A massively parallel algorithm for the three-dimensional
Navier-Stokes-Boussinesq simulations
of the atmospheric phenomena

Maciej Paszyniski', Leszek Siwik', Krzysztof Podsiadlo!, and Peter Minev?

! Department of Computer Science, AGH University of Science and Technology, Krakow, Poland
2 Applied Mathematics Institute, Mathematical and Statistical Sciences, University of Alberta,
Edmonton, Canada

Abstract. We present a massively parallel solver using the direction splitting technique and
stabilized time-integration schemes for the solution of the three-dimensional non-stationary
Navier-Stokes-Boussinesq equations. The model can be used for modeling atmospheric phe-
nomena. The time integration scheme utilized enables for efficient direction splitting algo-
rithm with finite difference solver. We show how to incorporate the terrain geometry into the
simulation and how to perform the domain decomposition. The computational cost is linear
O(N) over each sub-domain, and near to O(N/c) in parallel over 1024 processors, where N
is the number of unknowns and c is the number of cores. This is even if we run the parallel
simulator over complex terrain geometry. We analyze the parallel scalability experimentally
up to 1024 processors over a PROMETHEUS Linux cluster with multi-core processors. The
weak scalability of the code shows that increasing the number of sub-domains and processors
from 4 to 1024, where each processor processes the subdomain of 49x49x99 internal points
(50x50x100 box), results in the increase of the total computational time from 120s to 178s for
a single time step. Thus, we can perform a single time step with over 1,128,000,000 unknowns
within 3 minutes. The number of unknowns results from the fact that we have three compo-
nents of the velocity vector field, one component of the pressure, and one component of the
temperature scalar field over 256,000,000 mesh points. The computation of the one time step
takes 3 minutes on a Linux cluster. The direction splitting solver is not an iterative solver; it
solves the system accurately since it is equivalent to Gaussian elimination. Our code is inter-
faced with the mesh generator reading the NASA database and providing the Earth terrain
map. The goal of the project is to provide a reliable tool for parallel, fully three-dimensional
computations of the atmospheric phenomena.

Keywords: massive parallel computations - alternating direction solver - Navier-Stokes Boussi-
nesq - finite difference method

1 Introduction

Air pollution is receiving a lot of interest nowadays. It is visible, especially in the Krakéw area in
Poland (compare Figure 1), as this is one of the most polluted cities in Europe [1]. People living
there are more and more aware of the problem, which causes the raising of various movements
that are trying to improve air quality. Air pollution grows because of multiple factors, including
traffic, climate, heating in the winter, the city’s architecture, etc. The ability to model atmospheric
phenomena such as thermal inversion over the complicated terrain is crucial for reliable simulations

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

2 M. Paszynski, L. Siwik, K. Podsiadlo, P. Minev

Fig. 1. Pollution with fog and thermal inversion over the same area near Krakéw between October 2019
and January 2020 (photos by Maciej Paszyniski)

of air pollution. Thermal inversion occurs when a layer of warm air stays over a layer of cool air,
and the warm air holds down the cool air and it prevents pollutants from rising and scattering.

We present a massively parallel solver using the direction splitting technique and stabilized
time-integration schemes for the solution of the three-dimensional non-stationary Navier-Stokes-
Boussinesq equations.

The Navier-Stokes-Boussinesq system is widely applied for modeling the atmospheric phenomena
[2], oceanic flows [3] as well as the geodynamics simulations [4]. The model can be used for modeling
atmospheric phenomena, in particular, these resulting in a thermal inversion. It can be used as well
for modeling several other important atmospheric phenomena [5,6]. It may even be possible to
run the climate simulation of the entire Earth atmosphere using the approach presented here. The
time integration scheme utilized results in a Kronecker product structure of the matrices, and it
enables for efficient direction splitting algorithm with finite difference solver [7], since the matrix
is a Kronecker product of three three-diagonal matrices, resulting from discretizations along x, y,
and z axes. The direction splitting solver is not an iterative solver; it is equivalent to the Gaussian
elimination algorithm.

