
A Comparison of Selected Variable Ordering

Methods for NFA Induction?

Tomasz Jastrz¡b1[0000−0002−7854−9058]

Institute of Informatics, Silesian University of Technology, Gliwice, Poland
Tomasz.Jastrzab@polsl.pl

Abstract. In the paper, we study one of the fundamental problems
of grammatical inference, namely the induction of nondeterministic �-
nite automata (NFA). We consider the induction of NFA consistent with
the given sets of examples and counterexamples. We transform the in-
duction problem into a constraint satisfaction problem and propose two
variable ordering methods to solve it. We evaluate experimentally the
proposed variable ordering methods and compare them with a state-
of-the-art method. Additionally, through the experiments, we assess the
impact of sample sets sizes on the performance of the induction algorithm
using the respective variable ordering methods.

Keywords: Grammatical inference · Nondeterministic �nite automata
· Variable ordering · Constraint satisfaction

1 Introduction

In the paper, we deal with automata, which are important for numerous prac-
tical applications, such as compiler design, bioinformatics [?], and grammatical
inference [?]. These automata are �nite, nondeterministic and minimal in terms
of the number of states. They are given by A = (Q,Σ, δ, q0, QF), where Q is the
�nite set of states of the automaton, Σ is the input alphabet, δ : Q×Σ → 2Q is
the transition function, q0 ∈ Q is the initial state and QF ⊆ Q is the set of �nal
states [?]. The automata are also consistent with the given sample S = (S+, S−),
in which S+ denotes the examples, and S− denotes the counterexamples. The
automaton A is said to be consistent with the sample S if for each word w ∈ S+

there exists a sequence of transitions between state q0 and at least one state
q ∈ QF and for each word w ∈ S− the condition does not hold.

In order to �nd a minimal nondeterministic �nite automaton (NFA) con-
sistent with the given sample S, we transform the induction problem into a
constraint satisfaction problem (CSP) as discussed in [?,?,?]. Using the CSP
formulation we ask whether for the given sample S and a given positive integer
k there exists a k-state automaton consistent with S. By taking k = 1, 2, . . ., we
ensure that we �nd the minimal NFA for the given sample.

? The preliminary version of this paper was presented at ICGI 2018 [?]. In the cur-
rent paper, we substantially extended the algorithmic descriptions and made the
experimental part much more comprehensive.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_73

https://dx.doi.org/10.1007/978-3-030-22750-0_73

2 T. Jastrz¡b

The main contributions of the paper are as follows. Firstly, we discuss two
variable ordering methods devised speci�cally to solve the given CSP formulation
of the problem. And secondly, we perform comprehensive experiments on input
samples built of amino acid sequences from WaltzDB database [?]. To assess how
the sizes of sets S+ and S− a�ect the performance of the induction algorithms,
we consider samples for which |S+| � |S−|, |S+| = |S−|, and |S+| � |S−| hold.

The paper is organized into 6 sections. In Section ?? we present a brief liter-
ature review. In Section ?? we recall the formulation of minimal NFA induction
problem as a CSP. In Section ?? we present the parallel induction algorithm and
the two proposed variable ordering methods. We present the results of conducted
experiments in Section ??. Finally, Section ?? contains the conclusions.

2 State of the Art

The problem of �nding a minimal NFA consistent with the given sample is
hard. In particular, it cannot be done from polynomial time and data [?]. It was
also shown that inducing a minimal NFA given a deterministic �nite automaton
(DFA) is PSPACE-complete [?].

The existing NFA induction methods focus around state merging algorithms,
designed initially for DFAs. The merging is performed over a pre�x tree acceptor
constructed for the sample S. The algorithms remove redundant states keep-
ing the consistency with the sample. Among the existing algorithms there are
DeLeTe2 [?], NRPNI [?], and the state merging methods proposed in [?,?]. Some
algorithms transform the induction problem to CSPs [?,?,?,?].

