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Abstract. Heterogeneous architectures that use Graphics Processing
Units (GPUs) for general computations, in addition to multicore CPUs,
are increasingly common in high-performance computing. However many
of the existing methods for scheduling precedence-constrained tasks on
such platforms were intended for more diversely heterogeneous clusters,
such as the classic Heterogeneous Farliest Finish Time (HEFT) heuris-
tic. We propose a new static scheduling heuristic called Heterogeneous
Optimistic Finish Time (HOFT) which exploits the binary heterogeneity
of accelerated platforms. Through extensive experimentation with cus-
tom software for simulating task scheduling problems on user-defined
CPU-GPU platforms, we show that HOFT can obtain schedules at least
5% shorter than HEFT’s for medium-to-large numerical linear algebra
application task graphs and around 3% shorter on average for a large
collection of randomly-generated graphs.

Keywords: High-performance computing - GPU computing - Schedul-
ing - Precedence constraints - Directed acyclic graphs.

1 Introduction

Modern High-Performance Computing (HPC) machines typically comprise hun-
dreds or even thousands of networked nodes. These nodes are increasingly likely
to be heterogeneous, hosting one or more powerful accelerators—usually GPUs—
in addition to multicore CPUs. For example, Summit, which currently heads the
TopSO(ﬂ list of the world’s fastest supercomputers, comprises over 4000 nodes,
each with two 22-core IBM Power9 CPUs and six NVIDIA Tesla V100 GPUs.
Task-based parallel programming is a paradigm that aims to harness this
processor heterogeneity. Here a program is described as a collection of tasks—
logically discrete atomic units of work—with precedence constraints that define
the order in which they can be executed. This can be expressed in the form of a
graph, where each vertex represents a task and edges the precedence constraints
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between them. We are interested only in the case when such task graphs are
Directed Acyclic Graphs (DAGs)—directed and without any cycles.

The immediate question is, how do we find the optimal way to assign the
tasks to a set of heterogeneous processing resources while still respecting the
precedence constraints? In other words, what schedule should we follow? This
DAG scheduling problem is known to be NP-complete, even for homogeneous
processors [I7], so typically we must rely on heuristic algorithms that give us
reasonably good solutions in a reasonable time.

A fundamental distinction is made between static and dynamic scheduling.
Static schedules are fixed before execution based on the information available at
that time, whereas dynamic schedules are determined during runtime. There are
generic advantages and disadvantages to both: static scheduling makes greater
use of the data so is superior when it is sufficiently accurate, whereas dynamic
scheduling uses more recent data. In practice task scheduling is usually handled
by a runtime system, such as OmpSs [11], PaRSEC [6], or StarPU [4]. Most
such systems use previous execution traces to predict task execution and data
transfer times at runtime. On a single machine the latter is tricky because of
shared buses and the possibility of asynchronous data transfers. Hence at present
dynamic scheduling is typically preferred. However static schedules can be sur-
prisingly robust, even when estimates are poor [I]. Furthermore, robustness can
be improved using timing distribution information [18]. In addition, superior
performance can be achieved in dynamic environments by modifying an existing
static schedule, rather than computing a new one from scratch [IJ.

In this paper we therefore focus on the problem of finding good static sched-
ules for multicore and GPU platforms. To facilitate this investigation, we devel-
oped an open-source software simulator which allows users to simulate the static
scheduling of arbitrary task DAGs on arbitrary CPU-GPU platforms, without
worrying about the time or energy usage constraints imposed by real systems.

The popular HEFT scheduling heuristic comprises two phases: a task pri-
oritization phase in which the order tasks are to be scheduled is determined
and a processor selection phase in which they are actually assigned to the pro-
cessing resources. In this article we introduce HOFT, which follows the HEFT
framework but modifies both phases in order to exploit accelerated architectures
in particular, without significantly increasing the complexity of the algorithm.
HOFT works by first computing a table of optimistic estimates of the earliest
possible times all tasks can be completed on both processor types and using this
to guide both phases. Simulations with real and randomly-generated DAGs on
both single and multiple GPU target platforms suggest that HOFT is always at
least competitive with HEFT and frequently superior.