We show how to extend the alternating directions solver into non-regular geometries, including
the terrain data, still preserving the linear computational cost of the solver. We follow the idea
originally used in [8] for sequential computations of particle flow. In this paper, we focus on parallel
computations, and we describe how to compute the Schur complements in parallel with linear cost,
and how to aggregate them further and still have a tri-diagonal matrix that can be factorized
with a linear computational cost using the Thomas algorithm. We also show how to modify the
algorithm to work over the complicated non-regular terrain structure and still preserve the linear
computational cost.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

Massively parallel algorithms for 3D Navier-Stokes-Boussinesq 3

Thus, if well parallelized, the parallel factorization cost is near to O(N/¢) in every time step,
where N is the number of unknowns and c is the number of cores. We analyze the parallel scalability
of the code up to 1024 multi-core processors over a PROMETHEUS Linux cluster [9] from the
CYFRONET supercomputing center. Each subdomain is processed with 50x50x 100 finite difference
mesh. Our code is interfaced with the mesh generator [10] reading the NASA database [11] and
providing the Earth terrain map. The goal of the project is to provide a reliable tool for parallel fully
three-dimensional computations of the atmospheric phenomena resulting in the thermal inversion
and the pollution propagation.

In this paper, we focus on the description and scalability of the parallel solver algorithm, leaving
the model formulation and large massive parallel simulations of different atmospheric phenomena
for future work. This is a challenging task itself, requiring to acquire reliable data for the initial
state, forcing, and boundary conditions.

2 Navier-Stokes Boussinesq equations

The equations in the strong form are

%tl + (u-V)u+ Vp+ PrAu = gPrRaT + f in 2 x (0, T¥] (1)
Vou=0in 2 x (0,T}] (2)

u=0in 002 x (0,TY] (3)

o (()

(()

— + (u- V)T + AT =0 in £2 x (0,T%]

ot 4

T =01in 992 x (0,T¥%] 5
where w is the velocity vector field, p is the pressure, Pr = 0.7 is the Prandt number, g = (0,0, —1)
is the gravity force, Ra = 1000.0 is the Rayleigh number, T is the temperature scalar field.

We discretize using finite difference method in space and the time integration scheme resulting
in a Kronecker product structure of the matrices.

We use the second-order in time unconditionally stable time integration scheme for the tempera-
ture equation and for the Navier-Stokes equation, with the predictor-corrector scheme for pressure.
For example we can use the Douglass-Gunn scheme [13], performing an uniform partition of the
time interval I = [0,7] as

O=to<ti <...<tny1<ty=T,

and denoting 7 := t 41 — tn, Vn = 0,..., N — 1. In the Douglas-Gunn scheme, we integrate the
solution from time step t, to t,41 in three substeps as follows:

(1+ %L’l)unﬂ/?’ = rfrtt/2 4 (1- gﬁl — 7Ly — TL3)u",
(1 + g£2)un+2/3 — un+1/3 + %Egu”, (6)
(1+ %£3)un+l — 23 4 %l:?)un-

For the Navier-Stokes equations, £1 = Oyg, L2 = Oyy, and L3 = 0., and the forcing term represents
gPrRaT™+1/2 plus the convective flow and the pressure terms (u"+1/2 . Vun+1/2) + Vpn+1/2 treated

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

4 M. Paszynski, L. Siwik, K. Podsiadlo, P. Minev

explicitly as well. The pressure is computed with the predictor/corrector scheme. Namely, the
predictor step
PR =pt T g, (7
with p_% = po and qb_% = 0 computes the pressure to be used in the velocity computations, the
penalty steps
1
= Ot = ==V -,
T
£— 8yy§ =1, (8)
¢n+1/2 - azz¢n+1/2 = ga

and the corrector step updates the pressure field based on the velocity results and the penalty step

pt

-

1 1 1
=p" I 4 ¢"t: —xV.- (2(u"+1 + u")) : (9)

These steps are carefully designed to stabilize the equations as well as to ensure the Kronecker
product structure of matrix, resulting in the linear computational cost solver. The mathematical
proofs of the stability of the formulations, motivating such the predictor/corrector (penalty) steps,
can be found in [7,12] and the references there.

For the temperature equation, £1 = Oz, L2 = Oyy, and L3 = 0.,, and the forcing term
represents the advection term treated explicitly (u”*l/ 2. yrrtt/ 2).

For mathematical details on the problem formulation and its mathematical properties, we refer
to [12].

