges. Thirdly, we
continuously collect the correlation samples during the test. Since we spend some
time in stress testing, it will take a long time to complete the sampling. In order
to speed upsampling, we dynamically adjust the sampling step according to the
gradient of the performance change of the sampling operator instance. Mean-
while, we use the re-sampling method to add sampling points when the operator
performance fluctuates to improve accuracy.

We are processing the online workload while sampling with the normal run-
ning of the DSPAs. We dynamically allocate the workload between the normal
instances and the single sampling instance. It can reduce the time and resource
overhead obviously compared with running the sampling alone.

When we complete the sampling, we get the correlation sample set CSo =
(cs0o, cs

1
o, ..., cs

i
o), where csio = (cpui

o,memi
o, p

i
o) is the correlation sample of the

resource provision (cpui
o, memi

o) and the corresponding operator performance
pio. We use the CSo to build the OPRPM of the operator o. However, the perfor-
mance of operators fluctuates during the life cycle of the DSPA. With the online
correlation samples learning mechanism, we can continuously collect the samples
and update the OPRPM when the performance of the operator is inconsistent
with the OPRPM.

Algorithm 1 DSA
sampling(start, step, delta)

1: stopCount = 0
2: step = step.min
3: cur = start
4: sample(cur)
5: while stopCount < maxStopCount do
6: cur += step
7: sample(cur)
8: rate = (curload - lastload) * minStep / (cur - last) / lastload
9: if abs(rate) < delta.stop then
10: stopCount.increase()
11: else
12: stopCount = 0
13: end if
14: if rate < 0 or rate > upDelta then
15: re-sample ( sample.last , cur )
16: else
17: step = min(step.min * delta.up / rate), step.max)
18: end if
19: end while
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2.3 OPRPMer: Operator Performance and Resource Provision
Modeler

We use the OPRPMer to build the model of the operator performance and the
resource provision, with which we can predict the operator performance based
on the given resource provision.

The correlation between operator performance and resource provision is com-
monly complex and nonlinear. The linear regression model can not capture the
latent features of the correlation well, resulting in bad prediction. Besides, in our
scenario, the correlation samples set CSO is commonly small. Using the single
nonlinear regression model, like the SVR [13], leads to overfitting easily. The
ensemble learning model can improve the robustness of prediction by integrat-
ing many weak classifiers, which is more suitable for small sample learning. We
adopt the random forest regression(RFR) model in the OPRPMer to capture the
nonlinear correlation between the operator performance and the resource provi-
sion. According to the experimnets, compared to the boosting models, such as
the Adaboost [14], GBDT [15] and XGBoost [16], the RFR model performs bet-
ter. Because the bootstrap strategy adopted by RFR model can avoid overfitting
effectively when the sample set is small.

We take the correlation sample set CSO learned by the OOPSer as the input
to build the model in the OPRPMer. When invoked by the QECer, the OPRP-
Mer takes r = (cpu,mem) as input to get the operator performance prediction
po corresponding to the r.

2.4 QECer: Quantitative Elasticity Controller

In this section, we build the QECer, which can ensure the end-to-end latency
with the minimum elastic-scaling cost. It contains two parts: the Cost Model
and Quantitative & Cost-based Elastic Scaling Algorithm (QCESA).

Cost Model. We build a cost model to evaluate the total cost of all elastic-
scaling actions for an operator from the current epoch S to the future epoch F.
The total cost Wo(Ins), the startup times Cu

o·t(Ins) and the shutdown times
Cd

o·t(Ins) are defined as:

min Wo(Ins) = min(

tF∑
tS

∑
r∈Res

|Insto·r|pro +
tF−1∑
tS

(puoC
u
o·t(Ins) + pdoC

d
o·t(Ins)))

s.t.
∑

r∈Res

|Insto·r|Perfo·r ≥ Workloadt, ∀t ∈ [tS , tF ]

(1)

Cu
o·t(Ins) =

∑
r∈Res

max (0, Inst+1
o·r − Insto·r) (2)

Cd
o·t(Ins) =

∑
r∈Res

max (0, Insto·r − Inst+1
o·r ) (3)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_11

https://dx.doi.org/10.1007/978-3-030-50371-0_11


QEScalor: Quantitative Elastic Scaling Framework in DSP 7

where pro is the cost of system resources used by the single instance with resource
r for the operator o. |Insto·r| is the instance number of operator o with resource
r at time t. In addition, Perfo·r denotes the performance of each operator and∑

r∈Res |Insto·r|Perfo·r denotes the total performance of operator o at time t.
Workloadt is the workload at epoch t. In order to satisfy the end-to-end latency,
we ensure that the performance of each operator is not less than the workload.
In other word,

∑
r∈Res |Insto·r|Perfo·r ≥ Workloadt at any time. And puo is the

startup-cost of a single o instance. pdo is the shutdown-cost of a single o instance.
QCESA. To solve this expression min(Wo), we propose the Quantitative

and Cost-based Elastic Scaling Algorithm (QCESA). We show it in Algorithm 2.
The QCESA considers not only the cost of instance startup and shutdown, but
also the correlation of operator performance and resource provision. We use the
QCESA to balance these parts of the cost to guarantee a low cost.

