
Reconstruction of Low Energy Neutrino Events
with GPUs at IceCube

Maicon Hieronymus1, Bertil Schmidt1, and Sebastian Böser2

1 Institute of Computer Science, Johannes Gutenberg University, Mainz, Germany
2 Institute of Physics, Johannes Gutenberg University, Mainz, Germany

Abstract. IceCube is a cubic kilometer neutrino observatory located
at the South Pole that produces massive amounts of data by measuring
individual Cherenkov photons from neutrino interaction events in the
energy range from few GeV to several PeV. The actual reconstruction
of neutrino events in the GeV range is computationally challenging due
to the scarcity of data produced by single events. This can lead to run
times of several weeks for the state-of-the-art reconstruction method –
Pegleg – on CPUs for typical workloads of many ten-thousand events.
We propose a GPU version of Pegleg that probes the likelihood space
with several hypotheses in parallel while adapting the amount of parallel
sampled hypotheses dynamically in order to reduce computation time
significantly. Our results show an average speedup of 14 (with a max-
imum of over 200) for 5262 reconstructed neutrino events of different
flavors on a Titan V GPU compared to the multithreaded CPU version,
which enables quicker and broader analysis of IceCube events.

Keywords: Neutrino Oscillation · Neutrino Physics · MultiNest · Re-
construction · GPU.

1 Introduction

IceCube [10] is a cubic kilometer neutrino observatory located at the South Pole.
Neutrinos are elementary particles that exist in three different flavors νe, νµ and
ντ . Unlike any other particles, neutrinos can change their flavor during prop-
agation [8]. This phenomenon, the so-called neutrino oscillations, implies that
neutrino flavours have different masses. The question which of the three neutrino
flavors is the heaviest is being investigated under the term neutrino mass order-
ing. While most neutrino oscillation experiments are insensitive to this question,
IceCube can address it through precision measurements of the ubiquitous flux
of atmospheric neutrinos and the subtle effects the very dense matter in the
earth core has on their flavor oscillations. These matter effects only appear for
relatively low energy neutrinos below 15 GeV [1, 13]. With such low energies
only very few photon hits per event are detected in IceCube, heavily decreasing
the signal-to-noise ratio. Neutrino events are reconstructed by comparing the
observed hit-pattern to the expected hit pattern given an 8-dimensional event
hypothesis using a maximum likelihood method. The expected light intensity at

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


2 M. Hieronymus et al.

any position and time for a given hypothesis is obtained from spline approxima-
tions to tabulated simulation data (so called photosplines [17]) that exploit vari-
ous approximate symmetries of the light emission and propagation process. Even
without noise, the reconstruction of such an event from the signal in IceCube
is suffering from causality requirements on the photon arrival times, causing a
likelihood function that is neither globally convex nor continuous and has many
local minima. In particular gradient descent minimizers and algorithms only us-
ing local information struggle with this likelihood function, which increases the
complexity of the event reconstruction problem. Efficient and fast evaluation of
a suitable event hypothesis has thus become a limiting factor for the analysis
of IceCube data in order to study neutrino properties. The algorithm that is
currently used, Pegleg [16], partitions the exploration of the event likelihood
space into two: (i) The vertex of the neutrino interaction and the direction of
secondary particles emerging from this are optimized using MultiNest [7, 6] –
a multi modal nested sampling algorithm that handles degenerated likelihoods.
(ii) Track length of the emerging muon and its energy depositions caused by the
event are optimized separately. The reconstruction takes up to 10 mins per event
on a typical workstation. This in turn leads to run times of several weeks for a
typical analysis with tens of thousands of events [12, 11].

In this paper, we present a GPU version of Pegleg, which features a massively
parallel MultiNest probing algorithm (explained in Section 3) and massively par-
allel spline evaluation (explained in Section 4). Previous work on accelerating
neutrino oscillation data analyses on GPUs has mainly focused on direct neu-
trino propagation to calculate oscillation probabilities [3, 15] or direct photon
propagation for a given hypothesis. This work is the first to reconstruct neu-
trinos given measurements from an interaction event by evaluating splines on a
GPU.