Each equation in our scheme contains only derivatives in one direction, so they are of the
following form

(14 adypy)u™*/? = RHS,
(14 ady,)u"+?? = RHS, (10)
(1+ad..)u"™ = RHS,
or the update of the pressure scalar field. Thus, when employing the finite difference method, we

either endup with the Kronecker product matrices with sub-matrices being three-diagonal, or the
point-wise updates of the pressure field

n+1/3 n+1/3 n+1/3
U N — 2w, + g, A
T @ik _ RHS,
n+2/3 n+2/3 | n+1/3
U N — 2y +u,
uz—i}f/:}_’_a iW(j—1)k Zl}; iW(j+1)k :RHSy (11)
n+1 n+1 n+1
1) — 2 tug
uz_};l +a ij(k—1) d‘;k j(k+1) _ RHSZ,

where o = 7/2 or @ = 1, depending on the equation, which is equivallent to

n+1/3 n+1/3 n+1/3
oty (dt — 2a)u;; "~ + o)y, = dt x RHS,
au?&fé‘?k + (dt — 2a)u?j:2/3 + cvu?(;i/l‘r;k =dt* RHS, (12)
auZJ(rkl_l) + (dt — 2a)u;’jzl + au?j?klﬂ) =dt* RHS,,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

Massively parallel algorithms for 3D Navier-Stokes-Boussinesq 5

These systems have a Kronecker product structure M = A% ® BY @ C* where the sub-matrices
are aligned along the three axis of the system of coordinates, one of these sub-matrices is three-
diagonal, and the other two sub-matrices are scalled identity matrices. From the parallel matrix
computations point of view, discussed in our paper, it is important that in every time step, we have
to factorize in parallel the system of linear equations having the Kronecker product structure.

3 Factorization of the system of equations possesing the Kronecker
product structure

The direction splitting algorithm for the Kronecker product matrices implements three steps, which
result is equivalent to the Gaussian elimination algorithm [14], since

(M) = (Ao B o) =(A) e BY) e e (13)

Each of the three systems is three-diagonal,

AT Afy - 0 2111 2121 *** Z1lm Y111 Y121 * - Ylim
51 A5y -+ 0 2211 2221 *** Z2lm Y211 Y221 *** Yoim
. = . .o . (14)
0 0 ---A% | |2k11 2621 - Zkim Y11 Y21 - Ykim

and we can solve it in a linear O(N) computational cost. First, we solve along = direction,
second, we solve along y direction, and third, we solve along z direction.

4 Introduction of the terrain

To obtain a reliable three-dimensional simulator of the atmospheric phenomena, we interconnect
several components. We interface our code with mesh generator that provides an excellent approx-
imation to the topography of the area [10], based on the NASA database [11]. The resulting mesh
generated for the Krakow area is presented in Figure 2.

In our system of linear equations, we have several tri-diagonal systems with multiple right-hand-
sides, factorized along x,y and z directions. Each unknown in the system represents one point of
the computational mesh. In the first system, the rows are ordered according to the coordinates of
points, sorted along x axis. In the second system, the rows are ordered according to the y coordinates
of points, and in the third system, according to z coordinates. When simulating the atmospheric
phenomena like the thermal inversion over the prescribed terrain with alternating directions solver
and finite difference method, we check if a given point is located in the computational domain. The
unknowns representing points that are located inside the terrain (outside the atmospheric domain)
are removed from the system of equations. This is done by identifying the indexes of the points along
x, Y, and z axes, in the three systems of coordinates. Then, we modify the systems of equations, so
the corresponding three rows in the three systems of equations are reset to 0, the diagonal is set to
1, and the corresponding rows and columns of the three right-hand-sides are set 0.

For example, if we want to remove point (r,s,t) from the system, we perform the following
modification in the first system.

The rows in the first system they follow the numbering of points along x axis. The number
of columns corresponds to the number of lines along = axis perpendicular to OY Z plane. Each

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

. Siwik, K. Podsiadlo, P. Minev

M. Paszynski,

6

F
<.

e »Av
Dk
AN
h»AZ

e '

aunmmmu
MK A DR
oA

e
: ﬁny
a.jmwh

S Awmﬂ‘]
;mv

r;rzrw"‘muﬂzv

».m.<

ﬁa “v 28 ,:zn.,

o
wunn:z:.

A
,.nxrwv.q ».s?
Pl }
grw r;.

._Er
oty ina

i

Fig. 2. The computational mesh generated based on the NASA database, representing the topography of

the Krakow area.

