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Abstract. GPU computing kernels are relatively simple to write if achiev-
ing the best performance is not of the highest priority. However, it can
quickly become a much more daunting task when users try to tune and
optimize their kernels to obtain the highest performance. This is due to
GPUs' massive degree of parallelism, complex memory hierarchy, �ne
grain synchronization, and long memory access latency. Hence, users
must carry out the complex tasks of pro�ling, analyzing, and tuning
to reduce performance bottlenecks. Today's GPUs can generate hun-
dreds of performance events that comprehensively quantify the behavior
of a kernel. Instead of relying on experts' manual analysis, this paper
targets using machine learning methods to generalize GPU performance
counter data to determine the characteristics of a GPU kernel as they will
reveal possible reasons for low performance. We choose a set of problem-
independent counters as our inputs to design and compare three machine
learning methods to automatically classify the execution behavior of a
kernel. The experimental results on stencil computing kernels and sparse
matrix multiplications show the machine learning models' good accu-
racy, and demonstrate a feasible approach that is capable of classifying a
kernel's characterizations and suggesting changes to a skilled user, who
can subsequently improve kernel performance with less guessing.

Keywords: GPU computing · hardware performance counters · auto-
matic performance analysis · machine learning for HPC

1 Introduction

When writing high performance kernels for a modern GPU, several guidelines
must be followed. For instance, utilization of both host and GPU memory band-
width should be maximized. The idle time of parallel computing resources within
the GPU should be minimized. Finally, instruction and memory access latency
should be either hidden or minimized.

After successfully writing a kernel, most often a GPU programmer is faced
with optimizing the kernel's performance. GPU code, however, is notoriously
di�cult to optimize given the complexity of the underlying hardware. This begs
an interesting research question: �Can machine learning be used to aid in im-

proving GPU kernel performance?" We have seen that optimizing GPU kernels
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is su�ciently di�cult that only experts engage in the activity. For the average
researchers it is both tiresome and tedious. In this paper, we design and develop
a process that utilizes di�erent machine learning (ML) techniques to generate
insight into GPU performance tuning.

Our approach carefully creates ten classes of GPU kernels which have various
performance patterns. Great numbers of executions with the ten classes using
di�erent parameters are then used as a dataset to train three distinct machine
learning (ML) methods. The three methods include a deep neural network, a
random forest, and a naive Bayes classi�er. As for the particular machine learning
inference stage, we use three other new kernels that the ML models have never
seen so that the inference results can be compared and a good or poor ML model
can be identi�ed.

To the best of our knowledge, the main contributions of this paper are pre-
sented as follows.

1. A comprehensive machine learning software framework dedicated to evalu-
ating the characteristics of GPU kernels using GPU hardware counters.

2. A software toolkit implemented for generating large amounts of training data
for performance modeling.

3. Di�erent machine learning models tailored and optimized to classify GPU
kernels to help users tune ernel performance.

The rest of this paper is organized into the following sections. Section II
describes related work while section III discusses background and GPU perfor-
mance bottlenecks. Section IV describes our kernel classi�cation and optimiza-
tion process. Section V describes the three machine learning models and section
VI presents experimental results. Finally, section VII discusses our conclusions.

2 Related Work

The process of program optimization requires �rst identifying the type of op-
timization to be performed. We choose to optimize execution time, that is, we
strive to produce kernels that execute the fastest. However, optimization can
also be performed with respect to power consumption. For instance, Antz [2]
focused on optimizing matrix multiplication with respect to energy for GPUs.