The variable ordering methods are either static � de�ned before the algorithm
begins, or dynamic � changing as the algorithm proceeds. Examples of static
methods include deg [?] and ddeg heuristics based on the initial and current
number of constraints involving the variable (degree). Dynamic methods include
domain-size based method dom [?], as well as dom-deg [?], dom-ddeg [?] or dom-

futdeg [?] methods, which follow the dom heuristic but in case of ties use the
initial, current or future degree of the variables, respectively.

3 Problem Formulation

Since we assume the �xed number of states k, to �nd the NFA we only need to
�nd the transition function δ and the set of �nal states QF . As the result, the
following statements about the given CSP always hold [?,?,?]:

1. Let l = |Σ| be the number of symbols in the alphabet. Then we need exactly
n = k2l + k binary variables x and y.

2. For each pair of states p, q ∈ Q and each symbol a ∈ Σ, if q ∈ δ(p, a), then
xi = 1, for some i ∈ [1, k2l]. Likewise, xi = 0 means that q /∈ δ(p, a) holds.

3. For each state p ∈ QF , yi = 1 holds for some i ∈ [1, k]. Otherwise, yi = 0.
4. Let i, j, i 6= j be the indices of x variables. Let a, b ∈ Σ, and p, q, r ∈ Q,
p 6= r, q 6= r. Then the x variables are ordered as follows:

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_73

https://dx.doi.org/10.1007/978-3-030-22750-0_73

Variable Ordering Methods for NFA Induction 3

(a) If a < b in lexicographical order, then i < j holds.

(b) Given the transitions p
a→ r and q

a→ r, if p precedes q in Q, then i < j.

(c) Given the transitions r
a→ p and r

a→ q, if p precedes q in Q, then i < j.
5. If p precedes q in Q, then i < j, where i, j are the y variables indices.

Example 1. Let the set of states be Q = {q0, q1}, and so k = 2, and let Σ =
{a, b}. Then variables y1 and y2 correspond to the possible �nal states q0 and q1.
Since a < b lexicographically, and q0 < q1 in set Q, then the following relations
hold: variable x1 corresponds to the transition q0

a→ q0, variable x2 corresponds

to the transition q0
a→ q1, . . ., variable x8 corresponds to the transition q1

b→ q1.

Given the above considerations, a path is a product of x variables followed
by a y variable. Using Example ??, the product x1x6x8y1 corresponds to the

transitions q0
a→ q0, q0

b→ q1, and q1
b→ q1, i.e., a word abb ending in state q1.

Let us note that for the given number of states k and for each word w, there
are exactly k|w| paths on which this word can be spelled out. There are also k|w|

products of length |w| + 1 corresponding to these paths. In the sequel, we use
Pw
mi to denote the m-th product of x variables corresponding to word w, and

ending in variable yi. Hence an NFA is consistent with the sample S when:

1. for all words w ∈ S+ \ {λ} it holds that (examples acceptance):∑
i=1..k

∑
m=1..k|w|−1

Pw
miyi = 1, (1)

2. for all words w ∈ S− \ {λ} it holds that (counterexamples rejection):∑
i=1..k

∑
m=1..k|w|−1

Pw
miyi = 0. (2)

Note that the summation is performed according to the rules of Boolean algebra.
Note that (??) is satis�ed i� there exists a path for word w that ends in a �nal
state. Note also that (??) is satis�ed i� either there is no path for word w, or
the path ends in a non-�nal state. Finally, if λ ∈ (S+ ∪ S−) holds, then we set:

y1 =

{
1, for λ ∈ S+,

0, for λ ∈ S−.
(3)

The above condition allows to reduce the solution space to be searched [?].