Processor 4

Subdomain 4

Processor 3

Subdomain 3

5 & & -

Subdomain 2

Processor 1

Subdomain 1

Repeat

three times

for
matrices

=

along x,y,z

dimensional matrices along x,y,z

Kronecker product matrix with three one-

Computing Schur complements

Collecting Schur complements on Processor 1

Forward elimination

Merging Schur complements

ithm

the parallel solver algor

10N on

Hlustrati

ig. 3.

F

ICCS Camera Ready Version 2020
To cite this paper please use the final published version

DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

Massively parallel algorithms for 3D Navier-Stokes-Boussinesq 7

column of the right-hand side correspond to yz coordinates of a point over OY Z plane. We select
the column corresponding to the “st” point. We factorize the system with this column separately,
by replacing the row in the matrix by the identity on the diagonal and zero on the right-hand side.
The other columns in the first system are factorized in a standard way.

[A7, AT, 0 7 [z1st] Yist
A%l AQQEQ T 0 22st Yast

0 0 A% =1.0 0 | |zrst| |yrst = 0.0 (15)
L 0 0 Ag]gk_ | kst | L Ykst

Analogous situation applies for the second system, this time with right-hand side columns rep-
resenting lines perpendicular to OX Z plane. We factorize the “rt” column in the second system
separately, by setting the row in the matrix as the identity on the diagonal, and using 0.0 on the
right-hand side. The other columns in the second system are factorized in the standard way.

_Bllyll B?l?jQ 0] _yrlt_ Zrilt]
B21 B22 0 Yrat Zr2t
. _ . 16
BY. =0 Yrst Zrst = 0.0 ()
L O O Blyl_ LYrit | Zrlt

Similarly, in the third system we factorize the “rs” column separately. The other columns in

the third system are factorized in a standard way.

_01271 CiQ _-rrsl bTSl
C35.C55 -+ 0 Trs2 brs2
. =1y, . (7)
izt =1.0 : Trst brst = 0.0
L 0 0 Ce Cﬁn,,m_ L Lrsm | brsm

Using this trick for all the points in the terrain, we can factorize the Kronecker product system
in a linear computational cost over the complex terrain geometry.

5 Parallel factorization with domain decomposition preserving the
linear computational cost

The computational domain is decomposed into several cube-shape sub-domains. We generate sys-
tems of linear equations over each sub-domain separately, and we enumerate the variables in a way

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

8 M. Paszynski, L. Siwik, K. Podsiadlo, P. Minev

that interface unknowns are located at the end of the matrices. We compute the Schur complement
of the interior variables with respect to the interface variables. We do it in parallel over each of
the subdomains. The important observation is that the Schur complement matrices will also be
three-diagonal matrices. This is because the subdomain matrix is three-diagonal, and the Schur
complement computation can be implemented as forward eliminations, performed in the three sub-
systems, each of them stopped after processing the interior nodes in the particular systems. Later,
we aggregate the Schur complements into one global matrix. We do it by global gather operation.
This matrix is also tri-diagonal and can be factorized in a linear cost. Later, we scatter the solution,
and we use the partial solutions from the global matrix to backward substitute each of the systems
in parallel. These operations are illustrated in Figure 3.

We perform this operation three times, for three submatrices of the Kronecker product matrix,
defined along three axes of the coordinate system. We provide algebraic details below.

Thus, assuming we have r — 1 rows to factorize in the first system (r — 1 rows in the interior, and
k —r 4+ 1 rows on the interface), we run the forward elimination over the first matrix, along the x
direction, and we stop it before processing the r-th row (denoted by red color). This partial forward
elimination stopped at the r-th row ensures that below that row we have the Schur complement of
the first » — 1 rows related with the interior points in the domain with respect to the next k —r +1
rows related with the interface points (the Schur complement is denoted by blue color). This Schur
complement matrix is indeed tri-diagonal:

Afy ATy 0
A A3y Agg 0
0 A(x'r—l)('r'—2) A?rjl)(r—l) A(mrjl)r 0
0 A‘T/(rfl) AT? A7:(7’+1) 0
0 A?‘kfl)(k72) Afkq)(kq) Ag(tkq)k
L Al k- A |
Partial forward eliminations
Afy Af, 0]
0 A5, A%, 0
0 0 Ag(c'rfl)(rfl) Az(i:fl)r . 0 (18)
0 0 NA'T'T ~A¥(r+1) i 0
0 0 Af(r-i—l) A(I7'+1)(T'+1) Af7-+1)(r+2) T
I 0 Ay Al

