
Composite data types in dynamic dataflow
languages as copyless memory sharing mechanism

Aurelien Bloch1[0000−0003−3893−5103], Endri Bezati2[0000−0003−3446−9838], and Marco
Mattavelli1[0000−0002−7742−0332]

1 EPFL SCI STI MM, École Polytechnique Fédérale de Lausanne, Switzerland
2 EPFL VLSC, École Polytechnique Fédérale de Lausanne, Switzerland

{firstname.lastname}@epfl.ch

Abstract. This paper presents new optimization approaches aiming at
reducing the impact of memory accesses on the performance of dataflow
programs. The approach is based on introducing a high level management
of composite data types in dynamic dataflow programming language for
the memory processing of data tokens. It does not require essential changes
to the model of computation (MOC) or to the dataflow program itself. The
objective of the approach is to remove the unnecessary constraints of
memory isolations without introducing limitations to the scalability and
composability properties of the dataflow paradigm. Thus the identified
optimizations allow to keep the same design and programming philos-
ophy of dataflow, whereas aiming at improving the performance of the
specific configuration implementation. The different optimizations can be
integrated into the current RVC-CAL design flows and synthesis tools and
can be applied to different sub-networks partitions of the dataflow pro-
gram. The paper introduces the context, the definition of the optimization
problem and describes how it can be applied to dataflow designs. Some
examples of the optimizations are provided.

Keywords: dynamic dataflow programs · RVC-CAL · shared memory ·
composite data types

1 Introduction

In recent years the difficulties of CMOS technologies to scale-up by increasing
the processors frequency, led the processor research and industry to investigate
the scale-out by increasing the number of processing units using multi-core,
many-core architecture combined with different memory architectures and pos-
sibly programmable HW elements building heterogeneous platform. However,
these new platforms require software developments to be adapted to the specific
platform architecture to take full advantage of the potential hardware paral-
lelism. Such constrains introduce new challenges to software design such as the
portability of applications across platforms or the ability for the programmer to
properly abstract and correctly design algorithms using imperative program-
ming languages that take advantage of the processing power available in terms
of massive parallelism.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_70

https://dx.doi.org/10.1007/978-3-030-22750-0_70


2 A. Bloch et al.

High-level dataflow programming languages are well recognized to be able
to overcome those issues [7]. They are used in several fields for modeling data-
driven algorithms and in many application areas such as video and audio pro-
cessing, bioinformatics, financial trading and packet switching. Their essential
feature is to be able to abstract parallelism regardless of the targeted hardware
platform [4].

The nice properties of dataflow MoC are valid for any type of memory
architectures, ranging from the most restricted architectures, for which each
memory component is only accessible by a single computational unit, to full
shared memory architectures, for which memory is freely accessible by any
processing element. However, the performance of dataflow programs on less
constrained platforms using the same implementation assumptions of more
constrained platforms may result sub-optimal.

Indeed to guarantee the absence of data races in highly parallel platforms,
dataflow programs relies on the concept of a full memory isolation for each
computational kernel called actors. This assumption which provides the guar-
antees of correctness of the executions for any mapping of the network of actors
on any platform, may lead to memory inefficiencies when some actor partitions
(i.e. dataflow network partitions) share some or all memory elements.

The paper presents a new approach for data sharing between actors of a
dataflow network that reduces the amount of data transfers without changing
the model of computation or the semantic of a given application, but only chang-
ing the data transfers implementation. The cases for which the communication
buffers can be implemented more efficiently, by removing memory isolation
constraints for specific partitioning of the dataflow network, are first identified
and then three different optimized implementation solutions are defined.

The paper is structured as follows: Section 2 and 3 present the context of the
dataflow model of computation and compiler. Section 4 provide an overview
of the related work. Section 5 presents the design proposition of this new ap-
proach, discusses application cases and present different implementations. Fi-
nally, section 6 concludes the paper and outlines other directions for further
investigations and more effective optimizations.