4 Algorithms and Methods

Hereinafter, let C be the set of constraints, c+ ∈ C be a constraint given by (??),
and c− ∈ C be a constraint given by (??). Let |c| be the number of active (non-
zero) products P in (??) or (??), and d(c, x) be the number of active products in
c containing variable x. The variable ordering methods pertain to the x variables.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_73

https://dx.doi.org/10.1007/978-3-030-22750-0_73

4 T. Jastrz¡b

. input: i, v � index and value of the most recently set variable, initially empty

. global: f � �ag showing that a solution was found, initially false
1: procedure InduceNFA(i, v)
2: if i 6= ∅ and v 6= ∅ then f, p← Evaluate(i, v)
3: if f = true then print solution; return . solution found
4: if p = false then return . contradiction found � backtracking needed
5: i, v ← Reorder()
6: InduceNFA(i, v)
7: if f = false then InduceNFA(i, !v) . assigns opposite value to xi

8: if f = false then unset xi

9: end procedure

Fig. 1. The induction algorithm

. input: i, v � index and value of the most recently set variable
1: procedure Evaluate(i, v)
2: if v = 0 then
3: for all c+ : c+ is not satisifed and d(c+, xi) > 0 do
4: |c+| ← |c+| − d(c+, xi);∀xj : xi, xj ∈ P ∧ P ∈ c+, update d(c+, xj)
5: end for

6: if ∃c+ : |c+| = 0 then p← false else p← true
7: else

8: if ∃c− : d(c−, xi) > 0 ∧ ∃P ∈ c− : P = 1 then p← false; return f, p
9: ∀c+ : d(c+, xi) > 0 ∧ ∃P ∈ c+ : P = 1, mark c+ as satis�ed
10: if all c+ are satis�ed then f ← true; ∀xj : xj = ∅, xj ← 0 else p← true
11: end if

12: return f, p
13: end procedure

Fig. 2. The Evaluate procedure for min-max-ex variable ordering method

The y variables are set �rst to produce independent instances of the CSP, solved
in parallel [?,?]. It also applies to the deg method used in the experiments.

The induction procedure InduceNFA, executed for each independent in-
stance of the CSP, is given in Fig. ??. The procedure consists of the evaluation
phase (represented by the Evaluate procedure in line ??), and the ordering
phase (represented by the Reorder procedure in line ??). They both di�er
depending on the selected variable ordering method.

The min-max-ex Method. The Evaluate procedure (Fig. ??) implements a
`fail-fast' behavior, by checking �rst the constraints that may result in a con-
tradiction (lines ?? and ??). It aims at explicitly satisfying constraints c+ ∈ C
(line ??), setting the other xi variables to zeros if all c+ are satis�ed (line ??).
It updates |c+| and d(c+, xj) using the techniques described in [?] (lines ??�??).

The Reorder procedure (Fig. ??) selects a constraint c′+ ∈ C, for which
|c′+| is minimal (line ??) and the index of the most frequent variable xi ∈ c′+

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_73

https://dx.doi.org/10.1007/978-3-030-22750-0_73

Variable Ordering Methods for NFA Induction 5

1: procedure Reorder
2: c′+ ← argminc+∈C |c+| . considers only not-yet-satisifed c+

3: i← argmaxxi∈c′+
d(c′+, xi) . considers only variables xi : xi = ∅

4: return i, 0
5: end procedure

Fig. 3. The Reorder procedure for min-max-ex variable ordering method

(line ??). It sets v to zero (line ??). The ordering makes the evaluation shorter,
by choosing constraint with fewer products and enforcing the `fail-fast' behavior.

The min-max-cex Method. The second variable ordering method, called min-

max-cex, di�ers from min-max-ex in that, that in the Evaluate procedure, for
v = 1 it only checks for a contradiction in any c− ∈ C. For v = 0 it checks for
a contradiction in any c+ ∈ C, it updates the |c−| and d(c−, xj) values as in
lines ??�??, and checks for satis�ed constraints c−. If all c− are satis�ed it sets
all unset xj variables to 1. In the Reorder procedure, in line ?? we look for a
constraint c− ∈ C, such that |c−| is minimal, and we propose that v ← 1 in line
??.

The deg Method. In the Evaluate procedure the deg method �rst checks
for any contradictions, either in c+ or in c− (for v = 0 or v = 1, respectively),
and then it checks for satis�ed constraints. We require that all constraints are
explicitly satis�ed. Since the method is static, the order of variables is established
before the induction begins. So the Reorder procedure merely returns the next
variable according to the already known order. It sets v ← 0 in line ?? of Fig. ??.