A tool named BEAST (Bench-testing Environment for Automated Software
Tuning) [9] was designed to autotune dense matrix-matrix multiplication. Using
BEAST requires manually annotating a user's GPU program with the new lan-
guage (The BEAST project has since been renamed BONSAI [12]). BEAST uses
the following recipe for code optimization. First, a computational kernel is pa-
rameterized and implemented with a set of tunable parameters (e.g., tile sizes,
compiler options, hardware switches), which generally de�nes a search space.
Next, a number of pruning constraints are applied to trim the search space to a
manageable size [6, 9]. Finally, those kernel variants that have passed the prun-
ing process are compiled, run, benchmarked, and then the best performers are
identi�ed.
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Abe [1] studied the problem of modeling performance and power by using
multiple linear regression. They quanti�ed the impact of voltage and frequency
scaling on multiple GPU architectures. Their approach used power and perfor-
mance as the dependent variables while using the statistical data obtained from
performance counters as the source of the independent variables.

Lai [8] took a di�erent approach. An analytical tool called TEG (Timing
Estimation tool for GPU) was developed to estimate GPU performance. TEG
takes the disassembled CUDA kernel opcodes as input, along with an instruction
trace from a GPU simulator named Barra, and generates a predicted execution
time. TEG is a static analysis tool and does not need to execute the user code.

In re�ection, our work is di�erent from the previous work. Instead of pre-
dicting execution time or power consumption. we aim to classify GPU kernels
in order to aid users in improving performance. We achieve the goal by running
a target GPU kernel, extracting all performance counters, classifying the kernel
to a similar kernel class by ML models, and �nally suggesting an optimization
strategy.

3 Background on Performance Metrics

Given our use of performance counters and performance bounds, we start with
some de�nitions. Modern GPUs provide between 100 and 200 hardware counters
that can be collected during kernel execution. These counters are also referred
to as events. On the other hand, another term called metric is used to represent
a kernel's characteristic, which is calculated based upon one or multiple events.
In this paper, we use the metrics as the training data input to our ML methods.

In general, the �rst step in analyzing a GPU kernel is to determine if its per-
formance is bounded by memory bandwidth, computation, or instruction/mem-
ory latency.

A memory bound kernel reaches the physical limits of a GPU device in terms
of accesses to the global memory.

A compute bound kernel is one in which computation dominates the kernel
time, under the assumption that there is no issue feeding the kernel with memory
and there is good overlap of arithmetic and latency.

Finally, a latency bound kernel is one whose predominant stall reason is due to
memory access latency. The global memory bus is still not saturated. An example
is when a kernel has to wait to retrieve an operand due to an inadequate number
of kernel threads [7].

4 The Process of GPU Kernel Classi�cation and

Optimization Recommendation

Our paper focuses on three commonly used kernel optimization methods (as our
�rst step). The methods are: 1) e�cient use of memory bandwidth, 2) e�cient
use of compute resources, and 3) e�cient hiding and reduction of instruction
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and memory latency. Our future work plans to add more kernel optimization
methods.

The whole process consists of six steps.

1. Design ten di�erent kernel classes that exhibit di�erent properties of GPU
bottlenecks.

2. Generate the ten kernel classes' code samples.
3. Collect GPU performance counter data from running the generated code

samples.
4. Create three ML classi�ers.
5. Train the three ML classi�ers using the performance counters.
6. Apply the best ML classi�er to a new GPU kernel that needs to be optimized.

Steps 1 − 3 are mainly used for our training data generation. Each of the �rst
three steps is described in the subsections that follow. Steps 4−6 are for our ML
design and implementation and will be described in Section 5.

4.1 Designing Di�erent Kernel Classes for Classi�cation

Many problems in scienti�c computing can be described in terms of matrix
computations. Popular operations include matrix-matrix multiplication, matrix-
vector multiplication, and vector normalization, as well as stencil processing for
Laplace partial di�erential equations.

The ten mathematical functions listed in Table 1 represent a list of com-
monly used GPU kernels, present in both matrix computations and scienti�c
computing, that can be used to demonstrate memory bound, compute bound
and latency bound behaviors.

The �rst six kernels (i.e, K1�K6) are revised from the BLAS Level 1 SAXPY
functions but with increasing computation intensities. BLAS is a collection of
functions, grouped into three sets, called Level 1, Level 2, and Level 3. Level 1
functions perform scalar, vector and vector-vector operations and have a com-
putational complexity of O(n). BLAS Level 2 functions perform matrix-vector
operations of the form y ← αAx + βy, and have a computational complexity
of O(n2). Finally, BLAS Level 3 performs matrix-matrix operations of the form
C ← αAB + βC, and have a computational complexity of O(n3).