2 Dataflow model of computations

A dataflow program is composed of a (hierarchical) directed graph called, net-
work, where each node is an actor and each directed edge is a lossless and
order preserving communication channel called buffer. These buffers are used
to asynchronously transmit atomic data packets called tokens between actors.
Different dataflow MoC have been defined. A common characteristic is the fact
that actors do not have access to a shared memory allowing parallel executions
without data race.

Dynamic Process Network (DPN) is one of the most expressive MoC where
the actors consumption and production of tokens can vary according to the
nature of the available inputs and their internal states [8]. This flexibility is well

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_70

https://dx.doi.org/10.1007/978-3-030-22750-0_70


Composite data types in dynamic dataflow languages 3

suited for designing, real-world and complex algorithms at the cost of facing
more challenging analysis and optimization problems.

In this work RVC-CAL, a dataflow programming language standardized by
the MPEG committee, which fully captures the behavioral features of the DPN
model of computation [6] is used. In RVC-CAL, each actor can contain a set
of atomic firing functions, called actions and internal state variables. When an
actor is executed, only a single action can fire at a time. The firing of an action
depends on the input availability and values of its tokens, the output available
spaces, and the internal state of the actor.

3 Dataflow compiler

The Open RVC-CAL Compiler (Orcc) is an open-source Integrated Develop-
ment Environment (IDE) based on Eclipse and dedicated to dataflow program-
ming [1]. It is the compiler used in this work and is mainly a source-to-source
compiler that translates the RVC-CAL application into another programming
language depending on the backend selected during compilation.

In this work, the Xronos backend [3] is used. It generates from an RVC-CAL
description, a C++ implementation with all the necessary library dependencies.
The objective is to improve the quality of the generated code by minimizing
the overall amount of memory copies by providing when compatible with the
dataflow MoC, specific memory sharing mechanism across actors. The introduc-
tion of such optimizations can improve the performance of implementations for
specific partitioning and scheduling configurations. It can also provide an ex-
tension of the design exploration space and yield new scheduling, partitioning
and buffer size design points for the design space exploration framework, TUR-
NUS [2].

4 Related work

A first approach for solving this problem of memory sharing across actors has
been presented in the same design context [9]. it is proposed to have actual
shared variables, breaking the encapsulation of actors. To do so, internal vari-
ables that are shared among multiple actors are tagged with @shared. In addition,
a Shared Memory Controller (SMC) along with a specific protocol were designed
for access synchronization. The solution has shown the benefice of relevant per-
formance gains due to the instant access to the shared memory once granted
access to it and low overhead of the synchronization protocol. The drawback
of the solution is that designers have to modify the model of computation and
break the principle of memory encapsulation of actors to allow to share their in-
ternal states. This means than the compiler cannot guarantee that the generated
code is free of data races and that the validity solution has to rely on the de-
signer knowledge. This brings the solution closer to what it is obtained in more
traditional settings in which parallelism is obtained by introducing additional
synchronization barriers to general purpose imperative languages.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_70

https://dx.doi.org/10.1007/978-3-030-22750-0_70


4 A. Bloch et al.

There also exists in the literature some work done such as [5] but they mostly
target Synchronous Dataflow (SDF) MoC.

5 Design proposition

The proposed solution aim at optimizing the performance of the implemen-
tation of the generated code for data communication between actors, when
targeting a hardware platform where actors partitions are mapped to process-
ing units having access to a common physical memory. In doing so, the model
of computation remains unchanged keeping all the properties guaranteed by
construction by applying code synthesis and compilation.

5.1 Composite data types

The current implementation of the code generation for the standard version of
RVC-CAL, processes inter-actor communications by instantiating buffers using
primitive data types. A consequence of this relatively low granularity of data
transfer may impact the performance of the application compared to design
using other models of computation. Furthermore depending on the application
some amounts of data might need to be copied over different buffers through the
dataflow network even if not all data is relevant for the processing of an actor
internal algorithm. To illustrate this fact an example can be useful. Consider
an action that produce five tokens to its output buffer at each firing. Fig. 1a
represents the content of such a buffer after two firings.