2 Background

2.1 Millipede Likelihood

Consider the light yield at different positions and times of an interaction event
of a neutrino with ice. We search for the parameters of the underlying event,
i.e. the source vertex of the event, the energy and the direction of the neu-
trino (which mostly coincides with the direction of the secondary particles). If
a muon neutrino νµ interacts in a charged-current interaction, it will also cre-
ate a muon that can travel several ten meters through the ice, allowing for a)
differentiation of νµ from other flavors and b) significantly improved directional
resolution. The event hypothesis thus has eight free parameters (y, t, E, L) with
y = (y1, y2, y3, y4 = θ, y5 = φ)T the coordinates and direction of the neutrino
event, t the time it occurred, E the energy of the neutrino and L the track
length of an outgoing muon if present. The muon track is divided into many
segments of fixed length, hence the name Millipede. The light detected by the
i-th DOM (Digital Optical Modules) at the position xi is a superposition of the
light emitted at each segment (see Fig. 1) [18]. Eq. 1 describes the amount of

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


Reconstruction of Low Energy Neutrino Events with GPUs at IceCube 3

Fig. 1. A sketch of the millipede hypothesis with an incoming neutrino from the bottom
left. The red star marks the origin of the neutrino event, with the blue stars marking
track segments of an outgoing track. Each star is handled as a distinct photon source.
The colored dotted lines depict the photons that arrive at each DOM given a photon
source.

expected photons µl for a time bin k of a DOM i, where l is the index over all
time bins of all DOMs.

µl = ρl +

J∑
j=1

λ(xi,yj , ∆ti,k) · Ej . (1)

In Eq. 1, λ denotes how the expected light intensity at a position xi scales with
the energy loss Ej at a position yj . ∆ti,k is the time delay between the photon
production and detection at sensor i during time bin k. ρl is the noise which is
specific for every DOM, such that ρl = ρl′ for all l 6= l′ that belong to the same
DOM. λ is typically evaluated by using spline tables that describe a B-spline
surface over a rectangular d-dimensional knot grid [17]. Each DOM i can have
a different amount ni of valid time bins k that are used during reconstruction
such that we have a total of M DOMs, J energy losses and M ′ ≥M total time
bins. We can summarize Eq. 1 for all DOMs by Eq. 2.

µ1 − ρ1

µ2 − ρ2

...
µM ′ − ρM ′

 =


λ1,1 λ1,2 . . . λ1,J

λ2,1 λ2,2 . . . λ2,J

...
...

. . .
...

λM ′,1 λM ′,2 . . . λM ′,J

 ·

E1

E2

...
EJ

 . (2)

Given a loss pattern we calculate the likelihood of photon counts, such that the
predicted photon counts µ can be compared to the actual signal. The amount

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


4 M. Hieronymus et al.

of detected photons Nl at one time bin of one DOM follows a Poisson distribu-
tion [9] with mean µl, which expands for Nl photons to [4]:

Ll =
µl
Nl!

e−µl . (3)

The overall likelihood is the product of all contributions:

L =

M ′∏
l=1

Ll =

M ′∏
l=1

µl
Nl!

e−µl . (4)

In order to reduce numerical instabilities, it is common to use the logarithm and
work with the log-likelihood (llh) or the negative log-likelihood, which in turn
needs to be minimized. Using the continuous charge variable instead of discrete
photon counts [16] we can approximate the factorial with the gamma function,
resulting in Eq. 5.

lnL =

M ′∑
l=1

(Nl · lnµl − ln(Γ (Nl + 1))− µl). (5)

The evaluation of the non-algebraic function λ for each µl makes the calcula-
tion of an analytical maximum of Eq. 5 infeasible. Thus, a numerical maximum
likelihood approach is used instead.