Explicitly, the two main contributions of this paper are:

1. A new static scheduling heuristic that is optimized specifically for accelerated
heterogeneous architectures;

2. Open-source simulation software that allows researchers to implement and
evaluate their own scheduling algorithms for user-defined CPU-GPU plat-
forms in a fast and reproducible manner.
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The remainder of this paper is structured as follows. In Section 2] we summarize
the relevant existing literature. Then in Section [3] we explicitly define the sim-
ulation model we use to study the static task scheduling problem. We describe
HEFT in detail in Section [4] including also benchmarking results with our simu-
lation model and a minor modification to the algorithm that we found performs
well. In Section [p| we describe our new HOFT heuristic, before detailing the nu-
merical experiments that we undertook to evaluate its performance in Section [6}
Finally in Section [7] we state our conclusions from this investigation and outline
future work that we believe may be useful.

2 Related work

Broadly, static scheduling methods can be divided into three categories: mathe-
matical programming, guided-random search and heuristics. The first is based on
formulating the scheduling problem as a mathematical program; see, for exam-
ple, Kumar’s constraint programming formulation in [14]. However solving these
is usually so expensive that they are restricted to small task graphs. Guided-
random search is a term used for any method that generates a large population
of potential schedules and then selects the best among them. Typically these
are more general optimization schemes such as genetic algorithms which are re-
fined for the task scheduling problem. As a rule, such methods tend to find very
high-quality schedules but take a long time to do so [1].

Heuristics are the most popular approach in practice as they are often com-
petitive with the alternatives and considerably faster. In turn listing heuristics
are the most popular kind. They follow a two-phase structure: an ordered list
of all tasks is first constructed (task prioritization) and they are then scheduled
in this order according to some rule (processor selection). HEFT is the most
prominent example: all tasks are prioritized according to their upward rank and
then scheduled on the processor expected to complete their execution at the
earliest time; a fuller description is given in Section {4} Canon et al. [8] compared
twenty different task scheduling heuristics and found that HEFT was almost
always among the best in terms of both schedule makespan and robustness.

Many modifications of HEFT have been proposed in the literature, such
as HEFT with lookahead from Bittencourt, Sakellariou and Madeira [5], which
has the same task prioritization phase but schedules all tasks on the resources
estimated to minimize the completion time of their children. This has the effect of
increasing the time complexity of the algorithm so, in an attempt to incorporate
a degree of lookahead into the HEFT framework without increasing the cost,
Arabnejad and Barbosa proposed Predict Earliest Finish Time (PEFT) [3]. The
main innovation is that rather than just minimizing the completion time of a
task during processor selection, we also try to minimize an optimistic estimate
of the time it will take to execute the remaining unscheduled tasks in the DAG.

Like the majority of existing methods for static DAG scheduling in het-
erogeneous computing, HEFT was originally intended for clusters with diverse
nodes. At least one extension specifically targeting accelerated architectures has
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been proposed before, namely HEFT-NC (No Cross) from Shetti, Fahmy and
Bretschneider [I5], but our new HOFT heuristic differs from this in both the
task prioritization and processor selection phases of the algorithm.

3 Simulation model

In this paper we use a simulation model to study the static task scheduling
problem for multicore and GPU. This simulator follows the mathematical model
described in Section [3.1] and therefore facilitates the evaluation of scheduling
algorithms for idealized CPU-GPU platforms. The advantage of this approach is
that it allows us to compare multiple algorithms and determine how intrinsically
well-suited they are for accelerated architectures. Although this model may not
capture the full range of real-world behavior, we gathered data from a single
heterogeneous node of a local computing cluster to guide its development and
retain the most salient features. This node comprises four octacore Intel (Sky-
lake) Xeon Gold 6130 CPUs running at 2.10GHz with 192GB RAM and four
Nvidia V100-SXM2-16GB (Volta) GPUs, each with 16GB GPU global memory,
5120 CUDA Cores and NVLink interconnect. We used Basic Linear Algebra
Subroutine (BLAS) [10] and Linear Algebra PACKage (LAPACK) [2] kernels for
benchmarking as they are widely-used in scientific computing applications.

The simulator is implemented in Python and the complete source code is
available on GithuHﬂ All code used to generate results presented in this paper is
available in the folder simulator/scripts so interested researchers may repeat
our experiments for themselves. In addition, users may make modifications to
the simulator that they believe will more accurately reflect their own target
environment.

