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Abstract. Domain-specific languages (DSLs) play an increasingly im-
portant role in the generation of high performing software. They allow
the user to exploit domain knowledge for the generation of more efficient
code on target architectures. Here, we describe a new code generation
framework (NMODL) for an existing DSL in the NEURON framework, a
widely used software for massively parallel simulation of biophysically de-
tailed brain tissue models. Existing NMODL DSL transpilers lack either
essential features to generate optimized code or capability to parse the
diversity of existing models in the user community. Our NMODL frame-
work has been tested against a large number of previously published user
models and offers high-level domain-specific optimizations and symbolic
algebraic simplifications before target code generation. NMODL imple-
ments multiple SIMD and SPMD targets optimized for modern hard-
ware. When comparing NMODL-generated kernels with NEURON we
observe a speedup of up to 20×, resulting in overall speedups of two
different production simulations by ∼ 7×. When compared to SIMD op-
timized kernels that heavily relied on auto-vectorization by the compiler
still a speedup of up to ∼ 2× is observed.
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1 Introduction

The use of large scale simulation in modern neuroscience is becoming increasingly
important (e.g. [24,2]) and has been enabled by substantial performance progress
in neurosimulation engines over the last decade and a half (e.g. [27,14,19,28,20,17]).
While excellent scaling has been achieved on a variety of platforms with the con-
version to vectorized implementations, domain specific knowledge expressed in
the models is not yet optimally used. In other fields, the use of DSLs and subse-
quent code-to-code translation have been effective in generating efficient codes
and allowing easy adaptation to new architectures ([8,9,30,31]). This is becoming
more important as the architectural diversity of hardware is increasing.
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Motivated by these observations, we have revisited the widely adopted NEU-
RON simulator [11], which enables simulations of biophysically detailed neuron
models on computing platforms ranging from desktop to petascale supercom-
puters, and which has over 2,000 reported scientific studies using it. One of
the key features of the NEURON simulator is extendability via a domain spe-
cific language (DSL) layer called the NEURON Model Description Language
(NMODL) [12]. NMODL allows the neuroscientist to extend NEURON by in-
corporating a wide range of membrane and intracellular submodels. The domain
scientist can easily express these channel properties in terms of algebraic and
ordinary differential equations, kinetic schemes in NMODL without worrying
about lower level implementation details.

The rate limiting aspect for performance of NEURON simulations is the exe-
cution of channels and synapses written in the NMODL DSL. The code generated
from NMODL often accounts for more than 80% of overall execution time. There
are more than six thousand NMODL files that are shared by the NEURON user
community on the ModelDB platform [29]. As the type and number of mech-
anisms differ from model to model, hand-tuning of the generated code is not
feasible. The goal of our NMODL Framework is to provide a tool that can parse
all existing models, and generate optimized code from NMODL DSL code, which
is responsible for more than 80% of the total simulation time. Here we present
our effort in building a new NMODL source-to-source compiler that generates
C++, OpenMP, OpenACC, CUDA and ISPC targetting modern SIMD hard-
ware platforms. We also describe several techniques we employ in the NMODL
Framework, which we believe to be useful beyond the immediate scope of the
NEURON simulation framework.

2 Related Work

The reference implementation for the NMODL DSL specification is found in
nocmodl [13], a component in the NEURON simulator. Over the years nocmodl
underwent several iterations of development and gained support for a number of
newer language constructs. One of the major limitations of nocmodl is its lack
of flexibility. Instead of constructing an intermediate representation, such as an
Abstract Syntax Tree (AST), it performs many code generation steps on the fly,
while parsing the input. This leaves little room for performing global analysis,
optimizations, or targeting a different simulator altogether. The CoreNEURON
[19] library uses a modified version of nocmodl called mod2c [3], which dupli-
cates most of the legacy code and has some of the same limitations as nocmodl.
Pynmodl [23] is a Python based parsing and post-processing tool for NMODL.
The primary focus of pynmodl is to parse and translate NMODL DSL to other
computational neuroscience DSLs but does not support code generation for a
particular simulator. The modcc source-to-source compiler is being developed
as part of the Arbor simulator [1]. It is able to generate from NMODL DSL
code, optimized C++/CUDA to be used with the Arbor simulator. It only im-
plements a subset of the NMODL DSL specification and hence is only able to
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process a modest number of existing models available in ModelDB [29]. For a
more comprehensive review of current code-generator techniques in computa-
tional neuroscience we refer the reader to Blundell et al [4]. Other fields have
adopted DSLs and code generation techniques ([25,9,31]) but they are not yet
fully exploited in the context of NMODL. We conclude that current NMODL
tools either lack support for the full NMODL DSL specification, lack the neces-
sary flexibility to be used as a generic code generation framework, or are unable
to adequately take advantage of modern hardware architectures, and thus are
missing out on available performance from modern computing architectures.