The seventh kernel K7 in Table 1, naive matrix multiplication, is an example
of a function that exhibits a memory access pattern more complex than the
previous six. This kernel does not use shared memory (SMEM) on the GPU.

The eighth kernel K8 in Table 1 is an example of a BLAS Level 3 function
that exhibits a memory access pattern more complex than the �rst six. This
kernel tiles the shared memory over the matrix for higher performance than
kernel K7.

Finally, kernels K9 and K10 in Table 1 are examples of a 5-point stencil.
They represent an O(∆x2) �nite di�erence approximation to the Laplacian of a
function. Kernel K9 does not use shared memory while kernel K10 does.

The last column in Table 1, Strategy Id, shows the recommended strategies
that can be used to improve kernel performance. Table 2 lists the strategy IDs
and their corresponding descriptions.
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Table 1: Functions of the ten classes of kernels that are used to train ML models
along with the number of training, validation (val) and test samples. SM repre-
sents the percentage of the streaming multiprocessors utilized, Mem represents
the percentage of memory bandwidth consumed, and Strategy Id describes the
technique recommended to apply to a kernel to improve performance. The SM

and Mem percentages were reported by NVidia's NSight Compute tool.

Kernel
Num

Kernel function Train Val Test SM Mem Strategy Id

K1 zi = xi + yi 609 63 672 43% 84% S4, S10, S20

K2 zi = K1xi + K2yi 600 72 672 49% 83% S4, S10, S20

K3 zi = sin(K1)xi + cos(K2)yi 604 68 672 50% 24% S4, S200

K4 zi = sin(K1)xi + cos(K2)yi , ILP2, 32 bit read 606 66 672 49% 22% S4, S200

K5 zi = sin(K1)xi + cos(K2)yi , ILP2, 64 bit read 612 60 672 52% 52% S1,S200

K6 zi = sin(K1)xi + cos(K2)yi , ILP4, 128 bit read 611 61 672 45% 60% S1,S200

K7 C = AB, not using shared memory (smem) 543 64 529 95% 22% S100

K8 C = AB + C, uses smem, a tiled GEMM 523 63 528 92% 6% S100

K9 Ut+1
c = 0.25 · {Ut

n +Ut
s +Ut

e +Ut
w} no smem 450 50 621 80% 43% S20

K10 Ut+1
c = 0.25 · {Ut

n +Ut
s +Ut

e +Ut
w} smem 667 81 548 60% 63% S1, S10, S30

Table 2: Suggested modi�cations that can be applied to a kernel to improve its
performance.
Strategy ID Strategy Description

S1 Low GPU occupancy � vary thread block size, vary shared memory usage

S4 Unroll loops and improve ILP

S10 Improve read and write memory coalescing

S20 Improve cache locality using registers or shared memory

S30 Reduce bank con�icts and cache into registers

S100 Save results to shared memory or global memory

S200 Use low occupancy and high ILP

Design Rationale behind Our Kernel Classes: The �rst kernel class K1 in
Table 1 adds two single precision �oating point vectors and stores the result. Note
that K1 can be used to generate many K1 sample instances that use di�erent
parameters such as thread block size, input vector size and number of thread
blocks. The simplicity of the function combined with the low arithmetic intensity
causes the kernel to be memory bound.

The second kernel class K2 extends K1 by multiplying the vectors by two
�oating point constants. Since K1 is memory bound, the multiplications in K2
come at virtually no cost because they can be hidden by the memory accesses.
K2 demonstrates how to get more work done per clock cycle [13]. If the PTX
(GPU virtual machine language) for kernel K2 is generated as in Listing 1.1, the
opportunity for overlapping instruction execution is lost. The GPU stalls when
an operand is not available and not on a memory read. This means that after
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line 1 issues, line 2 will stall because T1 is not available yet. The same pattern
exists for lines 3 and 4.