3.1 Mathematical model

The simulator software implements the following mathematical model of the
problem. Suppose we have a task DAG G consisting of n tasks and e edges that
we wish to execute on a target platform H comprising P processing resources
of two types, P CPU resources and P — Po = P GPU resources. In keeping
with much of the related literature and based on current programming practices,
we consider CPU cores individually but regard entire GPUs as discrete [I]. For
example, a node comprising 4 GPUs and 4 octacore CPUs would be viewed as
4 GPU resources and 4 x 8 = 32 CPU resources.

We assume that all tasks ¢1,...,t, are atomic and cannot be divided across
multiple resources or aggregated to form larger tasks. Further, all resources can
only execute a single task at any one time and can in principle execute all tasks,
albeit with different processing times. Given the increasing versatility of modern
GPUs and the parallelism of modern CPUs, the latter is a much less restrictive
assumption that it once may have been.

* https://github.com/mcsweeney90/heterogeneous optimistic_finish_time
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In our experiments, we found that the spread of kernel processing times was
usually tight, with the standard deviation often being two orders of magnitude
smaller than the mean. Thus we assume that all task execution times on all
processing resources of a single type are identical. In particular, this means
that each task has only two possible computation costs: a CPU execution time
we(t;) and a GPU execution time wg(t;). When necessary, we denote by w;n,
the processing time of task ¢; on the specific resource p,,.

The communication cost between task t; and its child ¢; is the length of
time between when execution of ¢; is complete and execution of ¢; can begin,
including all relevant latency and data transfer times. Since this depends on
where each task is executed, we view this as a function c¢;; (P, pn). We assume
that the communication cost is always zero when m = n and that there are only
four possible communication costs between tasks ¢; and ¢; when this isn’t the
case: ¢;;(C,C), from a CPU to a different CPU; ¢;;(C,G), from CPU to GPU;
¢i;j(P,C), from GPU to CPU; and ¢;;(G, G) from GPU to a different GPU.

A schedule is a mapping from tasks to processing resources, as well as the
precise time at which their execution should begin. Our goal is to find a schedule
which minimizes the makespan of the task graph, the total execution time of the
application it represents. A task with no successors is called an exit task. Once
all tasks have been scheduled, the makespan is easily computed as the earliest
time all exit tasks will be completed. Note that although we assume that all costs
represent time, they could be anything else we wish to minimize, such as energy
consumption, so long as this is done consistently. We do not however consider
the multi-objective optimization problem of trading off two or more different
cost types here.

3.2 Testing environments

In the numerical experiments described later in this article, we consider two sim-
ulated target platforms: Single GPU, comprising 1 GPU and 1 octacore CPU,
and Multiple GPU, comprising 4 GPUs and 4 octacore CPUs. The latter rep-
resents the node we used to guide the development of our simulator and the
former is considered in order to study how the number of GPUs affects per-
formance. We follow the convention that a CPU core is dedicated to managing
each of the GPUs [4], so these two platforms are actually assumed to comprise
7 CPU and 1 GPU resources, and 28 CPU and 4 GPU resources, respectively.
Based on our exploratory experiments, we make two further assumptions. First,
since communication costs between CPU resources were negligible relative to
all other combinations, we assume they are zero—i.e., ¢;;(C,C) = 0, Vi, j. Sec-
ond, because CPU-GPU communication costs were very similar to the corre-
sponding GPU-CPU and GPU-GPU costs, we take them to be identical—i.e.,
¢i;j (C,G) = ¢;;(G,C) = ¢;;(G,G),Vi,j. These assumptions will obviously not
be representative of all possible architectures but the simulator software allows
users to repeat our experiments for more accurate representations of their own
target platforms if they wish.
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We consider the scheduling of two different sets of DAGs. The first consists
of ten DAGs comprising between 35 and 22,100 tasks which correspond to the
Cholesky factorization of N x N tiled matrices, where N = 5,10,15,...,50.
In particular, the DAGs are based on a common implementation of Cholesky
factorization for tiled matrices which uses GEMM (matrix multiplication), SYRK
(symmetric rank-k update) and TRSM (triangular solve) BLAS kernels, as well as
the POTRF (Cholesky factorization) LAPACK routine [I0]. All task CPU/GPU
processing times are means of 1000 real timings of that task kernel. Likewise,
communication costs are sample means of real communication timings between
the relevant task and resource types. All numerical experiments were performed
for tile sizes 128 and 1024; which was used will always be specified where results
are presented. Those sizes were chosen as they roughly mark the upper and lower
limits of tile sizes typically used for CPU-GPU platforms.

