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Abstract. In this paper, we present AcausalNets.jl - a library sup-
porting inference in a quantum generalization of Bayesian networks and
their application to quantum games. The proposed solution is based on
modern approach to numerical computing provided by Julia language.
The library provides a high-level functions for Bayesian inference that
can be applied to both classical and quantum Bayesian networks.
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1 Introduction

Bayesian networks [10] are probabilistic models which, among their numerous
use cases, allow to model complex systems of interconnected random events in
games of chance and their influence on each other. There are several approaches
to generalizing Bayesian probability theory into the quantum realm [7,8,10].

Introducing quantum probability into game theory opens up new opportuni-
ties for finding optimal strategies in various games of chance. Apart from well
known work on representing quantum strategies as unitary gates [9] or apply-
ing quantum entanglement to find optimal strategies [2], there is also relatively
new approach to apply quantum Bayesian networks for that purpose [5]. This
new approach has not yet been fully explored, therefore we focus on methods,
algorithms and numerical support for researchers working this topic.

Proper numerical tools are required due to high complexity of computations
essential to perform such experiments. In particular, performing Bayesian infer-
ence in Acausal networks, a quantum generalization of Bayesian networks, is not
yet fully supported among numerical libraries.

In this paper we present AcausalNets.jl - a library providing a high-level
functions for Bayesian inference that can be applied to both classical and quan-
tum Bayesian networks. The library takes advantage of the new approach to
numerical computing offered by Julia language [1].
Organization of the paper The paper is organized as follows: in Section 2
we summarize relevant related work which provided basis and inspiration for
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this paper. In Section 3 we describe Bayesian networks and their usage in
higher detail. We also briefly delve into the inference algorithms implemented
in AcausalNets.jl. In Section 4 we provide in brief detail the principles we
followed when implementing the library. Section 5 sums up our results when
recreating and expanding experiments first conducted and described in [5]. In
Section 6 we provide a brief overview of our ideas for further improvements and
enhancements of AcausalNets.jl.

2 Related work

Belief Propagation algorithms that we adapt for quantum Bayes networks in
AcausalNets.jl library are covered to a fuller extent in [4] and [10]. The adap-
tation was done using theoretical foundations for generalizing Bayesian proba-
bility theory into the quantum realm described in [8,7]. To our best knowledge,
there is no numerical support for quantum version of that algorithm.

Additionally, our work was inspired by BayesNets.jl 3 - a Julia library
designed for high-level operations on classical Bayesian Networks.

In general, there is a huge variety of software related to quantum information
implemented in numerous programming languages, most notably
QuantumInformation.jl [3] implemented in Julia. The set of functionalities
these libraries provide, while wide, is focused mainly on low-level optimized ma-
trix operations. AcausalNets.jl makes use of matrix operations implemented
in QuantumInformation.jl in its implementation of Belief Propagation algo-
rithms.

3 Classical and Quantum Bayesian Networks

Bayesian Networks are probabilistic graphical models used for describing systems
of random variables and correlations between their probability distributions.
Those networks take a form of a directed acyclic graph, where vertices denote
the variables and edges - correlations between them. Bayesian network is usu-
ally represented using set of multivariate distributions, which accounts for both
variables distributions and their correlations. Typical applications of Bayesian
networks include: calculating probability of a given variable values configuration
or inferring probability distributions of given variables based on known states of
other variables in the network. The variable connection types differ depending
on their relation is classical or quantum.
Classical version - conditional dependence. In classical version, as in Fig 1,
the variables in a Bayesian Network may be causally dependent on one other,
which means their distributions are conditional. If distribution of variable V2
is conditionally dependent on the distribution of variable V1, a happens-before
relationship between V1 and V2 is implied.

3 https://github.com/sisl/BayesNets.jl
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Quantum version - acausal relationships. When generalized to the quan-
tum domain, Bayesian networks can also describe acausal relationships between
variables, which may be interpreted as a quantum entanglement between them.
As opposed to a causal relationship, such a system of variables is not described
as one system at two times, but rather as two systems in a single time frame.
An example of such a network is shown in Fig. 2.

C

BA

Fig. 1: A Bayesian network
where there is a dependency of
C on A and B (arrows). Source:
[5]

C

BA

Fig. 2: States of systems A and
B are entangled (zigzag line),
and there is classic dependence
of C on A and B (arrows).
Source: [5]

Inference algorithms. Inference in Bayesian networks - calculating the proba-
bility distribution of a subsystem of variables based on already known variables
- is an NP-hard problem [6]. However, there are algorithms which successfully
approximate such computations with considerably lower computational complex-
ity. AcausalNets.jl provides implementations of two algorithms for performing
inference in Bayesian networks: a non-optimal naive algorithm, as well as the
Belief Propagation algorithm [4,10]. Moreover, the second algorithm has been
generalized to the quantum domain based on [7].