2.2 Pegleg

Pegleg [16] employs a modified Millipede likelihood where a possible muon track
is divided into segments of fixed energy losses – a good approximation for low-
energy events with minimum ionizing muons. The event likelihood is minimized
by using three different layers: Layer 1 optimizes the six parameters (y, t) =
(y1, y2, y3, y4 = θ, y5 = φ, t) using the MultiNest algorithm. Layer 2 receives
fixed parameters (y, t) from Layer 1 and optimizes the track length L = N · l by
fitting the number of track segments N with a given spacing l. Finally Layer 3
internally optimizes the energy loss Ec = E1 of Eq. 2 of the first segment, i.e.
the initial cascade.

Note that the response matrix Λ (see Eq. 2) contains the intensity changes for
every DOM time bin and photon source, where every column corresponds to a
different photon source as shown in Fig. 2. The first column is the initial cascade
source and every other column is another track segment. We start with a single
column and calculate the energy loss Ec and likelihood in Layer 3. All energy
losses of the track segments are approximated by a minimum ionizing muon. We
add muon segments successively and evaluate the likelihood of the new response
matrix for every added segment until a predefined amount of subsequent columns
does not improve the likelihood [16]. Evaluating a column of Λ is computationally
expensive due to the spline evaluations via BSPLVB [2]. Thus, there is a negligible
overhead when calculating J segments iteratively compared to calculating J
segments at once.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


Reconstruction of Low Energy Neutrino Events with GPUs at IceCube 5


λ1,1 λ1,2 λ1,3 λ1,4

λ2,1 λ2,2 λ2,3 λ2,4

...
...

...
...

λM′,1 λM′,2 λM′,3 λM′,4

 ·

Ec

E2

E3

E4


Cascade Track 1 Track 2 Track 3

Fig. 2. The first column of the response matrix Λ corresponds to the initial cascade
of photons. All other columns correspond to a track segment of an outgoing muon.
Increasing the track length translates directly to adding columns and energy losses.

For Layer 3 the parameters (y, t, L) are fixed and the last remaining free
parameter is the energy loss Ec of the cascade segment. Using Eq. 2 we can
describe the amount of expected photons for every muon track by Eq. 6.

µeff = ρ+ Λ · (0, E2, E3, . . . , EJ)T. (6)

With every energy loss E2, E3, . . . , EJ fixed to minimum ionizing muon, we can
solve Eq. 6 directly for the effective noise term µeff = (µeff,1, µeff,2, . . . , µeff,M ′)T.
To calculate the energy loss Ec, we take the first column of Λ and apply the
Newton method [19], i.e. we calculate the gradient of the likelihood from Eq. 4
with respect to Ec and follow it’s second gradient until we find the maximum
likelihood with the iterative scheme shown in Eq. 7

dL̃(k+1)

dEc
=

dL̃(k)

dEc
− dL̃(k)

dEc

d2L̃(k)

d2Ec
with k = 1, 2, . . . , (7)

In Eq. 7 dL̃(1)

dEc
is an initial estimate, using either 20 GeV which leads to O(10)

steps until convergence or the result of a previous iteration which reduces the
number of steps to O(3) with a tolerance of 10−6 GeV. The gradient of L can
be calculated by Eq. 8.

dL
dEc

=

M ′∑
l=1

Nl
λl,1Ec + µeff,l

− λl,1. (8)

Considering that the second term λl,1 in Eq. 8 is constant and the other part is
strictly monotonically decreasing with Ec, there is at most one positive value of
Ec that maximizes the likelihood.

3 Parallelizing MultiNest on a GPU

In this section we explain our GPU parallelization of Multinest. The spline ap-
proximations of the photon expectation tables do not vary throughout the min-
imization process. Thus, we need to copy them only once to the GPU device.
The corresponding data transfer becomes negligible for the O(10000) calls for
the likelihood in MultiNest. DOMs that are too far away or didn’t see any charge

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


6 M. Hieronymus et al.

are excluded in each evaluation of the splines, i.e. their entries in the response
matrix Λ (Eq. 2) are 0, leaving us with O(100) evaluations for a column of the
response matrix for low energy events.

To achieve high GPU occupancy, we evaluate np points in parallel, where
each point represents an event hypothesis. Since we sample multiple points in
parallel, we do not expect a sampling efficiency of 1, but allow undersampling of
likelihood regions. This is reasonable as long as the sampling space includes the
global minimum or as long as the ellipsoids that enclose the current sampling
space are allowed to grow large enough.