The standard way to quantify the relative amount of communication and
computation represented by a task graph is the Computation-to-Communication
Ratio (CCR), the mean computation cost of the DAG divided by the mean
communication cost. For the Cholesky DAGs, the CCR was about 1 for tile size
128 and about 18 for tile size 1024, with minor variation depending on the total
number of tasks in the DAG.

We constructed a set of randomly-generated DAGs with a wide range of
CCRs, based on the topologies of the 180 DAGs with 1002 tasks from the Stan-
dard Task Graph (STG) set [16]. Following the approach in [9], we selected GPU
execution times for all tasks uniformly at random from [1, 100] and computed the
corresponding CPU times by multiplying by a random variable from a Gamma
distribution. To consider a variety of potential applications, for each DAG we
made two copies: low acceleration, for which the mean and standard deviation
of the Gamma distribution was defined to be 5, and high acceleration, for which
both were taken to be 50 instead. These values roughly correspond to what we
observed in our benchmarking of BLAS and LAPACK kernels with tile sizes
128 and 1024, respectively. Finally, for both parameter regimes, we made three
copies of each DAG and randomly generated communication costs such that the
CCR fell into each of the intervals [0, 10], [10,20] and [20, 50]. Thus in total the
random DAG set contains 180 x 2 x 3 = 1080 DAGs.

4 HEFT

Recall that as a listing scheduler HEFT comprises two phases, an initial task
prioritization phase in which the order all tasks are to be scheduled is determined
and a processor selection phase in which the processing resource each task is to
be scheduled on is decided. Here we describe both in order to give a complete
description of the HEFT algorithm.

The critical path of a DAG is the longest path through it, and is important
because it gives a lower bound on the optimal schedule makespan for that DAG.
Heuristics for homogeneous platforms often use the upward rank, the length
of the critical path from that task to an exit task, including the task itself
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[17], to determine priorities. Computing the critical path is not straightforward
for heterogeneous platforms so HEFT extends the idea by using mean values
instead. Intuitively, the task prioritization phase of HEFT can be viewed as an
approximate dynamic program applied to a simplified version of the task DAG
that uses mean values to set all weights.

More formally, we first define the mean execution cost of all tasks ¢; through

. P Wim, _ ’wc(ti)PC —‘r’wg(ti)PG (1>
7 P P bl

m=1

where the second expression is how w; would be computed under the assumptions
of our model. Likewise, the mean communication cost T;; between t; and t; is
the average of all such costs over all possible combinations of resources,

_ 1 1
¢ = p2 Zcij(pm,pn) = p2 Z Agecij(k, L), (2)

m,n k,0e{C,G}

where ACC = Pc(PC — 1), ACG = Pcpg = Agc, and AGG = PG(PG — ].)
For all tasks ¢; in the DAG, we define their upward ranks rank,(t;) recursively,
starting from the exit task(s), by

rank,(t;) = w; + . Grrée}ml)((ti)(ﬁ-j + rank,(t;)), (3)
where Ch(t;) is the set of ¢;’s immediate successors in the DAG. The task prior-
itization phase then concludes by listing all tasks in decreasing order of upward
rank, with ties broken arbitrarily.

The processor selection phase of HEFT is now straightforward: we move down
the list and assign each task to the resource expected to complete its execution
at the earliest time. Let R,,, be the earliest time at which the processing re-
source p,, is actually free to execute task t;, Pa(t;) be the set of ;’s immediate
predecessors in the DAG, and AFT(t;) be the time when execution of a task
tr is actually completed (which in the static case is known precisely once it has
been scheduled). Then the earliest start time of task t; on processing resource
Pm is computed through

EST(ti,pm:max{RW mix <AFT<tk>+cM(pk,pm>>} (4)

trEPa(t;)
and the earliest finish time EFT(t;, pm,) of task t; on p,, is given by

HEFT follows an insertion-based policy that allows tasks to be inserted between
two that are already scheduled, assuming precedence constraints are still re-
spected, so R,,, may not simply be the latest finish time of all tasks on p,,. A
complete description of HEFT is given in Algorithm [I} HEFT has a time com-
plexity of O(P - e). For dense DAGs, the number of edges is proportional to n?,
where n is the number of tasks, so the complexity is effectively O(n?P) [17].
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Algorithm 1: HEFT.