ICCS Camera Ready Version 2020

To cite this paper please use the final published version:

DOI! 10.1007/978-3-030-50371-0_8

https://dx.doi.org/10.1007/978-3-030-50371-0_8

Massively parallel algorithms for 3D Navier-Stokes-Boussinesq 9

2111 2121 0 RlUm Y111 Y121 0 Ylm
2211 2221 "t Z2Im Y211 Y221 - Y2m
Z(r—1)11 Z(r—1)21 " Zr—1)im | = |Yr—1)11 Yr—1)21 *** Ur—1)im (19)
Zri1l Zr21 e Zrlm Yri1 Yra1 e Yrim
Zk11 k21 Zklm | L Ur11 Uk21 - Ukim

We perform this operation on every sub-domain, and then we gather on processor one the tri-
diagonal Schur complements, we aggregate them into one matrix along = direction. The matrix is
still a tri-diagonal matrix, and we solve the matrix using linear O(N) computational cost Gaussian
elimination procedure with the Thomas algorithm.

Next, we scatter and substitute the partial solutions to sub-system over subdomains. We do
it by replacing the last » — k + 1 rows by the identity matrix and placing the solutions into the
right-hand side blocks. Namely, on the right-hand side we replace rows from 7+ 1 (denoted by blue
color) by the solution obtained in the global phase, to obtain:

Az, A7, 0 e
0 Az, A®23 0 e e

0 0 A* Az

(r—=1)(r—1) (r—1)r (20)
0 0 1 0---0
0 010
0 0 1
B
2211 2221 T 22lm "
. — g(r—l)ll g(r—l)Ql T g(r—l)lm
Z(r—1)11 #(r—1)21 Z(r—l)l'm 511 201 o Zrim (21)
Zril Zr21 Tt Zplme-
Z(k— Z(k— ot Zfe— ~ ~ ~
(Z DAL A(k=1)21 (k=1)im Z(k=1)11 #(k—1)21 """ Z(k—1)lm
k11 Zk21 T Zklm i S 2 X
Zk11 Zk21 T Rklm

and running backward substitutions over each subdomain in parallel.

Next, we plug the solutions to the right-hand side of the second system along y axis, and we
continue with the partial factorization. Now, we have s — 1 rows in the interior and [— s + 1 rows
on the interface.

We compute the Schur complements in the same way as for the fist sub-system, thus we skip the
algebraic details here. We perform this operation on every sub-domain, then we collect on processor
one and aggregate the Schur complements into the global matrix along y directions. The global

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

10 M. Paszynski, L. Siwik, K. Podsiadlo, P. Minev

matrix is three-diagonal, and we solve it with Thomas algorithm. Next, we scatter and substitute
the partial solutions to sub-system on each subdomain, and we solve by backward substitutions.

Finally, we plug the solution to the right-hand side of the third system along z axis, and we
continue with the partial factorization. Now, we have ¢ — 1 rows in the interior and m — ¢t 4+ 1 rows
on the interface. The partial eliminations follow the same lines as for the two other directions, thus,
we skip the algebraic details.

We repeat the computations for this third direction, computing the Schur complements on every
sub-domain, collecting them into one global system, which is still three-diagonal, and we can solve
it using the linear computational cost Thomas algorithm.

Next, we substitute the partial solution to sub-systems. We replace the last ¢ — m + 1 rows
by the identity matrix, and place the solutions into the right-hand side, and run the backward
substitutions over each subdomain in parallel.

6 Parallel scalability

Algorithm 1 OpenMP loop parallelization

1M$OMP PARALLEL DO DEFAULT(PRIVATE) PRIVATE(start)
SHARED (inverse,nrhs,nint) SHARED(s_mult,d)
DO i = 1,nrhs
start = (i-1)*(nint+2)+2; smult(i,1) = d(start)*inverse
END DO
11$OMP END PARALLEL DO