3.1 Generating Initial Live Points

MultiNest starts with a number of live points nlive. We use the GPU to generate
np many points in parallel, where nlive ≤ np. We initialize the live points by
generating np many points and taking the best nlive ones as start. The points
are generated inside a hypercube in parallel on the CPU using OpenMP, whereby
the likelihood is calculated on the GPU. In case the seed for the parameter space
boundaries may not be good enough to generate points with different likelihoods
at first try, we generate a new set if the difference of the highest and lowest found
likelihood is lower than 10−4 which occurs when all points are far away from the
minimum.

3.2 Sampling the Complete Space

In this stage MultiNest samples points within the hard constraint Lpointsi >
Llowest, i.e. a new point has to have a higher likelihood than the lowest likelihood
of the live points. We switch to ellipsoidal sampling after a certain sampling
efficiency cannot be reached within five iterations in a row. For parallel sampling
we keep that condition but we do not necessarily calculate new likelihoods in
every iteration. Instead, we sample np many points in iteration i and iterate
over that list of points until one satisfies the hard constraint. The inverse of the
number of samples to find such a point is the sampling efficiency in iteration i.
Algorithm 1 shows the pseudocode where we sample np points in parallel and
process those as they were sampled individually. As long as we do not find a
new point inside the hard constraint Lpointsi > Llowest we do the following:
We check if any sampled points are left from previous iterations. If this is not
the case, we sample new points from the hypercube in parallel using OpenMP
and calculate the likelihoods using the GPU. Subsequently, we iterate over the
remaining points until one of them satisfies the hard constraint. If it is the last
remaining point, we note that we need more points and exit the loop. If no point
satisfies the hard constraint, we repeat the loop. Note, the approach presented in
[6] applies a similar sampling scheme on a compute cluster using MPI with the
difference that each process evaluates a single point. In contrast, our approach
takes advantage of the compute power of a GPU by dynamically changing the
number of parallel sampled points as outlined in the next subsection.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


Reconstruction of Low Energy Neutrino Events with GPUs at IceCube 7

Algorithm 1 Sampling the complete space

1 do
2 if not remaining points then
3 for j=1,np do in parallel . Using OpenMP
4 pointsj ← get random(thread id)

5 Lpoints ← get llh(points) . GPU

6 for i=remain idx, np do
7 if Lpointsi >lowlike then
8 accept pointsi
9 if i == np then

10 remaining points ← False
11 remain idx ← 1
12 else
13 remaining points ← True
14 remain idx getsi+ 1

15 exit
16 if i == np then
17 remaining points ← False
18 remain idx ← 1
19 if point accepted then exit

20 enddo

3.3 Sampling in Ellipsoids

Once the sampling efficiency consecutively falls below a threshold (e.g. five times
as default), we switch to ellipsoidal sampling. The clustering and the overall
algorithm remain the same, except for the sampling itself. We sample np,i points
at iteration i in parallel and check if any of them satisfies the hard constraint
and then continue with possibly remaining points for the next iteration. Now we
might have one or several distinct clusters, where each cluster is enclosed by one
or more (overlapping) ellipsoids [5]. Hence we use parallel sampling within an
isolated cluster. For each point to be sampled we randomly choose one ellipsoid
and generate a point within this ellipsoid in parallel with OpenMP. After np,i
points have been generated, the GPU evaluates their likelihood. We choose a
point as in Section 3.2 but if a point lies in k ellipsoids, we accept it with
probability 1/k as does the CPU version (see Algorithm 2). During ellipsoidal
sampling, the space to be explored varies and therefore we scale the number
of points np,i to sample in parallel by means of function δ(V ;α) ∈ [0, 1] that
depends on the volume fraction V of the isolated cluster we want to sample
from and a user-defined value α that controls the behaviour of that function. The
overhead of sampling many points in parallel is negligible, whereas it dominates
the calculation time if few points are sampled in parallel. Therefore we decrease
the number of points sampled in parallel faster when the ellipsoids cover only a
small fraction of the parameter space and decrease slower for bigger ellipsoids.
To find an appropriate number of points for a volume fraction V ∈ [0, 1] that
is covered by the ellipsoids, we use a simple linear interpolation scheme with 5

