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Abstract. Efficient solvers for partial differential equations are among
the most important areas of algorithmic research in high-performance
computing. In this paper we present a new optimization for solving lin-
ear autonomous partial differential equations. Our approach is based on
polynomial approximations for exponential time integration, which in-
volves the computation of matrix polynomial terms (Mpv) in every time
step. This operation is very memory intensive and requires targeted op-
timizations. In our approach, we exploit the cache-hierarchy of modern
computer architectures using a temporal cache blocking approach over
the matrix polynomial terms.
We develop two single-core implementations realizing cache blocking
over several sparse matrix-vector multiplications of the polynomial ap-
proximation and compare it to a reference method that performs the
computation in the traditional iterative way. We evaluate our approach
on three different hardware platforms and for a wide range of different
matrices and demonstrate that our approach achieves time savings of
up to 50% for a large number of matrices. This is especially the case on
platforms with large caches, significantly increasing the performance to
solve linear autonomous differential equations.

Keywords: cache-blocking in time dimension · matrix exponentiation ·
higher-order time integration

1 Introduction

Solving time-depending partial differential equations (PDEs) on large-scale
supercomputers is extremely resource demanding, yet applications demand
the ability to operate on increasingly larger and more complex systems. Con-
sequently, the development of efficient parallel PDE solvers from the math-
ematical side, as well as their efficient implementation on high-performance
computing (HPC) systems is an active area of research. In this work, we in-
vestigate optimizations along the time dimension combining new approaches
from mathematics and HPC research.

Our main application focus lies on linear autonomous PDEs that occur
frequently, e.g., in full waveform inversion problems [9] or as part of splitting
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2 D. Huber et al.

methods that incorporate non-linear parts in a separate way [8]. In general,
such PDEs are given by ∂U(t)

∂t = LU(t) with L being the linear operator and
U(t) the solution at time t.

In order to solve such systems numerically for a given initial condition
U(0), we must apply a discretization. In particular, our presented HPC algo-
rithms target commonly used discretization methods leading to a linear oper-
ator directly and explicitly given by a sparse matrix L. This is, e.g., the case
when using discretizations based on finite differences or radial basis functions.

Furthermore, the discrete state of the solution at time t is given by U(t),
leading to ∂U(t)

∂t = LU(t). Such a discretization typically results in sparse ma-
trices that are then used in matrix-vector-like computations LU, as it is com-
mon in off-the-shelf time integration methods. To provide an example, explicit
Runge-Kutta (RK) methods rely on computations of the form
ki = L

(
tn + ∆tci, Un + ∆t ∑j ai,jk j

)
with Un being the approximated solution

at time tn, k j related to the j-th RK stage, ai,j an entry in the Butcher table (e.g.,
see [1]) and ∆t the time step size as part of the time discretization. However,
such a formulation targets non-autonomous systems with the assumption of
L(t) varying over time, e.g., by external time-varying forces, hence involving
the dependency on time via tn + ∆tci.

In contrast, the linear PDEs we target in this paper do not involve any
time-depending terms and this is indeed the case for many other PDEs (Seis-
mic waves, Tsunami simulations, etc.). This opens up a new branch of matrix-
polynomial-based time integration methods of the form
U(t + ∆t) = ∑n αn (∆tL)n U(t), which we explore in this paper as the target
for our algorithmic HPC optimizations. Similarly to the RK-based methods,
these methods rely on matrix-vector products.

For their efficient implementation, though, we need to take modern HPC
architectures into account, in particular their cache and memory hierarchy. We,
therefore, design and implement a novel temporal cache-blocking scheme over
the linear operators L as part of such a matrix polynomial computation. This
increases both spatial and temporal locality and leads to a high utilization of
the cache resources, leading to a speed-up of up to 50% on some architectures.

Our main contributions are the development of these caching strategies in
Sec. 3, an analytical performance model which is presented in Sec. 4 as well as
the performance assessment in Sec. 5.

