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Abstract. The aim of this paper is the numerical solution of a 2D
chemotaxis model by a parallel numerical scheme, implemented on a
GPU technology. The numerical discretization relies on the utilization
of a finite difference scheme for the spatial part and the explicit Euler
method for the time integration. Accuracy and stability properties are
provided. The effectiveness of the approach, as well as the coherence of
the results with respect to the modeled phenomenon, is provided through
numerical evidence, also giving a performance analysis of the serial and
the parallel implementations.
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1 Introduction

Chemotaxis [3, 10, 11, 23, 24, 14, 18] is a very common phenomenon consisting in
the movement of an organism in response to a chemical stimulus. For example, in
order to find food, bacteria swim toward highest concentration of food molecules
[10]. Another example is given by the motion of sperm towards the egg during
fertilization in which chemotaxis phenomena are very crucial. Sometimes, as we
can read in [23], the mechanism that allows chemotaxis phenomena in animals
can be subverted; this is the case, for example, of cancer metastasis.

The model we deal with was first derived in [24] in order to describe the
swimming of bacteria and oxygen transport near contact lines. Subsequently, this
model was modified and completed by Cao in [3], where he described the motion
of oxygen consumed by bacteria in a drop of water. The model is given by the
chemotaxis-Stokes system with a rotational flux term, in a three-dimensional
domain. The equations for an incompressible Navier-Stokes fluid are coupled
with two parabolic equations, in which the first one presents a chemotactic term.
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In [3], it is proved in the two dimensional case and three dimensional case the
existence and uniqueness of classical solution under a smallness assumption in
the initial concentration. We will recall these results and we will give a wider
description of this model in Section 2.

Numerical analysis plays a crucial role in computing solutions for PDEs sys-
tem especially when it is quite difficult to find the analytical one or it is proved
under some restrictive assumptions on the data of the problem. For this reason,
our goal is to develop a numerical scheme to compute the solution of this system
and to simulate it. In particular, we expect that there exists a time t after which
the bacteria start the chemotaxis and move toward the oxygen.

Numerical solutions often require high spatial resolution to capture the de-
tailed biophysical phenomena. As a consequence, long computational times are
often required when using a serial implementation of a numerical scheme. Par-
allel computation can strongly improve the time efficiency of some numerical
methods such as finite differences algorithms, which are relatively simple to im-
plement and apply to a generic PDEs system. The Graphics Processing Units
(GPUs) are perfect to use when we want to execute a numerical code based of
a very large number of grid points, since the larger is the number of the grid
points, the higher is the accuracy of the our numerical solution.

The codes used to study the performance of GPUs presented in this article
were programmed using CUDA. The CUDA platform (Compute Unified Device
Architecture), introduced by NVIDIA in 2007, was designed to support GPU ex-
ecution of programs and focuses on data parallelism [12]. With CUDA, graphics
cards can be programmed with a medium-level language, that can be seen as an
extension to C/C++, without requiring a great deal of hardware expertise. We
refer to [15, 19] for a comprehensive introduction to GPU-based parallel comput-
ing, including details about the CUDA programming model and the architecture
of current generation NVIDIA GPUs. As regards the application of GPU com-
puting to partial differential equations, see [1, 5, 13] and references therein.

It is important to point out that, although the model is set in the three
dimensional case we will perform our numerical analysis in a two dimensional
setting. This assumption is not too restrictive since this is the most treated case
in the literature concerning chemotaxis models (see [11] and reference therein).
Indeed in many models, because of the microscopic third dimension, without
loss of generality, cells are considered bidimensional.

This paper is organized as follows. In the next section, Section 2, a short
description of the biological phenomenon and the equations of the model are
presented. We present the numerical scheme in Section 3.