At first, we use the QCESA to compute the max workload workloadmax dur-
ing t ∈ [tC , tF ]. Then use it to calculate all candidates at all time t ∈ [tC , tF ].
Each candidate is a combination of instances with different resource provi-
sion and instance number, of which the total performance Perf t

cand·total ∈
[Workloadt,Workloadmax]. At last, we use dynamic programming to calculate
the minimal cost.

3 Experiments

3.1 Environment

Settings. Our experiments run on Kubernetes(K8S) cluster, which we use as
the Resource Manager on the DataDock, including eight servers. The version of
K8S is 1.14.1. There are two types of servers in the K8S cluster: two GPU servers
and six CPU servers. Each GPU server comprises 36 cores Intel Xeon CPU E5-
2697 v4 2.30 GHz, 256GB memory, two NVIDIA GeForce GTX 1060ti cards,
and 500GB disks. Each CPU server comprises 36 cores Intel Xeon CPU E5-2697
v4 2.30 GHz, 256GB memory, and 500GB disks. We use the GPU servers to run
the JobManager, conducting the training and evaluation. We adopt the CPU
servers to run the Task Manager, in which the operator instance runs. Besides,
we conduct the evaluation of the OPRPMer with sklearn 0.22.1 running on
python 3.7.

Datasets. In Table 1, we show our datasets and the intermediate results of our
model at different stages. Firstly, we present the We use the real online work-
load processed by the DataDock in a day as the original dataset(OriWL-1day).
In OOPser, we use two sampling algorithms which are FSSA and DSA to sample
OriWL-1day. F1, F2, F3, F4 and F5 denote different steps of FSSA. A, B, C
and D represent that the original dataset is processed by these operators. CO1
denotes CPU operator and CMO1 denotes CPU-Memory operator. In OPRP-
Mer, we use DSA-A/B/C/D as the train set and use F1-A/B/C/D as the test
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Algorithm 2 QCESA
schedule( load, res )

1: cand = loopCandidatesAtEachTime(load.max, load)
2: if load.size == 1 then
3: plan.cost = res.start.cost
4: plan.setplan(res.start.index, res.start)
5: return plan
6: end if
7: if load.size == 2 then
8: if load[0] < load[1] then
9: plan.cost = res.end.cost + calcWarmup( res.start , res.end )
10: plan.setplan(res.start.index, res.end)
11: return plan
12: else
13: plan.cost = res.start.cost
14: plan.setplan(res.start.index, res.start)
15: return res.end
16: end if
17: end if
18: plan.cost=max
19: for cur : load do
20: for cand :cur.candidates do
21: lplan = schedule( load.before(cur), res.with(cand))
22: rplan = schedule( load.after(cur), res.with(cand))
23: if plan.cost > lplan.cost+rplan.cost then
24: plan.setplan( lplan,cur,rplan)
25: plan.cost = lplan.cost+rplan.cost
26: end if
27: end for
28: end for
29: return plan

loopCandidatesAtEachTime(maxload, load)
1: for curload : load do
2: for cand : res do
3: if curload < cand.load < maxload then
4: candidates.add(curload, cand)
5: end if
6: end for
7: end for
8: return candidates

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_11

https://dx.doi.org/10.1007/978-3-030-50371-0_11


QEScalor: Quantitative Elastic Scaling Framework in DSP 9

set. Then we obtain the output of the random forest regression(RFR), DSA-
RFR-A/B/C/D. In QECer, we should evaluate the system performance. From
OPRMER, we use DSA-RFR-A/B/C/D as the input. From OMOPredictor, we
adopt OP-PM-30 as the input, which represents the operator performance on
Datadock online for 30 days. For the input of the BGElasor, we use OriWL-
60days-FlowStat which represents the flow statistics for 60 days of data load on
the DataDock online.