2 Related Work

The growing gap between computational performance and memory access
latencies and bandwidth, commonly referred to as the memory wall [12], is
one of the fundamental bottlenecks in modern computer architectures. Caches
are commonly used to mitigate this problem, but require careful algorithm
design to achieve the needed temporal and spatial locality that makes their
use efficient. This is particularly true for PDE solvers, which we target in this

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_10

https://dx.doi.org/10.1007/978-3-030-50371-0_10


Cache-Aware Matrix Polynomials 3

paper. Algorithm design and optimization is, therefore, an active and wide
field of research. In the following we point out the most relevant related work
and contrast it to our approach.

We first discuss very common optimization approaches for spatial dimen-
sions. For matrix-vector and matrix-matrix multiplications, cache-blocking [6]
is a well established technique and considered an essential optimization on to-
day’s architectures with deep memory hierarchies. For regular grid structures,
this technique can be combined with tiling approaches, like spatial tiling [7], to
further increase its efficiency. However, so far such optimizations only targeted
the execution of a single operation, ignoring potential optimizations across
multiple operators.

When considering the time dimension, temporal tiling and wavefront com-
putations, as a generalization of it, has been shown to provide significantly
improved performance on modern architectures [2, 13, 11]. In our work we
build on this approach of temporal tiling, used for individual SpMvs, and ap-
ply it to a series of successive SpMvs, as they occur during the calculation of
the matrix potentials Mpv needed for our class of targeted PDEs.

Contrary to stencil computations, our algorithms do not perform blocking
over several time steps, but rather several sparse matrix-vector multiplications
(SpMvs) computing the polynomial terms (vectors) in every time step. Further-
more, our approach can also be applied out-of-the-box to non-uniform grids.
For temporal tiling, this would pose new requirements on data dependencies,
as it is based on the explicit use of the regular grid structure.

Within the scope of the project to develop “communication-avoiding Krylov
subspace methods” several publications focus on comparable approaches (see
Hoemmen [4] and references therein). One particular difference of our work is
the application of this technique in polynomial time integration. We also pro-
vide two different implementations of this technique, which enable the cache
blocking naturally with a very small preprocessing overhead.

3 Cache-aware Matrix Polynomials

In this section we present two cache-aware algorithms for the calculation of
the matrix polynomial terms Mpv: the Forward Blocking Method (FBM) and
the Backward Blocking Method (BBM). In particular, matrix-polynomial-based
time integration demands not only the vector Mpv to be calculated, but rather
all vectors Mkv, k ∈ {1, · · · , p}, which makes it infeasible to explicitly precom-
pute the matrices Mk before multiplying them with v. Therefore, these vectors
are computed by typically successive matrix-vector multiplications with the
same matrix M. With yn denoting the result vector of the calculation of Mnv,
the vector yn+1 is derived as yn+1 = Mn+1v = Myn. This leads to the intu-
itive way to calculate Mpv by successive matrix-vector multiplications, i.e., the
vectors y1 to yp are calculated one after the other. We refer to this as the naive
approach.
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However, for sufficiently large problem sizes this results in no data reuse
between the matrix-vector products, as the data is already evicted from the
cache before it can be used again in the next multiplication. To avoid this sit-
uation our two methods use a blocking technique that enables the reuse of
data over multiple matrix-vector calculations, which borrows some ideas from
wavefront strategies in stencil computations. We interpret the vectors y1 to yp
as one-dimensional domains at time steps 1 to p, similar to one-dimensional
stencil computations. While in such stencil computations the dependencies be-
tween the time steps are given by the defined stencil. for our calculations these
dependencies are defined by the positions of nonzero entries in every row of
the matrix. For matrices arising from finite differences or radial basis function
discretizations, these positions are usually regionally similar in neighboring
rows. Based on this observation, we apply a blocking scheme to the matrix to
describe dependencies between whole blocks of the vectors. Our algorithms
then construct two-dimensional space-time tiles over the vectors that fit into
cache, while simultaneously respecting the dependencies between all blocks
of the vectors.