In the Section 4, the analysis of consistency and stability, for our numerical
scheme, is given. Moreover, a set of numerical experiments are presented in
Section 5. Section 6 contains the comparative performance evaluation between
GPUs and CPUs implementations of the numerical scheme. We summarize our
work and we give some possible future developments in the final section, Section
7.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50371-0_5

https://dx.doi.org/10.1007/978-3-030-50371-0_5


Parallel solution of a 2D Chemotaxis-Stokes system on GPUs 3

2 Mathematical model

In this paper, we study the motion of oxygen consumed by bacteria in a drop of
water. In particular, the model describes the motion of bacteria towards the zone
of highest concentration of oxygen. However, the bacteria don’t move directly
toward these areas by using some rotations that can be completely random. The
following initial boundary problem model, has been introduced in [3] and it is
given by the following set of equations,

nt = ∆n−∇ · (nS(x, n, c) · ∇c)− u · ∇n, (x, t) ∈ Ω × (0, T ),

ct = ∆c− nc− u · ∇c, (x, t) ∈ Ω × (0, T, ),

ut = ∆u+∇P + n∇φ, (x, t) ∈ Ω × (0, T ),

∇ · u = 0, (x, t) ∈ Ω × (0, T ),

∇c · ν = (∇n− S(x, n, c)∇c) · ν = 0, u = 0, (x, t) ∈ ∂Ω × (0, T ),

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω,

(1)

where Ω is a bounded smooth domain in 2D or 3D, ν is the outward normal vec-
tor to the boundary ∂Ω, n is the density of bacteria, c the oxygen’s concentration
and u and P are the velocity and the pressure of the fluid respectively.

The equation (1)1 describes the density of bacteria. As we can see, this equa-
tion is a parabolic equation that admits a diffusion term ∆n and a chemotactic
term ∇·(nS(x, n, c)·∇c), that says that bacteria always move towards the higher
oxygen’s areas.
The parabolic equation (1)2 describes the motion of oxygen concentration where
the diffusion term is represented by ∆c. The equations (1)3 and (1)4 are the
well known Navier-Stokes equations for an incompressible fluid, subjected to an
external force, without the convective term. This choice is due to the fact that,
as we know from [2], the uniqueness of the solution is not yet guaranteed for a
three dimensional Navier-Stokes problem. The tensor S is a rotational tensor,
that takes into account the rotations of bacteria, and the function φ is a potential
function that can be associated to an external force, therefore the term n∇φ
can be seen as buoyant or electric force of bacterial mass. As in [3], we assume
the following regularity conditions for the tensor S

sij ∈ C2
(
Ω × [0,∞)× [0,∞)

)
, (2)

|S(x, n, c)| := max
i,j∈{1,2}

{|sij(x, n, c)|} ≤ S0 for all (x, n, c) ∈ Ω × [0,∞)× [0,∞).

(3)
In order to describe the functional setting for the initial data we need to define

the following operators and spaces.

Definition 1 (Stokes operator). The Stokes operator on Lpσ(Ω) is defined as
Ap = −P∆ with domain D(Ap) = W 2,p(Ω) ∩ W 1,p

0 ∩ Lpσ(Ω), where P is the
so-called Helmholtz projection. Since Ap1 and Ap2 coincide on the intersection
of their domain for p1, p2 ∈ (1,∞), we will drop the index p.
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We will denote the first eigenvalue of A by λ′1, and by λ1 the first nonzero
eigenvalue of −∆ on Ω under Neumann boundary conditions.

The conditions on the initial data are as follows:
n0 ∈ L∞(Ω),

c0 ∈W 1,q(Ω), q > N,

u0 ∈ D(Aα), α ∈ (N4 , 1),

(4)

n0 ≥ 0, c0 ≥ 0 on Ω. (5)

As we will see, we also assume that ‖c0‖L∞(Ω) is small. This assumption will

be crucial for the existence of classical solution of (1), indeed the smallness of
the initial concentration of bacteria can force the stability of system. With these
assumptions, in [3], it has been proved that there exists a unique global classical
solution for problem (1), for completeness, we report here these results.

Theorem 1. Let Ω ⊂ R3 be a bounded domain with smooth boundary. Assume
that S fulfills (2) and (3). There is δ0 with the following property: if the initial
data fulfill (4) and (5), and

‖c0‖L∞(Ω) < δ0 (6)

then (1) admits a global classical solution (n,c,u,P ) which is bounded, and sat-
isfies

n ∈ C2,1(Ω × (0,∞)) ∩ C0
loc((Ω × [0,∞)),

c ∈ C2,1(Ω × (0,∞)) ∩ C0
loc((Ω × [0,∞)) ∩ L∞((0,∞);W 1,q(Ω)),

u ∈ C2,1(Ω × (0,∞)) ∩ L∞((0,∞);D(Aα)) ∩ C0
loc([0,∞);L2(Ω)),

P ∈ L1((0,∞);W 1,2(Ω)).