Table 1. THE DATASETS DESCRIPTION

Stage IN or OUT Datasets

OOPSer

IN OriWL-1day

OUT

CO1[A] F1-A F2-A F3-A F3-A F5-A DSA-A
CO2[B] F1-B F2-B F3-B F3-B F5-B DSA-B
CMO1[C] F1-C F2-C F3-C F3-C F5-C DSA-C
CMO2[D] F1-D F2-D F3-D F3-D F5-D DSA-D

OPRPMer IN Train DSA-A/B/C/D
Test F1-A/B/C/D

OUT DSA-RFR-A/B/C/D

QECer IN
From OPRMer DSA-RFR-A/B/C/D

From OMOPredictor OP-PM-30
From BGElasor OriWL-60days-FlowStat

OUT Resource Allocation Plan

3.2 Performance Evaluation

In our algorithm, we guarantee the latency to reduce the total cost. Thus,
we evaluate the Quantitative Elasticity Controller from two aspects: the total
cost and the end-to-end latency guarantee. We use the Cost-Balance-Algorithm
(CBA) [11] as the baseline algorithm. The CBA considers the running cost and
the operation cost. Compared to the CBA, the QCESA takes the operator re-
source provision into account.

The performance of QCESA depends on the sampling of OOPSer and the
predicted results of OPRPMer. For the OOPSer, we compare our method, DSA,
with the Fixed-Step-Sampling-Algorithm (FSSA) to demonstrate that DSA is
more accurate in the sampling stage to enhance scheduling accuracy and reduce
the cost. For evaluating the OPRPMer, we compare the random forest regression
model (RFR) with the following methods: Adaboost, GBDT and XGBoost, to
demonstrate that RFR is more suitable for the current application scenarios. It
can get more accurate prediction results and affect the overall performance of
scheduling.
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Total Cost. In this part, we take the CMO1 as an example to compare by
using the total cost of elastic scaling. We use the workload prediction to generate
the scaling plan for the CMO1 and calculate the total cost.

Moreover, to evaluate the effectiveness of the QCESA, we use four different
resource provisions to test the CBA respectively. The four resource provision
granularities are as follows: 1) r1 = (cpu = 0.6 ∗ core,mem = 33.2MB), 2)
r2 = (cpu = 1.2 ∗ core,mem = 33.3MB), 3) r3 = (1.8 ∗ core,mem = 33.5MB),
4) r4 = (cpu = 2.4 ∗ core,mem = 33.8MB).

(a) QCESA vs. CBA with r1 (b) QCESA vs. CBA with r2

(c) QCESA vs. CBA with r3 (d) QCESA vs. CBA with r4

Fig. 2. Total Cost

In Fig. 2, we can find that most of the time, the total cost of the QCESA is
less than that of the CBA. Besides, as the system runs, the performance of the
QCESA is becoming much higher than the CBA.

End-to-end Latency Guarantee. In this part, we focus on the end-to-
end latency guarantee. We still take the CMO1 as an example to run on the
DataDock and monitor the end-to-end latency.

In Fig. 3, we can see that both the QCESA and the CBA can guarantee that
the performance of the operator is no less than the workload. And the end-to-end
latency always stays stable and satisfies the requirement of the QoS. The reason
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(a) workload and performance (b) end-to-end Latency

Fig. 3. QoS Guarantee

is that both algorithms start the instances before the workload rises. Thus they
can process the workload timely.

Impact of Sampling. To measure the impact of sampling, we compare the
DSA with the Fixed-Step-Sampling-Algorithm (FSSA) in OOPSer. We run the
FSSA and the DSA separately to collect the correlation samples of the four
operators. For each operator, we run the DSA with the sampling step set to 1
and use the sampling result as the baseline. Besides, we also run the FSSA with
the sampling step set to 2, 3, 4 and 5 as the contrast evaluation.

After we get all correlation samples of four operators with the FSSA and the
DSA, we use the OPRPMer to build the OPRPMs. Then, we predict the oper-
ator performance based on the minimum sampling step using the OPRPMs.
We use the Root Mean Square Errors (RMSE), the Mean Absolute Errors
(MAE) and the Sampling Number (SN) to evaluate the effectiveness of the
DSA. RMSE =

√
1
n

∑n
i=1 (xi − x̂i)

2, MAE = 1
n

∑n
i=1 |xi − x̂i|, where xi is the

operator performance of baseline, and x̂i is the predicted operator performance.