To achieve this, our two methods use two different concepts: FBM starts
at the first vector y1 and calculates successive blocks of a vector yn until the
dependencies for a block on the next vector yn+1 are fulfilled. BBM, on the
other hand, starts at the last vector yp and is stepping backwards through the
dependency graph in a recursive way to calculate exactly the blocks needed
to resolve the dependencies for the current block of yp. To realize these two
concepts, both methods demand distinct information about the dependencies
between the vector blocks. Therefore, we use different data structures for the
FBM and BBM, as discussed next.

3.1 Extended CSR Matrix Formats

As a basis for our cache-aware matrix polynomial scheme, we extended the
CSR matrix storage format to provide additional information about the non-
zero block structure of the matrix. The CSR format uses three arrays: the non-
zero entries of the matrix in the array val, the corresponding column indices in
the array colInd and the row information as pointers into the two other arrays
in the array rowPtr. We extended this format by (conceptually) partitioning
the matrix into blocks of size B× B, while keeping the underlying data layout
of the CSR format. The information about the non-zero block structure is then
stored in additional arrays. However, we use different formats for the two
methods: while we store the positions of all non-zero blocks for the BBM, only
the position of one non-zero block per blockRow has to be stored for FBM.

Therefore, for FBM the CSR format is extended by only one additional array
of size d n

B e for an Mn×m matrix. In this array the maximum block-column index
of every block-row is stored (see maxBlockColInd array in Fig. 1). Hence, only
a relatively small overhead of additional data has to be stored and loaded.

The format used by BBM, on the other hand, provides the full information
about the non-zero block structure of the matrix. This information is stored in
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Fig. 1: Forward Blocking Method: This example shows the concept of the FBM for the
calculation of M3v with sparse matrix M (left), the dense source vector v/y0 (most
left vector) and a block size of B = 2. The following vectors y1, y2 and y3 are the
destination vectors of the successive SpMv operations needed to calculate M3v. The
numbers inside the blocks of the destination vectors denote the order in which they are
calculated by the FBM. The arrows indicate the dependencies between the vector blocks
as encoded by the MaxBlockColInd array.

two arrays similarly to the colInd and rowPtr arrays of the CSR format, but
by dealing with all block rows and columns instead of single ones (see Fig. 2).
Thus, the blockRowPtr array consists of offsets into the blockColumnIndex

array, indicating the start of a block row. The blockColumnIndex array contains
the block-column indices of non-zero blocks in a block-row. If Br denotes the
number of non-zero B× B blocks of an Mn×m matrix, the size of the two arrays
is given by d n

B e and Br.

3.2 The Forward Blocking Method

We implemented FBM according to the pseudo code in Alg. 1. For a better un-
derstanding of the underlying concept of this method, we present an example
in Fig. 1. Based on this example we describe the algorithm while referring to
the corresponding lines of code.

For each vector y1, y2 and y3 we track the information about its last cal-
culated block (starting at −1) and the maximum index of the block of the
predecessor vector that is needed to calculate the next block. For simplicity,
in Alg. 1 we compute these values by the function calls lastBlockOf(yn) and
neededBlockFor(yn), respectively.
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Algorithm 1 Forward Blocking Method: Calculates yp = Mpy0, where M is
partitioned into numBlocks slices represented in the format described in Sec. 3.1
Require: y0 is the source vector → lastBlockOf(y0) = numBlocks and yi, i ∈ [1, p] are

empty vectors→ lastBlockOf(yi)= −1, neededBlockFor(yi) = maxBlockColInd[0]
1: function FBM(numBlocks)
2: p0← 1
3: while neededBlockFor(yp) ! = −1 do
4: for i = p0 to p do
5: while lastBlockOf( yi−1 ) ≥ neededBlockFor(yi) and not (i + 1 <= p and

lastBlockOf(yi) >= neededBlockFor(yi+1)) do
6: SpMv(yi, lastBlockOf(yi)+1)
7: lastBlockOf(yi)++
8: if lastBlockOf(yi) < numBlocks −1 then
9: neededBlockFor(yi) = maxBlockColInd[lastBlockOf(yi)+1]

10: else
11: p0 ++
12: neededBlockFor(yi)=-1
13: break

Starting at y1, FBM loops through the vectors (Line 2 & 3), thereby calcu-
lating blocks of vector yn by an arbitrary SpMv kernel (Line 5) until one of the
following two conditions is reached (Line 4):

– The forward pointer in the last calculated block points to an unfilled block
of yn+1: this indicates that the currently calculated data can be used to
calculate a block of vector yn+1 and, therefore, the loop jumps to the next
vector to propagate the new data forward.