Listing 1.1: Non Overlapping PTX

1 . T1 = X[ i ]
2 . T2 = T1*K1
3 . T3 = Y[ i ]
4 . T4 = T3*K2
5 . T5 = T2+T4
6 . Z [ i ] = T5

Listing 1.2: Overlapping PTX

10 . T1 = X[ i ]
20 . T2 = Y[ i ]
30 . T3 = T1*K1
40 . T4 = T2*K2
50 . T5 = T3+T4
60 . Z [ i ] = T5

To increase instruction throughput, the PTX for K2 needs to look like Listing
1.2. Line 10 will issue the memory read. Since the GPU does not block on memory
reads, line 20 will then issue. Line 30 will stall because T1 is not likely to be
available after line 20 issues. However, when T1 is available, it is likely that T2
is also available, so lines 30 and 40 will issue in parallel and line 50 will stall. As
numeric expressions become more complex there can be many opportunities to
overlap memory reads with arithmetic instruction execution.

In the third kernel class K3, the multiplicative constants K1 and K2 are
replaced with the evaluation of two trigonometric functions. The result is that
K3 stresses the �oating point hardware with an arithmetic intensity level higher
than kernel K2.

The fourth kernel class K4 extends K3 by exposing loop unrolling to in-
struction level parallelism (ILP). The loop in this SAXPY-like K4 kernel is �rst
unrolled twice. The two vector accesses are then interleaved while performing
32-bit operand fetches. In fact, kernels K3-K6 each run faster than the previ-
ous kernel by exploiting di�erent degrees of ILP and utilizing more memory
bandwidth [13].

The �fth kernel class K5 is similar to K4 by way of loop unrolling. However,
kernel K5 issues half as many memory instructions as K4 because the hardware
is forced to generate 64-bit reads. This twice reduction in instruction count is
important to instruction-bound or latency-bound kernels.

Kernel class K6 is similar to K5. However, K6 issues half as many memory in-
structions as K5 because the hardware is forced to generate 128-bit reads. Like
kernel K5, this 2x reduction in instruction count is important to instruction-
bound or latency-bound kernels because it increases memory bandwidth utiliza-
tion.

Kernel K7, the naive matrix multiplication kernel, is needed because the
memory access pattern aids in di�erentiating the kernel from the SAXPY like
kernels. The addition of this kernel is consistent with the vector and matrix
processing needs of scienti�c applications.

Kernel K8, the blocked BLAS Level 3 generalized matrix multiplication ker-
nel, is added because it gave us an opportunity to use tile shared memory over
the kernel arguments. The resulting memory access pattern is similar to kernel
K7, but with much higher throughput, because the DRAM reads are cached in
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shared memory. Like kernel K7, this kernel is consistent with the matrix pro-
cessing needs of scienti�c applications.

The ninth kernel class K9, a 5-point stencil kernel, is a memory bound kernel
with no reuse of its operands. For that reason, we added the tenth kernel class
K10, which is a 5-point stencil that caches its operands in the GPU shared
memory.

Our initial work in this paper studied ten classes of kernels related to general
matrices, but new classes can be added to support other problem domains. For
example, if users were to explore social relationships between individuals, we
may add graph kernels to classify graph domain related kernels.

4.2 Generating the Training Dataset

All three of our machine learning models (to be described in Section V) require
(X̄i,Yi) pairs in order to be trained on. The vector X̄i consists of the GPU perfor-
mance counters from the ith run of some kernel sample. The value Yi is the label
associated with X̄i. Each label Yi is one of the ten kernel numbers: K1 to K10.