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


8 M. Hieronymus et al.

Algorithm 2 Sampling in ellipsoids

1 do
2 if not remaining points then
3 for j=1,np do in parallel . Using OpenMP
4 ellj ← get random ellipsoid(thread id)
5 pointsj ← get random(thread id, ellj)

6 Lpoints ← get llh(points) . GPU

7 for i=remain idx, np do
8 if Lpointsi >lowlike then
9 k ← 0

10 for j=1,nellipsoids do
11 if point in ell(pointsi, j then) k ← k + 1

12 accept pointsi with prob 1
k

13 if point accepted then
14 if i == np then
15 remaining points ← False
16 remain idx ← 1
17 else
18 remaining points ← True
19 remain idx ← i+ 1

20 exit
21 if i == np then
22 remaining points ← False
23 remain idx ← 1
24 if point accepted then exit

25 enddo

knots, which depend on the user-defined value α:

f1(V ;α) =
4

3
· α

1− α
· V

f2(V ;α) =
α

3
+

2

3
· α

1− α
· V

f3(V ;α) = α

(
1− 4

3

)
− 4

3α
+

8

3
+ V

(
4

3 · α
− 4

3

)

f4(V ;α) =
5

3
− 2

3α
+ V

(
2

3 · α
− 2

3

)
(9)

The function δ is shown in Fig. 3 for different values of α.

4 Evaluating the Response Matrix on a GPU

We want to evaluate several hypotheses in parallel on the GPU device, where the
evaluation itself is not different to the CPU version, which uses SuiteSparse to

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


Reconstruction of Low Energy Neutrino Events with GPUs at IceCube 9

Fig. 3. A visualization of the scaling function δ(V ;α) to scale the number of parallel
sampled points given a user-defined variable α and the volume fraction V that the
isolated cluster covers from which we want to sample from. By setting α the user can
define the intersection of the function with the diagonal.

handle the response matrix. However, different hypothesis might have its opti-
mum at various amounts of track segments and hence converge at different time
points. To balance the workload we thus overlap computation and communica-
tion using CUDA streams.

For np hypotheses and nstreams streams, we divide the work into chunks
of size nchunk = bnp/nstreamsc where the last stream contains np mod nstreams

many hypotheses. On the CPU, we create np many threads to process each
stream in parallel. Each hypothesis and therefore each kernel call is assigned to
one CUDA thread block. The CPU checks every k column and corresponding
likelihood evaluations if a stream has finished its work and sets it to inactive.
Hence each stream uses nchunk many CUDA thread blocks from which some
might end directly if their hypothesis has already converged.

The workflow for one stream is as follows: (i) Evaluate k columns of an hy-
pothesis. (ii) Calculate the cascade energy loss for each of the additional columns
and the likelihood. (iii) Synchronize the stream and copy an array of convergence
checks for all hypotheses to CPU. (iv) If all converged, set the stream to inac-
tive and start an asynchronous copy of the found likelihoods from device to host.
If at least one hypothesis has not converged, launch the kernels for evaluating
columns and calculating the energy loss and likelihoods for the next k columns.

Evaluating the response matrix of np hypotheses is done with a CUDA kernel
consisting of 512 threads per CUDA thread block, one CUDA thread block per
hypothesis, nstreams streams and 40944 Bytes of shared memory and 128 registers
per thread. Given the sparse nature of a low energy neutrino event, only few