– The forward pointer to the next block of yn to be calculated originates from
an unfilled block of yn−1: this indicates that there are more blocks of the
previous vector(s) needed, so the loop starts again at vector y1.

When a block of vector yn with index Bi is calculated, the value of
lastBlockOf(yn) has to be incremented (Line 7) and the new value of
neededBlockFor(yn) can be read from maxBlockColInd[Bi + 1] (Line 9). Com-
pletely filled vectors are excluded from the loop (Line 11). This loop is repeated
until the last block of y3 is filled (Line 1).

The numbers in the vectors in Fig. 1 illustrate the order in which the blocks
of the vectors would be calculated by FBM in this example. This order exhibits
improved temporal locality on both the matrix and the vectors, compared to
successive matrix-vector products, as it traverses the dim× p-plane of the vec-
tors in wavefronts with a certain (constant) wavefront angle, resembling those
in stencil computation. It can be observed that the minimum tile size is depen-
dent on the distances between the lowest and highest column index in every
row. Hence, for very large distances FBM produces large space-time tiles to
respect these dependencies, which impedes cache usage and, among other is-
sues, excludes periodic boundary problems from the application domain of
this method.
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Fig. 2: Backward Blocking Method: This example shows the concept of the BBM for
the calculation of M3v with sparse matrix M (left), the dense source vector v/y0 (most
left vector) and a block size of B = 2. The following vectors y1, y2 and y3 are the
destination vectors of the successive SpMv operations needed to calculate M3v. The
numbers inside the blocks of these destination vectors denote the order in which they
are calculated by the BBM. The arrows indicate the dependencies between the vector
blocks as encoded by the arrays blockRowPtr and blockColInd. The BBM computes
a block of y3 by recursively computing all the (not already computed) blocks of the
previous vectors it depends on, e.g., to calculate the first block of y3 (y3[0]) the order
of calculated blocks is y1[0], y1[2], y2[0], y1[4], y2[2], y3[0].

Algorithm 2 Calculates block Bi of vector yn recursively
1: function lookupRec(yn, Bi)
2: if n > 1 then
3: for index=blockRowPtr[Bi] to blockRowPtr[Bi+1]−1 do
4: Brec =blockColInd[index]
5: if yn−1[Brec].isEmpty() then
6: lookupRec(vecyn−1, Brec)
7: SpMv(yn, Bi)

3.3 Concept of Backward Blocking

Fig. 2 shows the concept of BBM.It loops over the blocks of the final result
vector yp (y3 in our example) and calculates the necessary blocks of the pre-
vious vectors recursively by calling the functions shown in Alg. 2. As input
parameters, this function takes a vector yn and the index Bi of the block of
this vector that will be calculated. To calculate this block yn[Bi], all the blocks
of yn−1 from which pointers lead to yn[Bi] are needed. The indices of these
blocks can simply be read from the entries blockColInd[blockRowPtr[Bi]] to
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8 D. Huber et al.

blockColInd[blockRowPtr[Bi+1]-1] (Line 3). If such a block of yn−1 is not
calculated, yet, a recursive function call is performed for this block index and
vector yn−1 (Line 5 & 6). When all necessary blocks are filled, yn[Bi] can fi-
nally be calculated using a SpMv kernel (Line 10). The algorithm is effectively
stepping backwards through the dependence graph in a depth first traversal
to reach the needed filled blocks and is calculating exactly the required data
on the way backtracking forward through the dependence graph.