1 Set the computation cost of all tasks using
2 Set the communication cost of all edges using (2]
3 Compute rank, for all tasks according to
4 Sort the tasks into a priority list by non-increasing order of rank,,
5 for task in list do
6 for each resource p; do
7 ‘ Compute EFT(t;,pr) using and
8 end
9 Pm = arg min, (EFT(t;, px))

10 Schedule t; on the resource p,

11 end

4.1 Benchmarking

Using our simulation model, we investigated the quality of the schedules com-
puted by HEFT for the Cholesky and randomly-generated DAG sets on both
the single and multiple GPU target platforms described in Section [3] The met-
ric used for evaluation was the speedup, the ratio of the minimal serial time
(MST)—the minimum execution time of the DAG on any single resource—to
the makespan. Intuitively, speedup tells us how well the schedule exploits the
parallelism of the target platform.

Figure [Ta] shows the speedup of HEFT for the Cholesky DAGs with tile size
128. The most interesting takeaway is the difference between the two platforms.
With multiple GPUs the speedup increased uniformly with the number of tasks
until a small decline for the very largest DAG, but for a single GPU the speedup
stagnated much more quickly. This was due to the GPU being continuously busy
and adding little additional value once the DAGs became sufficiently large and
more GPUs therefore postponing this effect. Results were broadly similar for
Cholesky DAGs with tile size 1024, with the exception that the speedup values
were uniformly smaller, reaching a maximum of just over four for the multiple
GPU platform. This was because the GPUs were so much faster for the larger
tile size that HEFT made little use of the CPUs and so speedup was almost
entirely determined by the number of GPUs available.

Figure[Ib|shows the speedups for all 540 high acceleration randomly-generated
DAGs, ordered by their CCRs; results were broadly similar for the low acceler-
ation DAGs. The speedups for the single GPU platform are much smaller with
a narrower spread compared to the other platform, as for the Cholesky DAGs.
More surprising is that HEFT sometimes returned a schedule with speedup less
than one for DAGs with small CCR values, which we call a failure since this
is obviously unwanted behavior. These failures were due to the greediness of
the HEFT processor selection phase, which always schedules a task on the pro-
cessing resource that minimizes its earliest finish time without considering the
communication costs that may later be incurred by doing so. The effect is more
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Fig. 1: Speedup of HEFT for Cholesky (tile size 128) and random (high acceler-
ation) DAG sets.

pronounced when the CCR is low because the unforeseen communication costs
are proportionally larger.

4.2 HEFT-WM

The implicit assumption underlying the use of mean values when computing
task priorities in HEFT is that the probability of a task being scheduled on a
processing resource is identical for all resources. But this is obviously not the
case: if a task’s GPU execution time is ten times smaller than its CPU execution
time then it is considerably more likely to be scheduled on a GPU, even if not
precisely ten times so. This suggests that we should weight the mean values
according to each task’s acceleration ratio r;, the CPU time divided by the GPU
time. In particular, for each task t; we estimate its computation cost to be

we(t:)Po + riwe(ti) Pa
Pc +r;Pg

; (6)

w; =

and for each edge (say, between tasks ¢; and ¢;) the estimated communication
cost is

—_ ACC - Cij (C, C) + ACG (ricl-j(G, C) =+ ?"jCij(C, G)) -+ TiTjAGG . Cij(G, G)
N (TiPG + Pc) . (’I"jPG + Pc)

(7)
We call the modified heuristic which follows Algorithm [1| but uses @ instead
of and instead of HEFT-WM (for Weighted Mean). We were unable
to find any explicit references to this modification in the literature but given its
simplicity we do not think it is a novel idea and suspect it has surely been used
before in practice.
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5 HOFT