(7)

3 Numerical scheme

We now aim to discretize the differential problem (1), by a suitable finite dif-
ference numerical scheme, according to the classical method-of-lines [4, 6–9, 20,
21]. As we said in the introduction, a simplifying assumption, we consider our
problem in a two dimensional setting, therefore our spatial variable are given by
(x, y). Moreover, the functions sij defined in (2) are given by si,j = si,j(x, y, t),
i, j = 1, 2. We assume that the domain Ω has the form Ω = [0, 1] × [0, 1] and
is discretized as follows. Given an integer N , we denote by h = 1/(N + 1) the
spatial stepsize and accordingly define the grid

Ωh = {(xi, yj) ∈ Ω : xi = ih, i = 0, 1, . . . , N + 1; yj = jh, j = 0, 1, ..., N + 1} .

For a given function u = u(x, y, t), in correspondence of a generic point
(xi, yj) ∈ Ωh, we recall the following finite differences for the approximation of
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the first derivates

d

dx
u(xi, yj , t) =

u(xi+1, yj , t)− u(xi−1, yj , t)

2h
+O(h2),

d

dy
u(xi, yj , t) =

u(xi, yj+1, t)− u(xi, yj−1, t)

2h
+O(h2).

(8)

As regards the finite difference approximation of the second derivative, we adopt
the following usual central finite difference discretization

d2

dx2
u(xi, yj , t) =

u(xi+1, yj , t)− 2u(xi, yj , t) + u(xi−1, yj , t)

h2
+O(h2),

d2

dy2
u(xi, yj , t) =

u(xi, yj+1, t)− 2u(xi, yj , t) + u(xi, yj−1, t)

h2
+O(h2).

(9)

Therefore, we have

∆u(xi, yj , t) =
1

h2

(
u(xi+1, yj , t) + u(xi−1, yj , t) + u(xi, yj+1, t)

+u(xi, yj−1, t)− 4u(xi, yj , t)
)

+O(h2).

For any fixed time t, we denote by uij an approximate value of u(xi, yj , t),
with i, j = 0, 1, . . . , N + 1. Then, for i, j = 1, 2, . . . , N , we obtain

du

dx
(xi, yj , t) ≈

ui+1,j − ui−1,j
2h

,
du

dy
(xi, yj , t) ≈

ui,j+1 − ui,j−1
2h

,

d2u

dx2
(xi, yj , t) ≈

ui+1,j − 2ui,j + ui−1,j
h2

,
d2u

dy2
(xi, yj , t) ≈

ui,j+1 − 2ui,j + ui,j−1
h2

and the five-point stencil

∆u(xi, yi, t) ≈
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2

for the Laplacian operator.
For the time discretization, we divide the time interval [0, T ], in M equidis-

tant parts of length

ht =
T

M
.

Then, we define the grid

Iht = {tk ∈ [0, T ], tk = kht, k = 0, 1, . . . ,M} (10)

and denote by u
(k)
ij an approximation of u(xi, yj , tk), with (xi, yj) ∈ Ωh, tk ∈ Iht .

In view of a parallel implementation, we adopt as time discretization that
arises from the forward Euler scheme because it is directly parallelizable.The
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fully discretized problem reads as follows: as regards equation (1)2, we have

c
(k+1)
i,j = c

(k)
i,j + ht

(
c
(k)
i+1,j − 4c

(k)
i,j + c

(k)
i−1,j + c

(k)
i,j−1 + c

(k)
i,j+1

4h2

− n(k)i,j c
(k)
i,j − u1i,j

c
(k)
i+1,j − c

(k)
i−1,j

2h
− u2i,j

c
(k)
i,j+1 − c

(k)
i,j−1

2h

)
.

For equation (1)3, we have, for the component u1,

u
(k+1)
1i,j

= u
(k)
1i,j

+ ht

(
u
(k)
1i+1,j

− 4u
(k)
1i,j

+ u
(k)
1i−1,j

+ u
(k)
1i,j−1

+ u
(k)
1i,j+1

4h2

+
P

(k)
i+1,j − P

(k)
i−1,j

2h
+ n

(k)
i,j

φi+1,j − φi−1,j
2h

)
and a similar formula also holds true for the component u2. For equation (1)4,
we have

u
(k)
1i+1,j

− u(k)1i−1,j
+ u

(k)
2i,j+1

− u(k)2i,j−1

2h
= 0.