As above, the correct order of the calculations of the vector blocks improves
the temporal locality of the data accesses. For the shown example of a regular
grid, BBM calculates blocks of vectors (after a short initialization phase) in the
same order as FBM. However, the additional information of the dependencies
between the blocks leads to a decisive advantage. As discussed above FBM
degenerates to nearly successive SpMv calculations for large distances between
non-zeros in one or multiple rows. BBM can “compensate” a small number of
such rows, if for a majority of rows these distances are small enough for the
space-time tiles to fit into cache. For such cases, BBM breaks the wavefront
analogy and only calculates exactly the needed data blocks. This is contrary to
FBM, which calculates all blocks of a vector up to the maximum needed block.

4 Analytical Best-Case Performance Model

In order to understand the quality of our proposed solution, we derive an
analytical model showing the upper bound for the performance improvements
possible with our blocking methods. When calculating Mpv for large problem
sizes without cache blocking, the values of the matrix and vectors have to be
loaded from memory for every matrix-vector multiplication. Thus, the time for
the naive calculation is given by Tnaive(p) = p× Tmem, where Tmem denotes the
time needed for an SpMv with no values cached.

Our approaches use cache blocking, hence—in the ideal case—the matrix
and vector values are only loaded once from memory and then reside in cache
for the rest of the computation. Following this observation, we model the com-
putation time as Tblocked(p) = Tmem + (p− 1)× Tcache, where Tcache is the time
needed for in-cache SpMvs. The time savings through blocking can then be
calculated as Tsave(p) = 1− Tblocked(p)

Tnaive(p) . Consequently, for increasing exponents
of the matrix (p), the expected time savings through blocking converge to
limp→∞ 1− Tmem+(p−1)×Tcache

p×Tmem
≈ 1− Tcache

Tmem
.

The size of the data that has to fit into the cache to achieve full cache block-
ing (SC) is heavily dependent on the specific matrix structure and the expo-
nent of the matrix. I.e., the relation can be described as SC ∝ Rnz × Bw × p,
where Rnz is the number of nonzero values per row, Bw the distance be-
tween the lowest and highest column index per row and p the exponent of
the matrix. For regular grid based matrices, the computation order in which
the two methods compute the blocks lead to a more accurate approximation of
SC ≈ Bw

2 (p(Rnz(Sval + Sind) + 3Sval + Sind) + Sval), where Sval is the size of the
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data type of the matrix/vector values and Sind the size of the data type used
for the index and pointer array of the CSR format.

5 Evaluation

5.1 Targeted Hardware Architectures

To analyze the effectiveness of our approach, we evaluate our approaches on
three different hardware platforms: XeonBronze, XeonSilver and AMD. Both
XeonBronze and XeonSilver are based on the Intel Skylake Architecture; the
XeonBronze platform features an Intel Xeon Bronze 3106 8-core processor with
a total of 80GiB of DRAM, and the XeonSilver platform is equipped with two
Intel Xeon Silver 4116 12-core processors and a total of 96GiB of DRAM, ar-
ranged equally across all available memory slots to allow for optimal band-
width. Our AMD platform is built with a single AMD Ryzen Threadripper
2990WX 32-core processor. It is based on the 2nd-generation AMD Zen ar-
chitecture and features a total of 64 GiB of main memory.

The Intel Skylake [3] features a classical 3-layer cache design (L1I/D, L2
and L3), with each of the layers (L1I/D, L2 and L3) being non-inclusive. L1D
and L1I caches are 32KiB large and 8-way associative, the L2 cache has a size of
1MiB and is 4-way associative, and all three caches are exclusive to a particular
core. The L3, on the other hand, is a shared cache and has a size of 1.375MiB
per core on our reference systems, resulting in a total of 11MiB (Xeon Bronze)
and 16.5MiB (Xeon Silver) L3 cache shared betweeen the cores of a processor.

On AMD’s 2nd-generation Zen architecture (Zen+) the L1I caches are 64KiB
and the L1D are 32KiB per core and each core also has its own 256KiB L2
cache. Unlike on Skylake, the L1 caches are full inclusive with respect to the
L2 caches. A special design of Zen+ is the so-called CCX consisting of a clus-
ter of 4 cores, which each shares an 8MiB L3 cache. Two CCXs are located on
one die and our reference platform (2990WX) features a total of 4 dies in its
package. The dies are interconnected with a high-speed interconnect named
Infinity Fabric. On the 2990WX, two memory controllers are attached to two of
the dies, resulting in 4 NUMA domains, in which two of the domains do not
have direct memory access and need to route accesses through another core.