Our ML models will be trained by using the performance counters collected
from hundreds of runs of the ten kernel classes. To automate the process, we cre-
ated a toolkit called Datagen that performed two functions. First, when Datagen
was launched with the -q parameter, a function was called to write all of the
di�erent ways a given kernel could be launched, to a �le. Table 3 shows an
example of the output from that function. Lines 1 through 3 show kernel_one
being launched with di�erent block sizes (-bs) and grid sizes (-gs). The -numele
parameter describes the size of the vector that will be manipulated by the kernel.

The second function of Datagen is to automatically execute a kernel with
the parameters that were passed in as shown in Table 3. The GPU pro�ler
would launch Datagen, which in turn launched the target kernel, so that the
performance counters could be collected.

Table 3: Example output from the Datagen query functions.

kernel_one, params -bs 16,16 -gs 10,1 -numele 10000

kernel_one, params -bs 16,18 -gs 10,1 -numele 10000

kernel_one, params -bs 16,20 -gs 20,2 -numele 10000

4.3 Collecting Performance Counter Data

Figure 1 shows a �ow chart that describes our process to collect the perfor-
mance counter data. First, all of the kernels were queried so that their launch
parameters could be written to a �le called TestCon�g.txt. Then, a python script
opened TestCon�g.txt, parsed each line, and launched nvpro f with the Datagen
executable, the kernel name, and the kernel con�guration.
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Query kernels to write their con-
�gurations to TestCon�g.txt

ForEach T in TestCon�g.txt

Execute nvprof datagen.exe
T.krnlname T.params

Parse perf counters & write to output �le

Next T?

Train a classi�er

Use the classi�er to inference

yes

no

Fig. 1: Flow chart for performance counter data collection process.

5 Designing Machine Learning Models

In this section, we introduce the libraries we have used, and the three di�erent
ML methods we designed to perform GPU kernel classi�cations, which consist of
the neural network model, the random forest model, and the naive Bayes model.

5.1 Performance Counters Used

In our experiments, we use the TITAN V GPU, which exposes 158 performance
counters. Our Datagen can collect all of the counters, but the nature of our ten
kernel classes means that only 95 of them would be non-zero. For example, our
kernels operate on single precision �oating point numbers and do not call atomic
operations. As a result, the double precision �oating point counters and atomic
transaction counters are all zero.

There are three types of performance counters [7]. The �rst type is absolute
count. These counters, for example, will record the total number of memory read
and write requests. The second type is e�ciency or utilization counters. These
counters typically have have a value between 0 and 1. They summarize the behav-
ior of the hardware. For example, the sm_efficiency counter measures the over-
all activity of the SM's. Finally, there are throughput counters. These throughput
counters typically measure the throughput of the various memory subsystems
within the GPU. For example, the gld_requested_throughput counter mea-
sures the throughput of requested global loads in gigabytes per second.
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5.2 Software Libraries Used

We designed and implemented our neural network model with Python 3.6.8,
Keras, and Tensor�ow 1.10.0 [10]. Our random forest and naive Bayes model
are implemented with scikit-learn 0.20.2 [5]. Scikit-learn supports classi�cation,
regression, clustering, dimensionality reduction, and model evaluation.

5.3 Normalization of Performance Counters

In preparation for ML model training and accommodating various scales of met-
ric values, we normalized our collected performance counters to the interval
[−1,1] using the transform F(xi, j) = 2(xi, j − µj)/σj − 1, where xi, j is the ith mea-
surement of the j th feature, µj is the mean of the j th feature, and σj is the
standard deviation of the j th feature. The random forest and naive Bayes meth-
ods do not require this step. The neural network method, however, must have
all of the training data on the same scale.

5.4 The Neural Network Model Design

When doing experiments, we found that the e�ciency and throughput perfor-
mance counters produced better modeling results while the absolute counters
negatively impacted our models. In other words, summarization information
that e�ciency and throughput counters o�ered caused ML models to generalize
better. The absolute counters, on the other hand, mislead the ML classi�ers. We
therefore modi�ed our methods to train on the union of the non-zero counters
that only belong to the e�ciency or throughput type. The result is a neural
network with 48 inputs instead of 158.