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


10 M. Hieronymus et al.

DOMs, typically 10 to 60, and few time bins of a DOM, about 1 to 6 bins,
deliver a non-zero entry of the response matrix which is why we settle with 512
threads in favour of more register memory per thread. According to [14], at least
128 threads have to be invoked to fully utilize processing units on Volta. Adding
a response column involves a check for the number of valid bins in this DOM
and a check if the DOM is too far away for the given hypothesis. Once a thread
processes a DOM with valid bins, it calculates mean photon counts for the DOM
given the hypothesis and evaluates an amplitude splinetable. In case there are
more time bins, we also need the probability quantiles for every bin using time
splinetables. Each thread evaluates several splines for an entry with BSPLVB,
where we do not have a memory layout for our splines that ensures coalesced
memory access, marking the evaluation process as the most time consuming part
of the overall reconstruction. Layer 3 has least impact on run time. Here we start
a CUDA kernel consisting of 256 threads per CUDA thread block, one CUDA
thread block per hypothesis, nstreams streams and 96 registers per thread and
40872 Bytes of shared memory to calculate the gradient from Eq. 12 in parallel.
The size, here the amount of doubles, of shared memory is determined via

size = max
(nthreads

2 · w
+ nvalid bins,ms + nvalid bins

)
, (10)

where w = 32 is the typical size of a warp and the number of valid bins depends
on the seen photons by all DOMs. ms is the maximum amount of segments that
can be used. The number of valid bins is the number of all bins in worst case,
which can be a multiple of 5160 in case of the IceCube detector. Therefore the
number of threads is restricted to a small number. We calculate the gradient of

L with respect to the cascade energy Ec from Eq. 8. Since
∑M ′

l=1 λl,1 = λsum

remains constant, we only need to update the first part of the term. To calculate
the amount of seen photons for the cascade, we use

N1 =

M ′∑
l=1

µdata,l · λl,1, (11)

where µdata,l is the data vector of seen charges. The second derivative is

d2L
dE2

c

=

(
M ′∑
l=1

Nl · λl,1
(λl,1Ec + µeff,l)2

)
− λsum. (12)

We leave µeff,l in shared memory and every row is being processed by another
thread, such that all memory reads are done in a coalesced manner. The partial
results of each thread is distributed with sum and broadcast in every iteration
that utilizes warp shuffles and shared memory. Calculating the likelihood after
the Newton method converged is done by evaluating Eq. 5.

5 Performance Evaluation

We compare the run time and the accuracy of our GPU version with the CPU
version of Pegleg. We have measured run times depending on the energy of the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


Reconstruction of Low Energy Neutrino Events with GPUs at IceCube 11

neutrino events for both versions and discuss the achieved accuracy, where we
use a fixed seed for generating the initial live points. The used parameters for
the GPU version are shown in Table 1. The CPU version (compiled using GCC
V6.3.0) runs on an Intel Xeon E5-2680@2.70 GHz with 16 threads and with 8
GB DDR3 RAM. The GPU version (compiled using CUDA V9.2.148) runs on
an Intel Core i5-3450@3.10 GHz with 8 GB DDR3 RAM and a NVidia Titan
V with 12 GB HBM2 VRAM. We use the GRECO (GeV Reconstructed Events
with Containment for Oscillations) sample [16] which is a simulated set from
different Monte Carlo generators. It provides a low energy sample with high
statistics at Eν ∼ 5 GeV. These low energy events deposit photons in O(10)
DOMs, where most DOMs feature a single time bin due to the few number of
photons (∼ 1) that are detected per DOM. This leads to a low signal to noise
ratio and hence a poor resolution for the zenith angle, the neutrino energy and
track against cascade separation.

Table 1. Settings of the GPU MultiNest algorithm that delivers the best run time
while reconstructing all tested events with a low error.

Parameter Used Value

number of streams 4
minimum parallel evaluations per calls 96
parallel evaluations per calls 480
α 0.3
nnlive 30
efficiency 2.0
maximum modes 10
tolerance 1.1
importance sampling False

5.1 Speedup

Fig. 4 shows a heatmap of run times over energy ranges from 1.00 GeV to 980.71
GeV for 5262 events of different flavors reconstructed by the GPU and CPU. The
average speedup is 14.09 with a minimum at 1.29 and a maximum at 248.40 and
an interquantile range of 10.47. The median run times for the GPU and CPU
versions slightly increase with the energy of the event. Calculating Pearson’s
correlation coefficient, a value of 0.76 (0.64) for the GPU (CPU) run time and
the number of activated DOMs and 0.46 (0.37) for the run times and the number
of time bins for each DOM. The GPU version scales best with the track length
(correlation value of 0.07 compared to 0.33 of the CPU version) thanks to the
usage of CUDA streams. The speedup correlates with the number of DOMs with
a value of 0.39, with the number of time bins with a value of 0.06 and with the
track length with a value of 0.73. The wide variety of speedups can be explained
as follows:

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


12 M. Hieronymus et al.

Fig. 4. 5262 events reconstructed with the GPU and CPU. The energy of an event
correlates directly to the signal-to-noise ratio and the number of activated DOMs.