5.2 Matrix Test Suite

The structure of the generated matrices depends on the particular grid, the
finite difference order and the boundary condition. To identify the interplay
between these parameters and our developed algorithms, we construct two
matrix test suites that cover a wide range of combinations of these parameters.
We give an overview of these matrices we used for our tests in Tables 1 and 2.
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Test Suite 1 (TS 1)

PDE ∂u
∂t = α

(
∂2u
∂x2

1
+ · · ·+ ∂2u

∂x2
n

)
= α∇2u

FD Orders 2, 4, 6, 8
Boundary Condition Homogenous Dirichlet

TS 1a TS 1b
Matrix IDs 0 - 27 28 - 55

Dimensionality 2D 3D
Grid dimensions 224, 316, 447, 632, 775, 894, 1000 37, 46, 58, 74, 84, 93, 100

Table 1: Overview of matrices in Test Suite 1

Test Suite 2 (TS 2)
Matrix IDs 56-136

PDE U(x, t) = c∇U(x, t) , c = 1
FD Orders 2, 4, 6, 8

Boundary Condition Periodic, U(x, 0) = sin(2π(x− x0))
Dimensionality 1D 2D 3D

Grid Dimensions 2n , n ∈ [5, 10] 2n × 2n−1 , n ∈ [6, 10] 2n × 2n−1 × 2n−2 , n ∈ [7, 10]
Table 2: Overview of matrices in Test Suite 2

5.3 Benchmark Description and Configuration

We investigate the behavior of our two methods for matrices of TS 1a and 1b.
As FBM is not suited for problems with periodic boundary conditions (see
Sec. 3.2), we test only BBM for matrices of TS 2.

We run tests using SSE4.2, AVX, AVX2 and AVX512 on the Intel systems
and an AVX2 implementation on the AMD system, using block sizes of B =
2i, i ∈ {6, · · · , 12}. We further use an affinity of the single-threaded program
to the core closest to the memory controller on each architecture. Our find-
ings show that the differences in the vector instruction sets and the underlying
micro architecture realizing them have a great impact on the performance of
SpMvs with the matrices of our test suites: using AVX512 consistently leads to
lower performance. Further, the performance of SSE, AVX and AVX2 instruc-
tions seem to be highly dependent on the specific matrix, making it difficult
to get to a general conclusion on which vector extensions to use. Hence, if not
further specified, we use the results of the best performing vector extension for
our implementation and the reference method, respectively. We compare the
results of our approaches to an implementation of the naive approach, which
performs the matrix-vector multiplications sequentially (see Sec. 3). For this,
we use the best performing block size evaluated per matrix and exponent. For
all occurrences of SpMv calculations, we use the routine mkl sparse d mv() of
the Intel Math Kernel Library (MKL) [5].

We also use the same library on the AMD processor, although it often is re-
ported to not reach high performance on non-Intel CPU types. Several factors
led to this decision: by setting the environment variable MKL DEBUG CPU TYPE=5,
the library can be forced to choose the AVX2 code path instead of the default
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SSE path to which it normally falls back to on non-Intel CPUs. Comparing the
performance of the AVX2 code path to other libraries on our AMD architecture,
e.g., OSKI [10], we found that for our cases the optimal library is dependent
on the specific problem type and size. Moreover, this paper focuses on explor-
ing the general potential of cache-aware algorithms for this type of calculation,
rather than achieving overall maximum performance in using SpMvs directly,
motivated further by the results in the following section. We therefore stick
with MKL on all architectures.

5.4 Results

In this section we present our results of FBM and BBM introduced in Sec. 3. We
measure the time needed for the calculation of Mpv, p ∈ {2, 3, 4, 5} and com-
pare it to the reference implementation without cache blocking. Our results
show improved performance of our blocking methods on all three architec-
tures for a large number of matrices in the test suites.