The designed neural network is shown in Figure 2. The input layer, consisting
of 48 performance counters, was followed by a fully connected layer of 48 neurons
and a ReLU activation function, another fully connected layer of 24 neurons and
a ReLU, and �nally a softmax activation function that generates the probability
for each of the 10 classes [3, 11].

We elected to train against all of the performance counter data using 7-fold
cross validation for each of 7 di�erent optimizers: RMSprop, SGD (stochastic
gradient descent), Adagrad, Adadelta, Adam, Adamax and Nadam. Figure 3
shows that Nadam produced the best results.

5.5 The Random Forest Model Design

Our second machine learning model is a random forest classi�er [4], which is
based upon a collection, or ensemble, of binary decision trees where the proba-
bility of each class is the average of the probabilities across all trees.

Decision trees are easy to interpret and understand. They can be visualized,
and unlike neural networks, the training data does not need to be normalized
before being processed by the algorithm. The drawback to a decision tree is that
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class4

class5

class6

class10

Fig. 2: Our neural network consists of 48 inputs, 2 hidden layers fully connected,
and an output layer with 10 classes.

they can become overly complex which results in over�tting and poor generaliza-
tion. Random forests manage the over�tting by utilizing hundreds or thousands
of relatively simple decision trees. Our random forest consisted of 500 decision
trees, each with a maximum depth of 6.

5.6 The naive Bayes Model Design

The naive Bayes classi�er uses Bayes theorem to predict the class for a new test
instance x. The predicted class for x is given as

ŷ = arg max
ci

{P(ci |x)}, (1)

where a training dataset D consists of n points xi in a d-dimensional space,
and yi denote the class for each point, with yi ∈ {c1, c2, . . . , ck}. The posterior
probability P(ci |x) for each class ci is given by

P(ci |x) =
P(x|ci) · P(ci)

P(x)
(2)

where P(x|ci) is the likelihood, P(ci) is the prior probability of class ci, and P(x)
is the probability of observing x from any of the k classes, given as

P(x) =
k∑
j=1

P(x|cj) · P(cj). (3)

6 Experimental Results with the Three Di�erent ML

Methods

In this section we show the results from the experiments conducted using the
three models. Table 1 shows the distribution of training, validation and testing
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adadelta, lr=1.000
adam, lr=0.001
adamax, lr=0.002
nadam, lr=0.002

Fig. 3: 7-fold cross validation with 7 optimizers shows that the Nadam optimizer
produced the best results.

samples that were used. Each of the GPU kernels was compiled using Visual
Studio 2015 and CUDA 10.0 on a quadcore, Lenovo D30 ThinkStation running
Windows 7/64. NSight Visual Studio 6.0.0.18227 was the visual pro�ler used.
The GPU kernels were subsequently executed on an NVIDIA TITAN V GPU
with device driver version 417.01.

For each ML model we generate a confusion matrix. The confusion matrix
shows the ways in which a classi�cation model fails when it makes predictions.
The confusion matrices are shown in Figures 4, 5a and 5b. Based on the confusion
matrices, we observe that all three models are nearly identical with the exception
of kernels K3 and K4. In this case, the random forest has the largest normalized
score.

In Table 4 the F1-score for the random forest is mostly larger when compared
to the other classi�ers. The F1-score [11] measures a model's accuracy as function
of precision and recall.

6.1 Evaluation of the Inference Results

Inferencing is the process of using a ML model to generate a category for an input
the ML model has never seen. In our experiments, we use three test kernels that
our models have never seen.

The �rst test kernel is a 9-point stencil shown in equation 4. This equation
represents a O(∆x4) �nite di�erence approximation to the Laplacian.

Ut+1
center =

1

120
{4Ut

n + 4Ut
s + 4Ut

e + 4Ut
w +Ut

ne +Ut
nw +Ut

se +Ut
sw} (4)
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Fig. 4: Neural network confusion matrix.
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Fig. 5: Random forest and naive Bayes confusion matrices.