As regards equation (1)1, we have

n
(k+1)
i,j = n

(k)
i,j +

ht
4h2

[
α
(k)
i,j − 2h

(
u
(k)
1i,j

(n
(k)
i+1,j − n

(k)
i−1,j) + u

(k)
2i,j

(n
(k)
i,j+1 − n

(k)
i,j−1)

)]
,

for i, j = 1, ..., N , where α
(k)
ij contains all the terms of discretization independent

on u1
(k)
i,j and u2

(k)
i,j .

We finally provide a discretized equation for the pressure P . Indeed, by the
incompressibility assumption (1)4, the pressure P satisfies, at any time t, the
equation

∆P = −∇ · (n∇φ) = −∇n · ∇φ− n∆φ, (11)

whose discretization leads to

P
(k)
i+1,j + P

(k)
i−1,j + P

(k)
i,j+1 + P

(k)
i,j−1 − 4P

(k)
i,j

h2
=

−
(n

(k)
i+1,j − n

(k)
i−1,j)(φi+1,j − φi−1,j)− (n

(k)
i,j+1 − n

(k)
i,j−1)(φi,j+1 − φi,j−1)

4h2

− n(k)i,j

φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j
h2

,

(12)
for i, j = 1, 2, . . . , N .

We observe that, as regards the boundary conditions, we will always use the
Dirichlet ones in the remainder of the treatise, that will give the values of the
unknown functions when (i, j) = (0, 0) and (i, j) = (N + 1, N + 1).
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4 Consistency and stability analysis

In this section, we want to analyze the consistency and stability of the numerical
scheme introduced in the previous section. For the sake of clarity, here we distin-
guish the contribution to the global error arising from the spatial discretization
and that coming from the time discretization. We observe that our analysis is
given for problems having sufficient regularity in order to make the application
of Taylor series arguments possible.

4.1 Analysis of the spatial discretization

Let us consider the system (1) and analyze the contribution to the global error
associated to the space discretization of each equation. Let us first focus our
attention on Equation (1)2. Replacing the exact solution in the right-hand side
of the spatially discretized equation referred to the generic point (x, y) of the
grid gives

∆c(x, y)− n(x, y)c(x, y)− u(x, y) · ∇c(x, y) ≈

≈ c(x+ h, y) + c(x− h, y) + c(x, y + h) + c(x, y − h)− 4c(x, y)

h2

− n(x, y)c(x, y)− u1(x, y)
c(x+ h, y)− c(x− h, y)

2h

− u2(x, y)
c(x, y + h)− c(x, y − h)

2h
,

(13)

where we have denoted the spatial stepsize by h and neglected the time depen-
dence for the sake of brevity. Expanding c(x+ h, y), c(x− h, y), c(x, y + h) and
c(x, y− h) in Taylor series around (x, y) and collecting the resulting expressions
in (13), we obtain

cxx(x, y) + cyy(x, y)− n(x, y)c(x, y)− u1(x, y)cx(x, y)− u2(x, y)cy(x, y)

≈ cxx(x, y) + cyy(x, y) +
h2

12
(cxxxx(x, y) + cyyyy(x, y))− n(x, y)c(x, y)

− u1(x, y)

(
cx(x, y) +

h2

6
cxxx(x, y)

)
− u2(x, y)

(
cy(x, y) +

h2

6
cyyy(x, y)

)
.

This implies that the deviation between the exact operator and its spatial
discretization is {O}(h2). For all the other equations in (1), the analysis proceeds
exactly in the same way. Therefore, the residuum obtained by replacing the
exact solution in the spatially discretized problem is O(h2). Then, the spatial
discretization is consistent of order 2.
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4.2 Analysis of the time discretization

Let us rewrite the numerical scheme introduced in Section 3 in the following
form {

Ẇ (t) = f(W (t)),

W (0) = W0,
(14)

where W (k) ∈ R4N2

is the vector

W (k) =


c(k)

n(k)

u
(k)
1

u
(k)
2

 ,

with c(k) the vectorization of
(
c
(k)
ij

)N
i,j=1

similarly for the other entries of W (k).