3 NMODL DSL

In most simple terms, the NEURON simulator deals with two aspects of neu-
ronal tissue simulations: 1) the exchange of spiking events between neuronal cells
and 2) the numerical integration of a spatially discretized cable equation that
is equipped with additional terms describing transmembrane currents resulting
from ion channels and synapses. The NMODL DSL allows the modelers to effi-
ciently express these transmembrane mechanisms. As an example, many models
of neurons use a non-linear combination of the following basic ordinary differen-
tial equation to describe the kinetics of ion channels first developed by Hodking
and Huxley [15]:

dV

dt
=
[
I − ḡNam

3h(V − VNa) − ḡKn
4(V − VK) − gL(V − VL)

]
/C (1)

dn

dt
= αn(V )(1 − n) − βn(V )n (2)

dm

dt
= αm(V )(1 −m) − βm(V )m (3)

dh

dt
= αh(V )(1 − h) − βh(V )h (4)

where V is the membrane potential, I is the membrane current, gi is conduc-
tance per unit area for ith ion channel, n, m, and h are dimensionless quantities
between 0 and 1 associated with channel activation and inactivation, Vi is the
reversal potential of the ith ion channel, C is the membrane capacitance, and αi

and βi are rate constants for the ith ion channel, which depend on voltage but
not time.

Figure 1 shows a simplified NMODL DSL fragment of a specific ion channel,
a voltage-gated calcium ion channel, published in Traub et al[32]. Our example
highlights the most important language constructs and serves as an example for
the DSL-level optimizations presented in the following sections. The NMODL
language specification can be found in [12].

At DSL level a lot of information is expressed implicitly that can be used to
generate efficient code and expose more parallelism, e.g.:
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1  TITLE T-calcium channel (adapted)
2   
3  NEURON {
4    SUFFIX cat
5    USEION ca READ cai, cao WRITE ica
6    RANGE gcatbar, ica, gcat, hinf, minf, mtau, htau
7  }
8   
9  PARAMETER {
10   celsius = 25 (degC)
11   cao = 2 (mM)
12 }
13   
14 STATE { m h }
15   
16 ASSIGNED {
17   ica gcat hinf htau minf mtau
18 }
19  
20 BREAKPOINT {
21   SOLVE states METHOD cnexp
22   gcat = gcatbar*m*m*h
23   ica = gcat*ghk(v,cai,cao)
24 }

25 DERIVATIVE states {
26   rates(v)
27   m' = (minf - m)/mtau
28   h' = (hinf - h)/htau
29 }
30  
31 PROCEDURE rates(v(mV)) {
32   LOCAL a, b, qt
33   qt= q10^((celsius-25)/10)
34   a = 0.2*(-1.0*v+19.26)
35   b = 0.009*exp(-v/22.03)
36   minf = a/(a+b)
37   mtau = betmt(v)/(qt*a0m*(1+alpmt(v)))
38 }
39  
40 FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
41   LOCAL nu,f
42   f = KTF(celsius)/2
43   nu = v/f
44   VERBATIM
45   // C code implementation
46   ENDVERBATIM
47   ghk = -f*(1.0-(ci/co)*exp(nu))*efun(nu)
48 }

often compute  bound

elemental function

if inlined into DERIVATIVE 
minf, mtau could become 

local variables 

unsafe for optimisations, 
need C lexer/parser

often memory bound

constant variables with 
limited precision

modifiable variables

channel dependency

memory footprint

Fig. 1. NMODL example of a simplified model of a voltage-gated calcium channel
showing different NMODL constructs and summary of optimization information avail-
able at DSL level. Keywords are printed in uppercase and marked with boldface.