If we disregard all resource contention, then we can easily compute the earliest
possible time that all tasks can be completed assuming that they are scheduled
on either a CPU or GPU resource, which we call the Optimistic Finish Time
(OFT). More specifically, for p,p’ € {C, G}, we move forward through the DAG
and build a table of OFT values by setting OF T (t;,p) = wy(t;), if ¢; is an entry
task, and recursively computing

OFT(t:0) = wp(t) + | max {min(OFT(t3) + Syreslo o (9
for all other tasks, where 0, = 1 if p = p’ and 0 otherwise. We use the OFT
table as the basis for the task prioritization and processor selection phases of a
new HEFT-like heuristic optimized for CPU-GPU platforms that we call Hetero-
geneous Optimistic Finish Time (HOFT). Note that computing the OFT table
does not increase the order of HEFT’s time complexity.

Among several possible ways of using the OFT to compute a complete task
prioritization, we found the most effective to be the following. First, define the
weights of all tasks to be the ratio of the maximum and minimum OFT values,

W= min{OFT(t;,C),OFT(t;,G)}" )

Now assume that all edge weights are zero, ¢;; = 0, Vi, j, and compute the upward
rank of all tasks with these values. Upward ranking is used to ensure that all
precedence constraints are met. Intuitively, tasks with a strong preference for
one resource type—as suggested by a high ratio—should be scheduled first.

We also propose a new processor selection phase which proceeds as follows.
Working down the priority list, each task ¢; is scheduled on the processing re-
source p,, with the smallest EFT as in HEFT except when p,, is not also the
fastest resource type for that task. In such cases, let py be the resource of the
fastest type with the minimal EFT and compute

Sm = EFT(twpf) - EFT(tlapm)a (10)

the saving that we expect to make by scheduling ¢; on p,, rather than ps. Sup-
pose that py, is of type T, € {C,G}. By assuming that each child task ¢; of ¢;
is scheduled on the type of resource 7); which minimizes its OFT and disregard-
ing the potential need to wait for other parent tasks to complete, we estimate
E(Ch(t;)|pm), the earliest finish time of all child tasks, given that ¢; is scheduled
on p,,, through

B(Ch(t)lpm) = | max (BFT(tispm) + (T, Ty) + wr, (). (1)

Likewise for py we compute E(Ch(t;)|p) and if

Sm > E(Ch(t:)|pm) — E(Ch(t:)|py) (12)
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we schedule task t; on p,,; otherwise, we schedule it on ps. Intuitively, the pro-
cessor selection always chooses the resource with the smallest EFT unless by
doing so we expect to increase the earliest possible time at which all child tasks
can be completed.

Algorithm 2: HOFT.

1 Compute the OFT table for all tasks using (8]

2 Set the computation cost of all tasks using (9

3 Set the communication cost of all edges to be zero

4 Compute rank, for all tasks according to

5 Sort the tasks into a priority list by non-increasing order of rank,,
6 for task in list do

7 for each resource p; do
8 ‘ Compute EFT(t;,py) using and
9 end
10 Pm = arg min, (EFT(t;, px))
11 if wim # min(we(t:), wa(t:)) then
12 ps = argmin, (EFT(t;, pi)|wix = min(we (t:), wa(t)))
13 Compute s,, using
14 Compute E(Ch(t;)|pm) and E(Ch(t;)|py) using
15 if holds then
16 ‘ Schedule t; on pm,
17 else
18 ‘ Schedule ¢; on py
19 end
20 end
21 end

6 Simulation results

Figure[2]shows the reduction in schedule makespan, as a percentage of the HEFT
schedule, achieved by HOFT and HEFT-WM for the set of Cholesky DAGs, on
both the single and multiple GPU target platforms. The overall trend for the
multiple GPU platform is that HOFT improves relative to both HEFT variants
as the number of tasks in the DAG grows larger; it is always better than standard
HEFT for tile size 1024. For the single GPU platform, HOFT was almost always
the best, except for the smallest DAGs and the largest DAG with tile size 128
(for which all three heuristics were almost identical). Interestingly, we found that
the processor selection phase of HOFT never actually differed from HEFT’s for
these DAGs and so the task prioritization phase alone was key.