Table 2. THE PERFORMANCE OF EACH SAMPLING METHOD

Algorithm

Operator Type
COperator CMOperator

CO1 CO2 CMO1 CMO2
RMSE MAE SN RMSE MAE SN RMSE MAE SN RMSE MAE SN

FSSA2 0.0047 0.0596 16 0.0031 0.0393 17 0.0058 0.0519 12 0.0199 0.1231 19
FSSA3 0.0049 0.0455 11 0.0015 0.0305 12 0.0074 0.0613 9 0.0067 0.0563 13
FSSA4 0.0066 0.0599 9 0.0033 0.0521 9 0.0247 0.1434 7 0.0233 0.0924 10
FSSA5 0.0237 0.1131 7 0.0026 0.0423 8 0.0192 0.1157 6 0.0161 0.0938 9
DSA 0.0046 0.0568 14 0.0022 0.0402 11 0.0056 0.0525 15 0.0112 0.0911 9
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As is shown in Table 2, we can observe that the performance of the FSSA is
not stable. When the step of the FSSA is 2, the CO1 and the CMO1 get the best
performance. But when the step of the FSSA is 3, the CO2 and the CMO2 get
the best performance. And the DSA performs well for all the four operators. Its
performance is close to or even reaches the best performance. Moreover, the DSA
has fewer sampling numbers when reaching the same performance. It benefits
from the dynamical sampling strategy.

We show the sampling result of the CO1 and the CMO2 in Fig.4. We can
see where the performance fluctuates obviously, the sampling step is close to
the minimum sampling step. Instead, when the performance changes smoothly,
the DSA only uses a few sampling points to capture the main characteristics of
performance changes.
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Fig. 4. Sampling Result

Comparison of Prediction Methods. To enhance the total performance,
we should select the better prediction method for the OPRPMer. So we com-
pare the random forest regression model with the following methods: Adaboost,
GBDT and XGBoost, to demonstrate the effectiveness of the RFR model in this
scenario.

We use the RMSE and the MAE to evaluate the performances of each model.
There are several hyper-parameters in these approaches, we use the grid search
and 10-folds cross-validation to select the key hyper-parameters. Besides, we
normalize all the input to the range [0,1] using the Min-Max scaler. We repeat
the experiment 10 times for each model to reduce the random experimental error
and take the average of the whole test results as the final result.

As for the RFR, we set bootstrap = True, criterion =′ mse′,max_featur−
es =′ auto′,min_samples_leaf = 1,min_samples_split = 2, n_estimators =
100. As for the SVR, we set kernel =′ rbf ′, gamma =′ scale′, C = 1.0. As for
the Adaboost, we set base_estimator = None, learning_rate = 1.0, loss =′

linear′, n_estimators = 50. As for the GBDT, we set n_estimators = 100, crit−
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erion =′ friedman_mse′,max_features = None,min_samples_leaf = 1.
As for the XGBoost, we set booster =′ gbtree′, learning_rate = 0.1,max_depth =
3, n_estimators = 100.

Table 3 shows that the effectiveness of the ensemble learning is significantly
better than the SVR. Because in our scenario, the size of the correlation sample
set is smaller, the advantage of the ensemble learning is more prominent.

Table 3. THE PERFORMANCE OF EACH MODELS

Model

Operator Type
COperator CMOperator

CO1 CO2 CMO1 CMO2
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVR 0.0924 0.0833 0.1048 0.1040 0.0833 0.0819 0.0833 0.0819
Adaboost 0.0678 0.0514 0.0469 0.0390 0.0622 0.0599 0.0598 0.0575
GBDT 0.0687 0.0536 0.0550 0.0361 0.0821 0.0646 0.0706 0.0565

XGBoost 0.0722 0.0561 0.0522 0.0431 0.0986 0.0860 0.0986 0.0860
RFR 0.0435 0.0372 0.0220 0.0197 0.0644 0.0533 0.0477 0.0399

Besides, there is not much difference between the Adaboost, GBDT, and
XGBoost. However, compared to the above boosting models, the RFR performs
better. Because the RFR model adopts the bootstrap strategy, it can effectively
prevent overfitting when the size of the sample set is small.

4 Conclusion

In this paper, we present a quantitative elastic scaling framework, named QEScalor,
to allocate resources for the operator instances quantitatively based on the ac-
tual performance requirements. It contains three key modules: the OOPSer, the
OPRRMer and the QECer. Firstly, we use the OOPSer to learn the correlation
samples of the operator performance and resource provision online. Then we use
these samples as the input of the OPRPMer to build the operator performance
and resource provision model (OPRPM) by using the random forest regression
model. At last, we use the QECer to adjust the scaling plan according to the real
workload fluctuation. The experimental results show that, compared with the
state-of-the-art methods, the QEScalor is better on the real-world datasets. And
we can address the problem which ignores the correlation between the operator
performance and resource provision.
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