– USEION statement describes the dependency between channels and can be
used to build the runtime dependency graph to exploit micro-parallelism [22]

– PARAMETER block describes the variables that are constant, often can be
stored with limited precision.

– ASSIGNED statement describes modifiable variables and can be allocated in
fast memory.

– DERIVATIVE, KINETIC and SOLVE describes ODEs which can be analyzed and
solved analytically to improve the performance as well as accuracy.

– BREAKPOINT describes current and voltage relation. If this is ohmic then one
can use analytical expression instead of numerical derivatives to improve the
accuracy as well as performance.

– PROCEDURE can be inlined at DSL level to eliminate RANGE variables and
thereby significantly reduce memory access cost as well as memory footprint.

To use this information and perform such optimizations, often a global anal-
ysis of the NMODL DSL is required. For example, to perform inlining of a
PROCEDURE one needs to find all function calls and recursively inline the func-
tion bodies. As nocmodl lacks the intermediate AST representation, this type of
analysis is difficult to perform and such optimizations are not implemented. The
NMODL Framework is designed to exploit such information from DSL specifi-
cation and perform optimizations.

4 Design and Implementation

The implementation of the NMODL Framework can be broken down into four
main components: lexer/parser implementation, DSL level optimisation passes,
ODE solvers, and code generation passes. Figure 2 summarizes the overall ar-
chitecture of NMODL Framework. As in any compiler framework, lexing and
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Fig. 2. Architecture of the NMODL Code Generation Framework showing: A) Input
NMODL files are processed by different lexers & parsers generating the AST; B) Differ-
ent analysis and optimisation passes further transform the AST; and C) The optimised
AST is then converted to low level C++ code or other custom backends

parsing are the first two steps performed on an input NMODL. The lexer imple-
mentation is based on the popular flex package and bison is used as the parser
generator. The ODEs, units and inline C code need extra processing and hence
separate lexers and parsers are implemented. DSL level optimizations and code
generation are main aspects of this framework and discussed in detail in subse-
quent sections.

4.1 Optimization Passes

Modern compilers implement various passes for code analysis, code transforma-
tion, and optimized code generation. Optimizations such as constant folding,
inlining, and loop unrolling are commonly found in all of today’s major com-
pilers. For example, the LLVM compiler framework [21] features more than one
hundred compiler passes. In the context of the NMODL Framework, we focus on
a few optimization passes with very specific objectives. By taking advantage of
domain-specific and high-level information that is available in the DSL but later
lost in the lower level C++ or CUDA code, we are able to provide additional
significant improvements in code performance compared to native compiler op-
timizations. For example, all NMODL RANGE, ASSIGNED, and PARAMETER vari-
ables are translated to double type variables in C++. Once this transformation
is done, C/C++ compilers can no longer infer these high-level semantics from
these variables. Another example is RANGE to LOCAL transformations with the
help of PROCEDURE inlining discussed in section 3. All RANGE variables in the
NMODL DSL are converted to array variables and are dynamically allocated
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in C++. Once this transformation is done, the C/C++ compiler can only do
limited optimizations.

To facilitate the DSL level optimizations summarized in section 3, we have
implemented the following optimization passes.

Inlining : To facilitate optimizations such as RANGE to LOCAL conversion and
facilitate other code transformations, the Inlining pass performs code inlining of
PROCEDURE and FUNCTION blocks at their call sites.

Variable Usage Analysis : Different variable types such as RANGE, GLOBAL,
ASSIGNED can be analysed to check where and how often they are used. The
Variable Usage Analysis pass implements Definition-Use (DU) chains [18] to
perform data flow analysis.

Localiser : Once function inlining is performed, DU chains can be used to
decide which RANGE variables can be converted to LOCAL variables. The Localiser
pass is responsible for this optimization.

Constant Folding and Loop Unrolling : The KINETIC and DERIVATIVE

blocks can contain coupled ODEs in WHILE or FOR loop statements. In order to
analyse these ODEs with SymPy (see subsection 4.4), first we need to perform
constant folding to know the iteration space of the loop and then perform loop
unrolling to make all ODE statements explicit.