HOFT achieved smaller makespans than HEFT on average for the set of
randomly-generated DAGs, especially for those with high acceleration, but was

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50371-0_1 |



https://dx.doi.org/10.1007/978-3-030-50371-0_1

12 T. McSweeney et al.

Single GPU Single GPU

4-
S - - @ HEFT-WM /.—"'"'\._.\
............. ya .A__,_,...,__. \'_‘_. M HOFT o l
0- @ / - ~u-m 4 v o0
s g S
- 2" 17 o 2 L
IS o -
o //' . -7
Lo ) 0- Emmuouummsfpticeeece. o
T N & - @ HEFT-WM
- o
E .’ ‘ ‘ - HOFT 2 .
s : .
S Multiple GPU Multiple GPU
T so- = 2 .a
e P - =T
H - 9 q
g 2 7 “a-g- 2 /'.\\
S 00 @i PR ®-....... o e 5. ® - o
=z ] .._,,.,‘..--0 o “m
Z . B -_____ / 10 7 K e
- ! N O
-50- N - .”'\".ﬁu"-—l‘."'.
S 0- e
-75- : - : o o .-,..-.
10? 10° 10 102 10° 10°
Number of tasks Number of tasks
(a) Tile size 128. (b) Tile size 1024.

Fig.2: HEFT-WM and HOFT compared to HEFT for Cholesky DAGs.

slightly inferior to HEFT-WM, as can be seen from Table [I} However also in-
cluded in the table is HOFT-WM, the heuristic obtained by using the HEFT-
WM task prioritization with the HOFT processor selection. HOFT-WM was
identical to HEFT-WM for the Cholesky DAGs but improved on both heuris-
tics for the randomly-generated DAG set, suggesting that the HOFT processor
selection phase is generally more effective than HEFT’s, no matter which task
ranking is used. The alternative processor selection also reduced the failure rate
for DAGs with very low CCR by about half on the single GPU platform, although
it made little difference on the multiple GPU platform.

Table 1: Makespan reduction vs. HEFT. Shown are both the average percentage
reduction (APR) and the percentage of (540) DAGs for which each heuristic
improved on the HEFT schedule (Better).

Single GPU Multiple GPU

Low acc. High acc. Low acc. High acc.
Heuristic APR Better APR Better APR Better APR Better

HEFT-WM 0.8 748 23 696 1.6 848 24 79.8
HOFT -0.2 50.3 38 831 14 692 23 765
HOFT-WM 0.8 709 46 769 14 781 3.7 8l1.1
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7 Conclusions

Overall our simulations suggest that HOFT is often superior to—and always
competitive with—both standard HEFT and HEFT-WM for multicore and GPU
platforms, especially when task acceleration ratios are high. The processor selec-
tion phase in particular appears to be more effective, at least on average, for any
task prioritization. It should also be noted that HEFT-WM was almost always
superior to the standard algorithm in our simulations, suggesting that it should
perhaps be the default in accelerated environments.

Although the number of failures HOFT recorded for DAGs with low CCRs
was slightly smaller than for HEFT, the failure probability was still unaccept-
ably high. Using the lookahead processor selection from [5] instead reduced the
probability of failure further but it was still nonzero and the additional compu-
tational cost was considerable. We investigated cheaper sampling-based selection
phases that consider only a small sample of the child tasks, selected either at
random or based on priorities. These did reduce the failure probability in some
cases but the improvement was usually minor. Alternatives to lookahead that
we intend to consider in future are the duplication [I3] or aggregation of tasks.

Static schedules for multicore and GPU are most useful in practice as a foun-
dation for superior dynamic schedules [I], or when their robustness is reinforced
using statistical analysis [I8]. This paper was concerned with computing the ini-
tial static schedules; the natural next step is to consider their extension to real—
i.e., dynamic—environments. This is often called stochastic scheduling, since the
costs are usually modeled as random variables from some—possibly unknown—
distribution. The goal is typically to find methods that bound variation in the
schedule makespan, which is notoriously difficult [I2]. Experimentation with ex-
isting stochastic scheduling heuristics, such as Monte Carlo Scheduling [18], sug-
gested to us that the main issue with adapting such methods for multicore and
GPU is their cost, which can be much greater than computing the static sched-
ule itself. Hence in future work we intend to investigate cheaper ways to make
effective use of static schedules for real platforms.
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