Example 2. Due to space limitations, we provide an example trace of the induc-
tion algorithm at https://github.com/tjastrzab/iccs.

5 Experimental Evaluation

We generated 450 samples based on the sets of amino acid sequences [?]. The
number of sequences in set S+ (resp. S−) was 5 (resp. 45), 25 (resp. 25), and 45
(resp. 5), for the samples, for which |S+| � |S−|, |S+| = |S−|, and |S+| � |S−|
hold. The algorithms were implemented in Java and run on an Intel Xeon E5-
2640 2.60GHz processor (16 cores, 8 GB RAM). The time limit was 3 hours.
We considered two scenarios. In Exp. 1, we sought the �rst consistent k-state
automaton. In Exp. 2, the con�guration of the �nal states was also given to
see how the algorithms perform when searching for a speci�c NFA. All minimal
automata had 2 states.

The distribution of the run times, given by the minimum, maximum and
average values, is shown in Tab. ??. Note that in all cases, the average times for
the best- and worst-performing methods, di�er by an order of magnitude or more.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_73

https://dx.doi.org/10.1007/978-3-030-22750-0_73

6 T. Jastrz¡b

Moreover, the balanced samples are the hardest to solve, since the average times
are the longest for both Exp. 1 and Exp. 2. The min-max-ex method prevails
when |S+| � |S−| holds, while min-max-cex is the fastest for the cases in which
|S+| � |S−| is true. This is expected since the time spent in the Reorder
procedure is then much shorter (as the ordering is based on S+ or S− only). The
min-max-cex method is also the fastest for the hardest sample type. This proves
that the new methods are competitive with respect to the deg method.

Table 1. Minimum, maximum and average run times (in seconds)

Sample type
min-max-ex deg min-max-cex

Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2

Minimum and maximum run times

|S+| � |S−| 0.0, 0.2 0.0, 10.8 0.0, 32.9 0.0, 5752.7 0.0, 5795.5 0.0, 5678.8
|S+| = |S−| 0.0, 8083.2 0.0, 8058.2 0.2, 4681.9 0.3, 4612.5 0.1, 25.5 0.1, 118.8
|S+| � |S−| 0.0, 7327.1 0.0, 9085.7 0.0, 2652.3 0.0, 8618.0 0.0, 1.0 0.0, 1.8

Average run times

|S+| � |S−| 0.0 0.1 0.5 58.7 79.2 229.9
|S+| = |S−| 460.6 647.7 176.4 279.9 4.6 7.6
|S+| � |S−| 129.6 471.8 49.6 269.4 0.2 0.2

To explain the di�erences in the run times, we counted the number of calls of
the InduceNFA procedure, i.e., the number of visited solution tree nodes. We
observed that the number of calls di�ered by two to four orders of magnitude.

Finally, to observe the relation between the run time performance and the
automaton size, we counted the number of transitions in each NFA. We observed
that min-max-ex and deg methods produce NFAs of similar size, while the min-

max-cex method generates on average 17�30 transitions more. It is so because
min-max-ex and deg methods produce mostly the transitions necessary to accept
the examples. The min-max-cex method satis�es all counterexamples and makes
the remaining variables equal to one, which generates more transitions.

6 Conclusions

In the paper we have investigated the problem of nondeterministic �nite au-
tomata induction. The experiments have shown that the proposed variable or-
dering methods perform better than the state-of-the-art one, especially in case
of imbalanced sizes of sets S+ and S−. The result is important since it is not
uncommon that, for instance, we know just a few factors causing a disease (set
S+) and much more factors that are not responsible for this particular disease
(set S−). Hence, being able to classify these factors e�ciently and correctly using
the induced NFAs, can be of help in some bioinformatics tasks.

Acknowledgment The research was supported by National Science Centre
Poland (NCN), project registration no. 2016/21/B/ST6/02158.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_73

https://dx.doi.org/10.1007/978-3-030-22750-0_73