4.2 Code Generation

Once DSL and symbolic optimizations (see subsection 4.3) are performed on the
AST, the NMODL Framework is ready to proceed to the code generation step
(cf. Figure 2). The C++ code generator plays a special role, since it constitutes
the base code generator extended by all other implementations. This allows easy
implementation of a new target by overriding only necessary constructs of the
base code generator.

To better leverage specific hardware platform features such as SIMD, multi-
threading or SPMD we have further implemented code generation targets for
OpenMP, OpenACC, ISPC (Intel SPMD Program Compiler) and experimentally
CUDA. We chose ISPC for its performance portability and support for all major
vector extensions on x86 (SSE4.2, AVX2, AVX-512), ARM NEON and NVIDIA
GPUs (using NVPTX) giving us the ability to generate optimized SIMD code
for all major computing platforms.

We have, furthermore, extended the C++ target with an OpenMP and an
OpenACC backend. These two code generators emit code that is largely identical
to the C++ code generator but add appropriate pragma annotations to support
OpenMP shared-memory parallelism and OpenACC GPU acceleration. Finally,
our code-generation framework supports CUDA as a main backend to target
NVIDIA GPUs.

4.3 ODE Solvers

NMODL allows the user to specify the equations that define the system to be
simulated in a variety of ways.
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– The KINETIC block describes the system using a mass action kinetic scheme
of reaction equations.

– The DERIVATIVE block specifies a system of coupled ODEs (note that any
kinetic scheme can also be written as an equivalent system of ODEs.)

– Users can also specify systems of algebraic equations to be solved. The
LINEAR and NONLINEAR blocks respectively specify systems of linear and
nonlinear algebraic equations (applying a numerical integration scheme to a
system of ODEs typically also results in a system of algebraic equations to
solve.)

To reduce duplication of functionality for dealing with these related systems
of equations, we implemented a hierarchy of transformations as shown in Fig-
ure 3. First, any KINETIC blocks of mass action kinetic reaction statements are
translated to DERIVATIVE blocks of the equivalent ODE system. Linear and inde-
pendent ODEs are solved analytically. Otherwise a numerical integration scheme
such as implicit Euler is used which results in a system of algebraic equations
equivalent to a LINEAR or NONLINEAR block. If the system is linear and small,
it is solved analytically at compile time using symbolic Gaussian elimination.
Optionally, Common Subexpression Elimination (CSE) [7] can then be applied.

NMODL

KINETIC
Visitor LINEAR

NONLINEAR

DERIVATIVE

N ≤ 3

CSE

sparse

SymPy Based Code 
Generation

Run-Time

Linear System

Compile-Time

Analytical 
Solution

Newton Iteration

Abstract 
Syntax Tree

cnexp/euler

derivimplicit

Equations solved analytically 
at compile time

Analytic Jacobian for Newton 
solver constructed at compile time

   KINETIC kin {
     ~ x <-> y (a,b)
    ~ z << (c)
   }
   DERIVATIVE kin {
    x' = (-1*(a*x-b*y))
    y' = (1*(a*x-b*y))
    z' = (c)
  }
  NRN_STATE SOLVE kin METHOD sparse {
   LOCAL old_x,old_y,old_z,tmp0,tmp1,tmp2
   old_x = x
   old_y = y
   old_z = z
   tmp0 = a*dt
   tmp1 = b*dt
   tmp2 = 1/(tmp0+tmp1+1)
   x = tmp2*(old_x*tmp1+old_x+old_y*tmp1)
   y = tmp2*(old_x*tmp0+old_y*tmp0+old_y)
   z = c*dt+old_z
  }

KINETIC block as input

KINETIC visitor pass 
transforms it to 

DERIVATIVE 

Intermediate code in the AST 
using solution from SymPy 

Fig. 3. On the left, unified ODE solver workflow showing ODEs from different NMODL
constructs either produces compile–time analytical solutions, or run–time numerical
solutions. On the right, example of KINETIC block and its transformation to SymPy
based solution.