Currently, when synthesizing code for such simple program, the Orcc com-
piler generates a loop, that copy the tokens from the internal memory of the
actor to the memory of the output buffer. This makes the amount of copy to the
same physical memory for each firing linearly proportional to the production
of tokens.

The approach described in this paper is to introduce composite data types as
objects manipulated with pointers, which would allow fewer data copies. Lists
(arrays) are considered here an example. Fig. 1b shows how the status of the
buffer might look like, when list to represent data in the same example of two
firings of five tokens each are used. It can be observed that instead of having
a loop copying the ten primitive values, it is only necessary to copy the two
pointers to the corresponding memory chunks. This makes the amount of data
copy proportional to the number of moved chunks instead of the number of
tokens. This approach keeps the same philosophy for avoiding data races like
what Orcc is currently implementing. In fact, it does not propose to modify the
model by offering shared memories between actors and still can rely on buffers
to synchronize communication between them.

5.2 Buffer identification

In this section the different cases where this optimization can be applied are
identified. First of all, this proposition can only be beneficial for actions that

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_70

https://dx.doi.org/10.1007/978-3-030-22750-0_70


Composite data types in dynamic dataflow languages 5

123456789 0

(a) Using primitive data type.

2
3
4

0
1

7
8
9

5
6

1

2

3

(b) Using composite
data type.

Fig. 1: Buffer filled with two firings of five primitive tokens each.

produce multiple tokens in a single firing. This is the case for example, when
actions uses a repeat expression. In addition to that, three different configuration
cases can be identified.

The first one is when a buffer has multiple fan-out as shown in Fig. 2a.
In this case, it is necessary to duplicate the composite data to avoid the data
race. This is due to the fact that pointers are used, to be copied at the place of
the data. If the data is not duplicated, each actor has a reference to the same
piece of data, which might yield data races problems. This configuration should
only improve performances to a fraction inversely proportional to the fan-out
numbers, as only the first actor will have access to the original data whereas the
others need a copied version.

The second case is when a list is transmitted only between two actors as
shown in Fig. 2b. In this case the proposition will not result in any performance
improvement as it is already optimized by the current implementation of the
Orcc compiler. Indeed, instead of generating the tokens to a local array and then
copying this data to the output buffer memory, the compiler generated code
uses a pointer to the buffer memory and store the tokens directly there when
they are available. In the same way, the consumer actor (actor B in the schema)
use a pointer to the buffer memory to directly process the data read, instead of
first copying them locally and then processing them. This optimization prevent
the introduction of list to bring performance improvement in this particular
case.

The third case is the one where the use of composite data types can provide
the higher performance gain. It can be identified when multiple actors process
the same composite structure of data. An illustration of this case is depicted in
Fig. 2c. The achievable performance improvement is proportional to the size of
the chunk of data and to the number of stages the same data is processed by a
different actor.

5.3 Implementations discussion

In this section the implementation challenges that need to be addressed so that
the Orcc compiler is able to generate valid C++ code implementing the proposed
optimization is discussed.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_70

https://dx.doi.org/10.1007/978-3-030-22750-0_70


6 A. Bloch et al.

(a) Multiple fan-
out.

(b) Single stage
communication.

(c) Chain of actors exchanging
the same data.

Fig. 2: Buffer identification.

Fully dynamic solution In this case the consumer can read list of token of any
sizes regardless of the size of the emitted list. This solution is the most general.
It means that actors can read chunks of data smaller than the actual list and
even read chunks that span across two physical data allocations. An illustration
of this implementation is depicted in Fig 1b, where the pointers returned to the
reader at each firing are the red arrows. In this example, the read size is 2 and
it can be observed that the third read (composing or the numbers 4 and 5) span
across the two continuous memory allocation. This fully flexible settings raises
two implementation challenges.