Algorithm 2 Loop unrolling to optimize cache usage

loop.end =nrhs/10; i=1; inverse =1.0/(mat%b(n)-cp(n-1)#*matia(n));
dmult =mat%a(n)
DO j = 1,lo0p_end
IF (i<nrhs-10) THEN
finish = i*(nint+2)-1
dp(n,i) = (d(finish) - dp(n-1,i) * dmult)*inverse
dp(n,i+1) = (d(finish+(nint+2)) - dp(n-1,i+1) * dmult)*inverse

dp(n,i+9)
i=i+10
END IF
END DO

(d(finish+(nint+2)*9) - dp(n-1,i+9) * dmult)*inverse

The solver is implemented in fortran95 with OpenMP (see Algorithm 1) and MPT libraries used
for parallelization. It does not use any other libraries, and it is a highly optimized code. We report

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

Massively parallel algorithms for 3D Navier-Stokes-Boussinesq 11

in Figure 4 and Table 1 the weak scalability for three different subdomain sizes, 50 x 50 x 100,
25 x 100 x 100, and 50 x 50 x 50. The weak scalability for the subdomains of 49 x 49 x 99 internal
points, shows that increasing the number of processors from 4 to 1024, simultaneously increasing the
number of subdomains from 4 to 1024, and the problem size from 50 x 50 x 400 to 800 x 800 x 400,
results in the increase of the total computational time from 120s to 178s for a single time step.
Thus, we can perform a single time step with over 1,128,000,000 unknowns (three components of
the velocity vector field, and one component of the pressure and the temperature scalar fields over
256,000,000 mesh points) within 3 minutes on a cluster. For the numerical verification of the code,
we refer to [15].

We report in Figue 5 and Table 2 the strong scalability for six different simulations, each one
with box size 50 x 50 x 50, with 8, 16, 32,64, 128 and 256 subdomains. Since the number of nodes is
multiplied by the number of unknowns (three components of the velocity vector field, one component
of the pressure scalar field and one component of the temperature scalar field), we obtained between
8 X 50 x 50 x 5 = 5 millions, to 256 x 50 x 50 x 5 = 160 millions of unknowns. We can read the
superlinear speedup for these plots, which is related to the optimization of cache usage on smaller
subdomains, with optimizing the memory transfers to the computational kernel and loop unrolling
technique, as illustrated in Algorithm 2.

Subdomains=Processors| Grid |50x50x50 Time [s]|25x100x100 Time [s]|50x50x100 Time [s]
1 (1,1,1) 19 58 -
2 (1,1,2) 23 63 -
4 (1,1,4) 23 66 120
8 (2,1,4) 63 85 157
16 (2,2,4) 36 97 152
32 (4,2,4) 42 100 150
64 (4,4,4) 49 115 157
128 (8,4,4) 63 129 160
256 (8,8,4) 72 144 166
512 (16,8,4) - - 170

1024 (16,16,4) - . 178

Table 1. Weak scallability up to 1024 processors (subdomains). Each grid box contains one subdomain
with 49 x 49 x 99, 24 x 99 x 99, or 49 x 49 x 49 internal points, respectively, one subdomain per processor.

In Figure 6, we show some snapshots from the preliminary simulations. In here, we focused on
the description and scalability of the parallel solver algorithm, leaving the model formulation and
large massive parallel simulations of different atmospheric phenomena for the future work. This
will be a challenging task itself, requiring to acquire reliable data for the initial state, forcing, and
boundary conditions.

7 Conclusions

We described a parallel algorithm for the factorization of Kronecker product matrices. These ma-
trices result from the finite-difference discretizations of the Navier-Stokes Boussinesq equations.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

12 M. Paszynski, L. Siwik, K. Podsiadlo, P. Minev

Time [s] 200

180
160

140 2

120

100
80
60

40
20

0
1.2 4

50x50x100

5x100x100

50x50x50

Processors
8 16 32 64 128256 512 1024

Fig. 4. Weak scallability for subdomains with with 49 x 49 x 99, 24 x 99 x 99, and 49 x 49 x 49 internal
points, one subdomain per processor, up to 1024 processors (subdomains). We increase the problem size
with the number of processors. For the ideal parallel code, the execution time remains constant.

Time [s]

160
150
140
130
120
110

Processors
ndofs*1,000,000

64

128

256

5
10
20
40
80

160

- | - [152] 42
- | - |- |150

49
157

63
160

Table 2. Strong scallability up to 256 processors.