If the system is linear and large, it is solved (at run time) using a lower–upper
(LU) matrix decomposition. Non-linear systems of equations are solved at run
time by Newton iteration, which makes use of the analytic Jacobian calculated
at compile time. The numerical ODE solver uses the Eigen [10] numerical linear
algebra C++ template library, which produces highly optimized and vectorized
routines for solving systems of linear equations.
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4.4 SymPy

The analytic ODE solver uses SymPy [26], a Python library for symbolic cal-
culations, which can simplify, differentiate and integrate symbolic mathematical
expressions. Our analytical solver replaces the purely numerical approach used in
other NMODL source-to-source compilers and simulators. It allows us to perform
some computations analytically at compile time that were previously carried out
at run time at each time step using approximate numerical differentiation.

Linear and independent ODEs have been typically replaced by an analytic
solution that treats the coefficients as constant over a time step. NMODL in-
creases the runtime performance by performing algebraic simplification and op-
tionally replacing computationally expensive exponential calculations with the
(1, 1) Pade approximant [5], consistent with the overall second order correct
simulation accuracy (as suggested in [6], and implemented in [1]).

For coupled ODEs, the implicit Euler numerical integration scheme is applied
which results in a set of simultaneous algebraic equations. For a linear systems
of equations, the sparse solver method is used. For non-linear systems, the
derivimplicit solver method is used. The sparse solver chooses from two
solution methods, depending on the size of the system to be solved. For small
systems (three or less equations), the system is solved by symbolic Gaussian
elimination at compile time. The derivimplicit solver constructs a system of
non–linear equations, which we solve using Newton’s method at run time. We
therefore compute the system’s Jacobian, which is then used in the iterative
solver.

5 Benchmarks

To evaluate the achieved performance gains through NMODL, we have per-
formed comprehensive benchmarks on four major production hardware plat-
forms, Intel Skylake 6140, KNL 7230, AMD EPYC 7451 and NVidia Tesla V100.
In parallel NEURON and CoreNEURON simulations pure MPI execution expose
more parallelism and achieve better performance. To provide a realistic bench-
mark setup we follow the same approach and perform our measurements on fully
loaded nodes (process per physical core).

Benchmarks performed on the Intel platforms to compare auto-vectorization
performance with ISPC were compiled with Intel Parallel Studio 2018.1, while
all others were compiled with GCC. All benchmarks have been compiled with
-O2 -xHost and -O3 flags respectively. For GPU benchmarking we compared
performance of Intel Skylake node with a NVidia Tesla V100 GPU.

We selected two brain tissue models: a somatosensory cortex and a hippocam-
pus region model. The first, a somatosensory cortex microcircuit of a young rat
published by the Blue Brain Project has 55 layer-specific morphological types
and 207 morpho-electrical types [24]. The second, a model of a rat hippocam-
pus CA1 [16] is built as part of the European Human Brain Project and has 13
morphological types and 17 morpho-electrical types. These models are selected
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because they are computationally expensive and have a large number of mecha-
nisms which allow us to assess performance benefits for different types of kernels
used in production simulations. Based on these two models, we presented results
for two benchmarks:

0 5 10

cur-AMPANMDA
cur-GABAAB

cur-Ih
cur-cacum

cur-cacumb
cur-cal

cur-can
cur-cat
cur-kca
cur-nax

state-AMPANMDA
state-Ca_HVA2
state-Ca_LVAst
state-GABAAB

state-Ih
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state-cal

state-can
state-cat
state-kca
state-na3
state-nax

CPU

0 10 20

KNL

0 5 10

AMD

0 10 20 30

GPU

SpeedUp

Fig. 4. Speedups of the 14 representative channels from the neocortex and hippocam-
pus models, built using the NMODL Framework with ISPC target and run using
CoreNEURON over nocmodl and NEURON. The dotted lines denote average speedups
of the respective group of kernels

Channel Benchmark : This benchmark consists of 21 different morpho-
electrical types selected to include all the unique mechanisms from somatosen-
sory cortex and hippocampus CA1 models. A total of 4,608 cells are created
without network connectivity as this benchmark is designed to measure per-
formance of code generation for individual mechanisms. To benchmark GPU
performance we created 3,000 artificial cells using mechanisms from this bench-
mark.