By applying the explicit Euler method, we have, at time tk ∈ Iht defined in (10),

W (k) = W (k−1) + htf(W k−1). (15)

Clearly, the numerical scheme (15) is consistent with problem (1). We now aim
to provide the conditions ensuring its stability. To this purpose, it is useful to
rewrite the vector field f of (14) in the form

f(W (k)) = GW (k) + F (W (k)),

where the matrix G ∈ R4N2×4N2

contains the linear part of numerical scheme
and the nonlinear function F (W (k)) ∈ R4N2

is the vector containing the nonlin-
ear part of f . In this regard, following the lines drawn in [4, 6, 7, 22], the following
result holds.

Theorem 2. The numerical method (15) is stable if

‖I + htG‖∞ + htFmax ≤ 1,

being I the identity matrix and Fmax an upper bound for the norm of the gradient
of F .

Proof. Let us consider a perturbation of the solution at the step k, denoted by
W̃ (k), that is,

W̃ (k) = W (k) + E(k).

By applying the method (15) to W̃ (k), we obtain

W̃ (k+1) = W̃ (k) + ht[GW̃
(k) + F (W̃ (k))].
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Therefore, we have

E(k+1) = W (k+1) − W̃ (k+1)

= W (k) + ht[GW
(k) + F (W (k))]− W̃ (k) − ht[GW̃ (k) + F (W̃ (k))]

= E(k) + htGE
(k) + ht[F (W (k))− F (W̃ k)]

= (I + htG)E(k) + ht[F (W (k))− F (W k + E(k))].

(16)

By Taylor expansion arguments for F (W (k) + E(k)) around W (k), we have

E(k+1) ≤ (I + htG)E(k) + ht[∇F (W (k))E(k)].

Therefore, passing to the norm, we obtain∥∥∥E(k+1)
∥∥∥
∞
≤ ‖I + htG‖∞

∥∥∥E(k)
∥∥∥
∞

+ ht

∥∥∥∇F (W (k))
∥∥∥
∞

∥∥∥E(k)
∥∥∥
∞

≤ ‖I + htG‖∞
∥∥∥E(k)

∥∥∥
∞

+ htFmax

∥∥∥E(k)
∥∥∥
∞
.

Thus, we obtained the following stability inequality∥∥∥E(k+1)
∥∥∥
∞
≤ (‖I + htG‖∞ + htFmax)

∥∥∥E(k)
∥∥∥
∞
, (17)

leading to the thesis. ut

5 Simulations and numerical results

In this section, we present our main numerical results. In particular, we are
interested in observing the chemotactic effect of bacteria towards the oxygen.
For simplicity, we have considered the rotational tensor S to be the identity.
Moreover, we have supposed the vector field u to be null at the initial time and
we have considered the following initial data for the function n, c and P :

P (x, y) = n(x, y) =
100√
2πσ2

n

e
− 1

2σ2n
[(x−µn)2+(y−µn)2]

,

c(x, y) =
65√
2πσ2

c

e
− 1

2σ2c
[(x−µc)2+(y−µc)2]

,

where σ2
n = 0.01, σ2

c = 0.025, µn = 0.5 and µc = 0.8. Moreover, we have
assumed the potential to have the following form

φ(x, y) = − 70√
2πσ2

φ

e
− 1

2σ2
φ

[(x−µφx )
2+

(y−µφy )2

2 ]
,

where σ2
φ = 1, µφx = 1 and µφy = 0.5 In order to see the phenomenon and to

preserve the stability, we have to choose as time step ht = 2e−10. The numerical
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pattern for the density at various time is depicted in Figure 1. In our simulations,
at the initial time, the bacteria are concentrated on the centre of the domain.
Therefore, the action of potential is not well visible. At time t = 0.2ms, we can
see that the external force exerts a braking action on the bacteria in their motion
toward the oxygen.
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(a) Density at T=0 without ex-
ternal force
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(b) Density at T=0 with external
force
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(c) Density at T=0.2 ms without
external force
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(d) Density at T=0.2 ms with ex-
ternal force

Fig. 1. Time evolution of the density towards the oxygen with grid size 32 × 32, where
T = Tfin.

6 GPU programming and performance evaluation

In this section we describe the basic logical steps required to implement the
GPU codes and also the performance evaluation metrics used to evaluate the
computing performance. As discussed in Section 3, the numerical scheme relies
on a finite differences method for the spatial discretization and a time integration
based on the explicit Euler method. From the programming point of view this
mathematical approach leads to design a code where a for loop defines the clock
time steps and where spatial values at each time iteration are updated in parallel
by the GPU using the aforementioned numerical scheme.