4 Design of the library

AcausalNets.jl API has been designed with simplicity of computations regard-
ing discrete quantum probability systems in mind. It allows the user to perform
inference in Bayesian Networks described in Section 3.
Defining Bayesian networks. To define a Bayesian network, one must first
define systems of random variables which make up the network. Then a graph is
built of those variables by inserting them in topological order. This requirement
is essential, since Bayesian network is a directed acyclic graph. An example of
the code which defines a network is shown in Fig. 3.
Performing inference. Inference can be performed with or without evidence -
the known state of some of the random variables in the network. Known states
are represented by a system with appropriate variables and their known dis-
tribution. Next, function infer(network, variables, evidence, strategy) is used for
conducting inference for variables and evidence passed as arguments. By default,
naive inference algorithm is used, but it can be changed in library’s Inference
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� �
# 1.Defining variables
var_a = Variable(:a, 3) # location of the prize
var_b = Variable(:b, 3) # player's first choice
var_c = Variable(:c, 3) # host's choice

# 2.Defining system distribution for variable C
roCwAB = QuantumDistribution(diagm(0 =>[
0,1/2,1/2, 0,0,1, 0,1,0, 0,0,1,
1/2,0,1/2, 1,0,0, 1/2,1/2,0]))

# 3.Defining other systems using previously declared
# distribution and variables
sys_c_ab = DiscreteQuantumSystem( [var_a, var_b],[var_c],

roCwAB)
sys_b= ...
sys_a=...
.....
# 4.Defining a Bayesian network
network = AcausalNet()
push!(network, sys_a)
push!(network, sys_b)
push!(network, sys_c_ab)� �

Fig. 3: Using AcasualNets.jl API to build a bayesian network analogous to
Fig. 1

module. The example code for Monty Hall game use case [5] is shown in the
Fig. 4.

� �
# 5.Declaring evidence
ev = Evidence{QuantumDistribution}[

Evidence{QuantumDistribution}(
[var_b], QuantumDistribution(ketbra(1,1,3))),

Evidence{QuantumDistribution}(
[var_c], QuantumDistribution(ketbra(3,3,3)))

]
# 6.Performing inference on created network
inferred = infer(network, [var_a], evidence)� �

Fig. 4: Using AcasualNets.jl API to perform Bayesian inference.

Usage of the Julia language. The software benefits strongly from Julia type-
system [1], which allows to implement general operation on Bayesian Networks
based on the type of the distributions the network is dealing with. It is possible
because of Julia’s type parametrization properties. More specifically, as shown
in the Fig. 5, BayesNet type is parametrized with the type of DiscreteSystem,
which specifies the math operations to be perform on probability distributions
of the variables. For example, in case of DiscreteQuantumSystem such opera-
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tions are performed in accordance with definitions of quantum conditional oper-
ators [8].

Fig. 5: The structure of AcausalNets.jl modules and types.

AcausalNets.jl has been implemented in version 1.0 of Julia language [1].
Source code is publicly available on 4. The repository also contains more example
use cases 5 in a convenient form of interactive Jupyter Notebooks 6.

5 Monty Hall game example use case

As a use case we use results of quantum Monty Hall game from [5] modeled as
Bayesian network shown in Fig. 2. We consider a case where there occur quantum
effects between the event A - the placement of the prize and B - the initial
choice of the player. We choose two example quantum probability distributions.
Eq.(1) models the situation where A and B are entangled in the way that due
to quantum effects the placement of the prize always turns out to be the same
as the initial choice of the player.

ρAB_same =
1

3
(|00〉+ |11〉+ |22〉)(〈00|+ 〈11|+ 〈22|) (1)

4 https://github.com/mikegpl/AcausalNets.jl
5 https://github.com/mikegpl/AcausalNets.jl/tree/master/notebooks
6 https://jupyter.org
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Eq.(2) models the situation where A and B are entangled in the way that due
to quantum effects placement of the prize always turns out to be different that
the initial choice of the player.

ρAB_diff =
1

6
(|01〉+ |10〉)(〈01|+ 〈10|)+

1

6
(|02〉+ |20〉)(〈02|+ 〈20|) + 1

6
(|12〉+ |21〉)(〈12|+ 〈21|)

(2)

Next, we construct linear combination of these two situations for λ ∈ (0, 1):

ρAB = λρAB_same + (1− λ)ρAB_diff (3)

We aim to find how the probability of the player wining the game by staying
with his initial choice depends on λ. We construct the Bayesian network as on
Fig. 2 with an appropriate ρAB and perform inference to obtain the probabilities.
We show our results in Fig. 6.We find that for λ = 0.6, the game is fair.

Fig. 6: Probability of winning the prize, when player does not change the door
for the initial state given by ρAB = λρAB_same + (1− λ)ρAB_diff

The above results show that using high level API of AcausalNets.jl library
gives the same results as direct calculations presented in [5].

6 Conclusions and future work

High-level tools enable researchers to better organize, perform and document
their experiments, although sometimes for the price of their flexibility.
AcausalNets.jl has been created with aim to abstract out tedious calcula-
tions, provide a high-level API for quantum Bayesian inference and leverage
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the numerical potential of Julia language. We have successfuly used our library
to reproduce the results of experiments on the quantum version of Monty Hall
originally presented in [5]. Moreover, through automating a lot of necessary
computations, AcausalNets.jl helps experiment with more complex Bayesian
networks. In the future we plan to fully implement the quantum version of Belief
Propagation algorithm and test its efficiency on bigger networks. This may lead
to interesting new research results in quantum information as well as machine
learning in the future.
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