Simulation Benchmark : This benchmark measures the overall perfor-
mance improvement for whole production simulations. We used 1,000 cells from
the somatosensory cortex and hippocampus models simulating one second of
biological time using a timestep of 0.025 ms.

6 Results

The code generated from the NMODL DSL accounts for more than 90% of the
simulation time in the above-described benchmarks. Each channel is written in
the NMODL language and typically contains two kernels: State Update (denoted
as state-channel-name) and Current Update (denoted as cur-channel-name). For
calculating the speedup, we compare the runtimes of these two kernels translated
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using NMODL Framework with ISPC backend and simulated using CoreNEU-
RON with the same mechanisms compiled with the NEURON simulator using
nocmodl. The results of these benchmarks are shown in Figure 4. We restrict
ourselves to most expensive kernels from 14 representative channels. The four
columns correspond to the four tested hardware platforms. The dotted lines show
the average speedups achieved for the channels. Generally we observe a higher
speedup on State Update kernels than on Current Update kernels. This is due to
the State Update kernels typically being computationally more expensive, with
a higher FLOP per byte ratio than Current Update kernels. This is particularly
true for GPUs, such as the NVidia V100 platform. The best speedups, partic-
ularly for State Update kernels, are achieved on Intel KNL. We attribute this
to the rather poor performance of the nocmodl code generation backend with
NEURON. Most of the Current Update kernels require atomic operations with
indirect memory access, which results in poor kernel performance on all plat-
forms in general, and GPUs in particular. Finally, we notice that especially in
the State Update kernel the availability of AVX-512 vector units, with optimal
memory layout offers a performance advantage as can be seen in the higher per-
formance of the two Intel platforms compared with the AMD EPYC platform,
which only offers AVX2.

When looking at top performers we notice that several of the high-level op-
timizations described in sections 4.1 and 4.3 are at least equally if not more
important than the generation of vectorized code. We observe that particularly
our optimizations on the ODE statements using SymPy based solvers (e.g. state-
cacum) can lead to speedups of more than 12× on AMD EPYC.

Table 1 shows the absolute time and speedup achieved for full simulations
of the hippocampus CA1 and somatosensory cortex models. We compare the
performance with three different configurations. The first configuration (NRN-
NOCMODL) uses the NEURON simulator with nocmodl as the code gener-
ation backend. The second configuration (CN-MOD2C ) uses the CoreNEU-
RON library with MOD2C as code generation backend. The third configuration
(CN-NMODL) uses the CoreNEURON library with the here-presented NMODL
Framework as a code generation backend. Total times are broken down into the
above-discussed State Update and Current Update kernels where the majority of
the time is spent in NMODL generated code. The rest of the time is shown as
Other.

The NMODL Framework shows up to 5.5× speedup on Skylake and up to 7×
speedup on the KNL platform. The hippocampus model shows a larger speedup
compared to the somatosensory cortex model because it uses cacum, cacumb
and kca mechanisms with the derivimplicit integration scheme. The Eigen based
solver implementation in NMODL offers therefore additional performance im-
provements. When compared with CN-MOD2C, CN-NMODL shows a up to 2×
performance improvement with NMODL generated State Update kernels and up
to 1.6× for whole simulation. Note that CN-MOD2C is heavily dependent on the
auto-vectorization capabilities of the compiler. For example, if the GCC compiler
is used instead of Intel, CN-NMODL becomes up to 3× and 6× faster compared
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Component

Intel Skylake Intel KNL

NRN CN NRN CN

NOCMODL MOD2C NMODL NOCMODL MOD2C NMODL

H
ip

p
o
ca

m
p
u
s State Update 1089.01 s 310.92 s 145.89 s 3260.16 s 525.89 s 251.81 s

Current Update 866.81 s 239.52 s 171.99 s 1129.13 s 143.2 s 223.93 s
Other 157.51 s 84.27 s 67.29 s 869.86 s 348.95 s 266.02 s
Total 2113.34 s 634.71 s 385.17 s 5259.14 s 1018.04 s 741.76 s
Speedup — 3.33× 5.49× — 5.17× 7.09×