10 millions

5 millions

\

20 millions 40 millions

A\

80 millions 160 millions

\

64

128 256
processors

Fig. 5. Strong scallability for meshes with different sizes, for different numbers of processors. For larger
meshes, it is only possible to run them on maximum number of processors.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

Massively parallel algorithms for 3D Navier-Stokes-Boussinesq 13

The algorithm allows for simulating over the non-regular terrain topography. We showed that the
Schur complements are tri-diagonal, and they can be computed, aggregated, and factorized in a
linear computational cost. We analyzed the weak scalability over the PROMETHEUS Linux clus-
ter from the CYFRONET supercomputing center. We assigned a subdomain with 50x50x100 finite
difference mesh to each processor, and we increased the number of processors from 4 to 1024. The
total execution time for a single time step increased from 120s to 178s for a single time step. Thus,
we could perform computations for a single time step with around 1,128,000,000 unknowns within
3 minutes on a Linux cluster. This corresponds to 5 scalar fields over 256,000,000 mesh points.
In future work, we plan to formulate the model parameters, initial state, forcing, and boundary
conditions to perform massive parallel simulations of different atmospheric phenomena.

Acknowledgments

This work and the visit of prof. Petar Minev in AGH University is supported by National Science
Centre, Poland grant no. 2017/26/M/ ST1/ 00281.

References

1. European Environment Agency: Air Quality in Europe - 2017 report. 13/2017.

2. S. Marras, J. Kelly, M. Moragues, A. Muller, M. Kopera, M. Vazquez, F. Giraldo, G. Houzeaux, O.
Jorba, A review of element-based Galerkin methods for numerical weather prediction: Finite elements,
spectral elements, and discontinuous Galerkin, Archives of Computational Methods in Engineering 23
(2016) 673-722.

3. Y. Song, T. Hou, Parametric vertical coordinate formulation for multiscale, Boussinesq, and nonBoussi-
nesq ocean modeling, Ocean Modelling 11 (2006) 298-332.

4. N. Schaeffer, D. Jault, H.-C. Nataf, A. Furnier, Turbulent geodynamo simulations: a leap towards
Earth’s core, Geophysical Journal International 211 (1) (2017) 1-29.

5. Zhihua Zhang, J. C. Moore, Mathematical and Physical Fundamentals of Climate Change, Chapter 11
- Atmospheric Dynamics, (2015) 347-405

6. R. Zeytounian, Asymptotic Modeling of Atmospheric Flows, Springer (1990)

7. J.-L. Guermond, P. D. Minev, High-order time stepping for the Navier-Stokes equations with minimal
computational complexity, Journal of Computational Applied Mathematics Vol. 310 (2017) 92-103.

8. J. Keating, P. Minev, A fast algorithm for direct simulation of particulate flows using conforming grids,
Journal of Computational Physics 255 (2013) 486-501.

9. M. Bubak, J. Kitowski, and K. Wiatr, E-Science on Distributed Computing infrastructure, Achieve-
ments of PL-Grid Plus Domain-specific Services and Tools, 8500 (2014)

10. https://github.com/Podsiadlo/terrain

11. T. G. Farr, and P. A. Rosen, and E. Caro, and R. Crippen, and R. Duren, and S., Hensley, and M.
Kobrick, and M. Paller, and E. Rodriguez, and I. Roth, and D. Seal, and S. Shaffer, and J. Shimada,
and J. Umland, and M. Werner, and M. Oskin, and D. Burbank, and D. Alsdorf, The Shuttle Radar
Topography Mission, Reviews of Geophysics Vol. 45(2) (2005)

12. J. L. Guermond, P. D. Minev, A new class of massively parallel direction splitting for the incompressible
Navier—Stokes equations, Computer Methods in Applied Mechanics and Engineering, 200 (2011) 2083-
2093.

13. J. Douglas, J. E. Gunn, A general formulation of alternating direction methods. Numerische Mathe-
matik, 6(1) (1964) 428-453.

14. G.H. Golub, C. Van Loan. Matrix Computations, 3rd Edition. John Hopkins University Press, Balti-
more, MD, (1996).

15. A. Takhirov, R. Frolov, P. Minev, Direction splitting scheme for Navier-Stokes-Boussinesq system in
spherical shell geometries, arXiv:1905.02300 (2019)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

14 M. Paszyniski, L. Siwik, K. Podsiadlo, P. Minev

Fig. 6. Snapshots from the simulation

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOT{ 10.1007/978-3-030-50371-0_8 |

https://dx.doi.org/10.1007/978-3-030-50371-0_8