For the matrices of TS 1a and 1b, both FBM and BBM produce quite similar
performance behavior; consequently, these results are shown interchangeably
in Fig. 3. For most of the matrices in TS 1a, our approaches outperform the ref-
erence method. We achieve time savings of up to 25% / 15% on the Intel Xeon
Bronze/Silver, respectively, and up to 50% on the AMD Ryzen Threadripper.
The matrices in TS 1b lead to slightly less improvements on the Intel proces-
sors, but still produced time savings of up to ±15% and ±5%, respectively. On
the AMD, we measure greater performance improvements of 40% to 50% for
many of these matrices.

Regarding the periodic boundary problems of TS 2, BBM still achieves the
same kind of performance improvements as for some matrices resulting from
2D FD grids (Figs. 4).

5.5 Evaluation Compared to the Analytical Model

On all three hardware platforms, we measure the in-L2/L3-cache and in-
memory performance for SpMvs with matrices similar to those in the test
suites and then use these values in our analytical model as described in Sec. 4.
The upper bounds for the time savings of our blocking approach derived from
the model are 20%/12% on Intel Xeon Silver, 30%/15% on Intel Xeon Bronze
and 55%/50% on the AMD Ryzen Threadripper, which closely resembles our
real measured performance.

The performance of our approaches depends on size and structure of the
matrix as discussed in Sec. 4. Using cache blocking, these algorithms naturally
can only provide significant performance improvements if the matrix itself
does not fit into cache. Moreover, the matrix properties Bw and Rnz have to be
small enough such that the space-time tiles do fit into cache. This explains the
poor performance of the methods for very small matrices (e.g., matrices 0, 1
and 2) and matrices with large Bw and Rnz (e.g., matrices 53, 54 and 55), while
they perform well for large sparse matrices.
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Fig. 3: Performance improvement of BBM/FBM on Xeon Silver (top), Xeon Bronze
(mid) and AMD Ryzen Threadripper (bottom) for matrices in TS 1a and 1b (Dirichlet
boundary condition): time reduction through blocking using best performing ISA for
both, BBM/FBM and the reference method. The number of floating-point operations is
2× p× number of non-zeros.
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Fig. 4: Performance improvement of BBM on Intel Xeon Bronze (top) and AMD Ryzen
Threadripper (bottom) for TS 2 (periodic boundary condition): time savings through
blocking using AVX2 for both, the BBM and reference method.

6 Summary and Discussion

In this paper we investigated the potential of using cache aware algorithms
to increase the performance of matrix polynomials in the context of higher-
order time integration of linear autonomous PDEs. We introduced two al-
gorithms: the Forward Blocking Method (FBM) and the Backward Blocking
Method (BBM), both using a cache blocking technique to allow data reuse
during the calculation of Mpv.

Our evaluation on three different architectures showed both methods profit
from larger and faster caches. Further, our approaches showed improved per-
formance for a large number of matrices of our test suites. These are matrices
not fitting into cache, while the generated space-time tiles do. We showed
that the ratio of in-cache and in-memory SpMv is a good indicator for upper
bounds of the performance improvements of our method to be expected on a
specific architecture. This is also the deciding factor, why better results can be
observed especially on AMD by blocking for the L3 cache.
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Our experiments showed that BBM is the more flexible approach. While
FBM is (by design) not suited for periodic boundary problems, our results
showed BBM also achieved improved performance for such matrices.

Overall, our results showed promising time savings of both methods com-
pared to the standard approach of successive sparse matrix-vector multiplica-
tions. Therefore, our approach is a significant step towards further reducing
the wallclock time of higher-order time integrators for linear autonomous par-
tial differential equations.

Future work will extend these algorithms to exploit multi-core architec-
tures. Here, various new challenges will arise, such as possible data races,
which ultimately show up for such unstructured problems. However, also op-
portunities such as the exploitation of additional caches can lead to further
performance boosts. Additionally, future work will leverage the performance
boosts of the presented algorithms in the context of time integrating PDEs.
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