C
o
rt

ex

State Update 173.29 s 32.81 s 20.39 s 556.63 s 45.09 s 41.73 s
Current Update 106.86 s 32.38 s 27.34 s 154.29 s 37.18 s 64.56 s
Other 43.51 s 29.69 s 24.11 s 222.9 s 108.43 s 102.66 s
Total 323.66 s 94.88 s 71.84 s 933.81 s 190.7 s 208.95 s
Speedup — 3.41× 4.51× — 4.9× 4.47×

Table 1. Absolute runtime in seconds and speedup of 1 second simulated biologi-
cal time of the hippocampus and somatosensory cortex simulations on Intel Skylake
and Intel KNL platform using NEURON with nocmodl (NRN-NOCMODL), CoreNEU-
RON with MOD2C (CN-MOD2C) and CoreNEURON with NMODL Framework (CN-
NMODL). The total time is further broken down into State and Current Update, which
represent the two main groups of computational kernels generated by the transpiler.
Speedup is shown with respect to NEURON.

to CN-MOD2C on Intel Skylake and Intel KNL platforms respectively. On the
Intel KNL platform the Current Update kernels are ∼ 2× slower in CN-NMODL
comapred to CN-MOD2C (highlighted in red). These kernels require indirect ad-
dressing due to use of USEION constructs. We have found possible performance
issues in ISPC when gather-scatter instructions and atomic reductions are used
in the kernels with the target avx512knl-i32x16. These issues will be addressed
in a future release of the NMODL Framework.

7 Discussion

Many scientific applications do not encode only a single mathematical problem,
but scientific users provide the governing equations that need to be integrated
by the solvers on a case by case basis. This can impact the success of auto-
vectorization and thus strategies are required to allow the user to express the
problem at hand on a high level, e.g. through DSLs, that help in producing
optimized code.

In this paper we presented a novel NMODL code generation framework for
the DSL of the widely used NEURON simulator. The DSL is translated into
an AST that lends itself to specific optimization passes before it is handed off
to different backends for generation of optimized code for the target platform.
We have implemented optimization passes that relate to straight-forward trans-
formation of the DSL code, but also more advanced optimization passes that
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intercept ODE statements for which an analytical solution can be used instead
of having to resort to numerical integration. This functionality is built on top of
the SymPy and Eigen libraries.

For code generation we have developed backends for C++ and OpenMP tar-
geting CPUs and ISPC to target a wide variety of CPU architectures providing
optimal SIMD performance and reducing the dependency on auto-vectorization
capabilities of the compiler. Furthermore, we have developed both a CUDA back-
end specifically with NVidia GPUs in mind as well as a more generic OpenACC
backend.

We have benchmarked kernels from production simulations of two different
large-scale brain tissue models on Intel SKL, Intel KNL and AMD EPYC plat-
forms. On those individual kernels, we saw performance improvements from 5×
to 20×. In order to test how those kernel improvements translate into speedup
of the entire simulations (which use the kernels in different ratios or not at
all), we benchmarked production simulations on Intel KNL and Intel SKL plat-
forms. Compared to the regular NEURON simulation environment, we observed
a speedup of 6−10×. Compared to an optimized version of the NEURON simu-
lator, CoreNEURON, which heavily relies on auto-vectorization of the compiler,
the work presented here nonetheless resulted in a speedup of up to 2×.

Beyond the performance gains, a central goal of our effort is the ability to
parse all previously published models. By using the grammar specification from
the original NEURON NMODL language, we were able to demonstrate com-
patibility with 6,370 channels from the public model repository ModelDB. We
furthermore took care to maintain the language semantics of the DSL in the
AST, providing great flexibility to use NMODL as a generic NMODL parsing
framework through its Python API and build new tools on top of it.

More generally, DSL have been used by many other fields to close the gap be-
tween the domain scientists and efficient code. Our study brings this capability
of automatic generation of efficient and multi-platform code to the computa-
tional neuroscience community. Importantly, it is doing so by making extensive
use of an abstract intermediate representations to perform optimizations using
domain knowledge before it is lost during the translation into a general purpose
programming language. This makes it possible to perform symbolic simplifica-
tions and equation solving on the level of the intermediate representation. We
believe that this approach is applicable to other fields and other DSLs and thus
trancends the problem at hand.
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