The second test kernel implements a sparse matrix vector multiplication
(SpMV). The matrix is in compressed sparse row format and has a sparsity
of 5% (i.e. 95% of the values are non-zero).

The third test kernel is a version of the 9-point stencil kernel that uses shared
memory to cache variables from DRAM. If the models are doing a good job of
generalizing, then we are postulating that the 9-point kernels will be mapped to
the 5-point kernel class used in training.

Table 5 shows the inference results for our three ML models given the three
test kernels. Each ML model was presented with ten di�erent instances of the
three kernels. All three models classi�ed the 9-point stencil as the 5-point stencil,
and the 9-point stencil with shared memory as the 5-point stencil with shared
memory.

For the third test kernel, SpMV, the behavior of the models starts to diverge.
The naive Bayes model classi�ed SpMV as the 5-point stencil with shared mem-
ory. The random forest model classi�ed SpMV as a matrix multiplication and a
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Table 4: F1 score results for the three classi�ers.
Kernel Name NN Random Forest naive Bayes

MatMult (K7) 1.00 0.96 1.00

MatMultFast (K8) 1.00 1.00 1.00

Stencil5 (K9) 1.00 1.00 1.00

Stencil5SM (K10) 1.00 1.00 1.00

Add (K1) 1.00 1.00 1.00

AddCB (K2) 1.00 1.00 1.00

AddCBTrig (K3) 0.87 0.97 0.64

AddCBTrigILP2 (K4) 0.86 0.99 0.76

AddCBTrigILP2_64 (K5) 1.00 1.00 1.00

AddCBTrigILP4_128 (K6) 1.00 1.00 1.00

5-point stencil with shared memory. Finally, the neural network model classi�ed
SpMV as being predominantly similar to kernel K3, zi = sin(K1)xi + cos(K2)yi.
The divergent results on SpMV may be caused by the specialty of the SpMV
kernel, which is not only similar to matrix multiplication (K7), but also similar
to K3 because SpMV consists of a collection of vector-vector dot products. Based
on the result of SpMV, we can say that the neural network and random forest
models perform better than the naive Bayes model.

7 Conclusion

In this paper, we have described a machine learning framework that was used
to classify unseen GPU kernels into one of ten classes using machine learning
and GPU hardware performance counters. With that classi�cation information,
users are able to pursue optimization strategies for their target kernel based on
the strategies for the learned kernels in Tables 1 and 2. What is critical in this
paper is that each of the ten kernel classes we selected for training purposes was
each slightly more complex than the previous kernel. This devised additional

Table 5: Inference results for our three ML models on three new test kernels.
The green values show where the ML algorithms agree in their classi�cation.
The red values show where they disagree.

ML Model Test Kernel MM (K7) K8 Sten5 (K9) Sten5SM (K10) K1 K2 AddCBTrig (K3) AddCBTrigILP2 (K4) K5 K6

naive Bayes Stencil9 10
Random Forest Stencil9 10
Neural Net Stencil9 10

naive Bayes Stencil9SM 10
Random Forest Stencil9SM 10
Neural Net Stencil9SM 10

naive Bayes SpMV05 10
Random Forest SpMV05 5 5
Neural Net SpMV05 8 2

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_7

https://dx.doi.org/10.1007/978-3-030-50371-0_7


complexity gradually utilized more and more of memory bandwidth and parallel
resources, while minimizing the instruction and memory access latencies. We
applied our framework to three new GPU kernels that are widely used in many
domains, i.e. the 9-point stencil (with and without shared memory) used to
discretize the Laplacian operator in di�erential equations, and the sparse matrix
vector multiplication procedure. We also found that the random forest model
and the neural network model performed similarly with respect to the confusion
matrix, the F1-score and the actual classi�cation results.

Finally, this framework can be extended by adding more kernel classes in
our training dataset to support classifying larger, more complex GPU kernels or
kernel sections. Our future work, on the other hand, will seek to improve and
extend the three ML models to support new types of GPU applications.
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