This basic idea is to use the CPU (host) as owner of time clock activities
and the GPU (device) as the owner of the massive computing activities related
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to the spatial part of the equations. This will lead to a master-slave model in
which the CPU is the master because it controls the parallel executions on GPU
and, therefore, the GPU works only on the spatial part of our scheme. The
implemented code employs only the global memory in the CUDA kernel codes,
while further optimitazions related to the implentation of a code able to use the
shared memory and/or CUDA dynamic parallelism ([12],[16],[17]) able to reduce
the data transfer activity beetween host and device will be subjects of a further
work.

According to all the principles above described, the code follows the following
logical steps:

1. the CPU (host) loads the initial data from the its memory to the GPU
(device) memory, global memory;

2. the GPU provides the massive computing activities, that is, the GPU has
to execute the code related to spatial discretization because it is the paral-
lelizable part of the code since, at each time step, the values referring to the
current step only depends on those already computed in the previous one;

3. the GPU sends back to the CPU the partial/final results;

4. the CPU checks the time step and according to the maximum time value
defined by the user restarts/stops the parallel computing process.

We have executed the code on two distinct architectures. The first has the
following specifications: HP DL 585 G7 PROLIANT, with processors 4x AMD
6128 (8 core), with clock’s frequency 2.0 GHz and RAM 64 GB, in which a GTX
GeForce 1080, 8 GB RAM, is integrated. The GPU is the only difference between
this architecture and the second one. Here, there are 3x GeForce GTX 670, 4
GB RAM. The operative system used is Linux CentOS 6.5 . Finally, we have
compiled the serial code with gcc 4.4.7 and the CUDA-C code with CUDA 9.1
in the first machine and CUDA 8.0 in the second one. In order to evaluate the
performances of the two machines, it is very reasonable to compute the number
of floating point operations executed for unity of time on GPUs, as a function
of the dimension of the grid. Therefore, for any fixed size of the grid, if n is
number of floating point operations and T is the CUDA code execution time on
the GPUs, we have computed the number fop = n/T of floating point operations
for unity of time (seconds).

We remark that the following results have been obtained with a single pre-
cision and that we have estimated the number of operations using the NVIDIA
nvprof tool.

In Table 1, we can see the time comparison between the serial execution, the
GPU parallel on two different devices and the parallel openMP version executed
on a CPU based shared memory architecture with different number of threads,
We report the corresponding graphs in Figures 2. In particular, we can observe
a good scaling of the code moving from the CPU technology to the GPU with
the GTX GeForce 670 and GTX GeForce 1080 that provide reduced execution
times.
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Dim Serial kernel GTX Force 1080 GeForce GTX 670

32 1.156 13.920 ×10−6 18.677 ×10−3

64 4.134 25.120 ×10−6 21.203 ×10−3

128 18.629 124.06 ×10−6 50.671 ×10−3

256 75.635 741.16 ×10−6 183.45 ×10−3

Dim OpenMP(8) OpenMP(16) OpenMP(32)

32 0.524 0.686 6.918
64 1.708 1.637 1.487
128 11.565 9.455 9.547
256 46.065 38.635 41.320

Table 1. Computation times, in seconds, for the serial execution, parallel execution
on GTX GeForce 1080, parallel execution on GTX GeForce 670 and parallel execution
by using shared memory with openMP with different number of threads.
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Fig. 2. Time comparison between the three architectures in the semilogarithmic scale.
We can see the improvement that we have obtained by passing from CPU technology
to GTX GeForce 670, until to GTX GeForce 1080.
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7 Conclusions and future works

We have developed a parallel numerical scheme, implemented on GPU, to com-
pute the solution of a chemotaxis system. We have made use of the central
finite differences to approximate the spatial derivatives and of the explicit Eu-
ler method to discretize the time evolution of the system. We have analyzed
accuracy and stability issues, implemented the code on CPU and GPU archi-
tectures and compared their performances in terms of time execution getting
a good scalability for the GPU implentation. For the GPU kernel design, we
have used the global memory and implemented a master-slave model, in which
the CPU controls the time evolution while the GPU works exclusively on the
spatial derivatives of our scheme. Future issues of this research are oriented to
providing a 3D model with a deep optimized CUDA kernel code implemented
by using dynamic parallelism and shared memory.
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