– Either one of the versions stops prematurely in a local minimum.

– The initial live points are favourable for one of the versions, such that it
converges after fewer iterations.

– The event can be reconstructed within few iterations for both versions, such
that the overhead of the GPU version of Pegleg dominates the runtime.

5.2 Accuracy

High speedups of the GPU version could mean a reconstruction prematurely
terminated and did not reach the same accuracy as the CPU version. In order to
investigate this in more detail, we compare between the calculated reconstruction
and the provided ground truth on an event-by-event basis in Table 2 for 5262
events. With the exception of the time parameter, there is no systematic differ-
ence visible, i.e. all differences are centered around or close to zero. Overall, the
CPU version yields slightly better reconstructions and has smaller interquartile
ranges than our GPU version with the chosen setup that yields speedups of up
to 250. This indicates for events that take especially long on CPU, that the GPU
version stops early. For those events the CPU version usually yields a hypothesis
with at least one parameter outside the interquantile range, rendering the result
barely useful for further processing. Additional parameter tuning of the GPU
version could enhance the accuracy especially for events in the tails which could
lead to speedups closer to the mean.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


Reconstruction of Low Energy Neutrino Events with GPUs at IceCube 13

Parameter CPU median GPU median CPU IQR GPU IQR

∆t 7.87 −14.57 50.40 54.35
∆y1 −0.31 0.29 14.81 16.33
∆y2 0.34 0.64 16.28 19.58
∆y3 −0.13 0.92 7.88 8.47
∆θ −0.03 −0.11 0.64 0.76
∆φ 0.01 −0.04 1.65 2.17

Table 2. A detailed comparison of the achieved accuracy by comparing the recon-
structed parameters to the truth. The CPU version is most of the time closer to the
truth and has shorter tails with the GPU version not far behind. The interquantile
range is similar, such that one can expect similar behavior of the GPU implementa-
tion.

6 Conclusion

The computational analysis of data produced by low energy neutrino events
is a major computational challenge for neutrino physicists at IceCube. In this
paper we have shown how GPUs can be efficiently used to accelerate this task by
an order-of-magnitude while achieving comparable accuracy. Our GPU version
scales best with larger track lengths and achieves further speedup with more
activated DOMs, whereas the number of time bins has no effect on the speedup.
An interesting direction for further acceleration could be achieved by replacing
the B-spline surface with neural networks that describe the light yield λ for a
given light source and detector position. This can potentially achieve an even
higher efficiency on GPUs compared to the B-spline approach.

Acknowledgements: Parts of this research were conducted using the supercom-
puter MOGON and auxiliary services offered by Johannes Gutenberg University
Mainz (hpc.uni-mainz.de) which is a member of the AHRP and the Gauss Al-
liance e.V. This paper is supported by the NVidia GPU Grant Program, which
donated a Titan V for this research.

References

1. Aartsen, M.G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J.A.,
Ahlers, M., Altmann, D., Auffenberg, J., Bai, X., et al.: Measurement of atmo-
spheric neutrino oscillations with icecube. Physical Review Letters 111(8) (Aug
2013). https://doi.org/10.1103/physrevlett.111.081801

2. de Boor, C.: On ”best” interpolation. Journal of Approximation Theory 16, 28–42
(1976). https://doi.org/10.1016/0021-9045(76)90093-9

3. Calland, R.G., Kaboth, A.C., Payne, D.: Accelerated event-by-event neutrino oscil-
lation reweighting with matter effects on a GPU. Journal of Instrumentation 9(04),
P04016–P04016 (apr 2014). https://doi.org/10.1088/1748-0221/9/04/p04016

4. Cook, R.J., Lawless, J.: The Statistical Analysis of Recurrent Events. Statistics for
Biology and Health, Springer-Verlag (2007). https://doi.org/10.1007/978-0-387-
69810-6

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9


14 M. Hieronymus et al.

5. Feroz, F., Hobson, M.P.: Multimodal nested sampling: an efficient and robust
alternative to markov chain monte carlo methods for astronomical data analy-
ses. Monthly Notices of the Royal Astronomical Society 384(2), 449–463 (2008).
https://doi.org/10.1111/j.1365-2966.2007.12353.x

6. Feroz, F., Hobson, M.P., Bridges, M.: MultiNest: an efficient and robust bayesian
inference tool for cosmology and particle physics. Monthly Notices of the Royal
Astronomical Society 398(4), 1601–1614 (2009). https://doi.org/10.1111/j.1365-
2966.2009.14548.x

7. Feroz, F., Hobson, M.P., Cameron, E., Pettitt, A.N.: Importance nested sam-
pling and the MultiNest algorithm. arXiv:1306.2144 [astro-ph, physics:physics,
stat] (2013-06-10). https://doi.org/10.21105/astro.1306.2144

8. Giunti, C., Kim, C.W.: Fundamentals of Neutrino
Physics and Astrophysics. Oxford University Press (2007).
https://doi.org/10.1093/acprof:oso/9780198508717.001.0001

9. IceCube Collaboration: Energy reconstruction methods in the IceCube neu-
trino telescope. Journal of Instrumentation 9(03), P03009P03009 (Mar 2014).
https://doi.org/10.1088/1748-0221/9/03/p03009

10. IceCube Collaboration: The IceCube neutrino observatory: instrumentation and
online systems. Journal of Instrumentation 12(3), P03012–P03012 (2017-03).
https://doi.org/10.1088/1748-0221/12/03/P03012

11. IceCube Collaboration: Computational techniques for the analysis of small signals
in high-statistics neutrino oscillation experiments (2018)

12. IceCube Collaboration: Measurement of atmospheric tau neutrino appear-
ance with icecube deepcore. Phys. Rev. D 99, 032007 (Feb 2019).
https://doi.org/10.1103/PhysRevD.99.032007

13. IceCube Collaboration: Development of an analysis to probe the neu-
trino mass ordering with atmospheric neutrinos using three years of Ice-
Cube DeepCore data. The European Physical Journal C 80(1), 9 (2020).
https://doi.org/10.1140/epjc/s10052-019-7555-0

14. Jia, Z., Maggioni, M., Staiger, B., Scarpazza, D.P.: Dissecting the
NVIDIA volta GPU architecture via microbenchmarking (2018),
http://arxiv.org/abs/1804.06826

15. Kallenborn, F., Hundt, C., Böser, S., Schmidt, B.: Massively paral-
lel computation of atmospheric neutrino oscillations on cuda-enabled
accelerators. Computer Physics Communications 234, 235–244 (2019).
https://doi.org/10.1016/j.cpc.2018.07.022

16. Leuermann, M.: Testing the Neutrino Mass Ordering with IceCube DeepCore. Phd
thesis, RWTH Aachen University (2018). https://doi.org/10.18154/RWTH-2018-
231554

17. van Santen, J., Whitehorn, N.: Photospline: smooth, semi-analytic interpolation
for photonics tables. Tech. rep., University of Wisconsin-Madison (2011-05-19)

18. Verpoest, S.: Search for particles with fractional charges in Ice-
Cube based on anomalous energy loss. Phd thesis, Ghent Univer-
sity (2018-06), https://lib.ugent.be/fulltxt/RUG01/002/479/620/RUG01-
002479620 2018 0001 AC.pdf

19. Ypma, T.: Historical development of the newtonraphson method. SIAM Review
37(4), 531–551 (1995-12-01). https://doi.org/10.1137/1037125

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_9

https://dx.doi.org/10.1007/978-3-030-50371-0_9