One is that since a single continuous allocation can be linked to from different
actors during the runtime of the application, it can be difficult to pinpoint when
this memory chunk can be released especially in environment with no native
garbage collection like in C++. For that, we used std::shared ptr that offers a kind
of autorelease mechanism once a memory chunk is no longer referenced by any
actors or buffers.

Another technicality to be solved is the need to transparently handle reads
that can reach multiple memory chunks. For this purpose a custom proxy class
has been developed that is returned, instead of a direct pointer to a memory
block, that act as a middle man and handles reads through an indirection,
which can affect performance and prevent processor vectorization. This side-
effect might be somewhat mitigated if the proxy is used only in the corner cases
where it is necessary and if the memory allocator used is tuned so that most
consecutive chunks would be allocated consecutively in memory removing the
need also in these cases. A custom allocator that would be used explicitly and
provided with network specific information to make the use of consecutive
allocation more frequent could also be considered.

Semi dynamic solution This case is a constrained version of the previous more
general case, where the consumer can only read at each firing a number of tokens
that is a divider of the size of the produced list. This constraint is equivalent to
impose that a read would never reach across two different memory allocation,
which removes the need for any proxy or special allocator, while keeping some
amount of flexibility. The difficulty here is to be able to guarantee that this
property is always satisfied to allow the safe usage of this implementation
solution.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_70

https://dx.doi.org/10.1007/978-3-030-22750-0_70


Composite data types in dynamic dataflow languages 7

Static solution In the third case, the reader has always to consume an entire
chunk of data seen in this case as an object. This is the most restrictive config-
uration, but also the simpler to implement. The need to use memory releasing
mechanisms can be avoided as only a single actor or buffer can reference an
object at any time allowing for an explicit freeing of memory from the actor
itself when the chunk is no longer needed.

6 Conclusions

This paper presents a new approach for the synthesis of efficient implemen-
tations of data sharing between actors of a dynamic dataflow networks in the
context of the RVC-CAL programing language. The approach introduces com-
posite data types as a ways to avoid data copies whenever possible. It shows
for which buffer configuration the optimization solutions can be beneficial and
specifies the different ways of implementing them in C++ depending on the
flexibility, given to the rate at which an actor can consume data.

Future work considers automatizing the selection by the Orcc compiler of
the generated solution depending on the configuration (i.e. Buffer configuration,
Network partition, targeted platform). Moreover, this would enable more design
point to be considered by the TURNUS framework.

References

1. Orcc. http://github.com/orcc/orcc, online, accessed April. 2019
2. Casale-Brunet, S.: Analysis and optimization of dynamic dataflow programs. Tech.

rep., EPFL (2015)
3. Casale-Brunet, S., Bezati, E., Mattavelli, M.: Programming models and methods

for heterogeneous parallel embedded systems. In: Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), 2016 IEEE 10th International Symposium on. pp. 289–296.
Ieee (2016)

4. Castrillon, J., Leupers, R.: Programming Heterogeneous MPSoCs: Tool Flows to Close
the Software Productivity Gap. Springer Publishing Company, Incorporated (2013)

5. Desnos, K., Pelcat, M., Nezan, J.F., Aridhi, S.: Distributed memory allocation technique
for synchronous dataflow graphs. In: 2016 IEEE International Workshop on Signal
Processing Systems (SiPS). pp. 45–50. IEEE (2016)

6. Eker, J., Janneck, J.: CAL language report: Specification of the CAL Actor Language.
Technical Memo UCB/ERL M03/48, Electronics Research Laboratory, University of
California at Berkeley (Dec 2003)

7. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosenfeld,
J.L. (ed.) Information processing. pp. 471–475. North Holland, Amsterdam, Stock-
holm, Sweden (Aug 1974)

8. Lee, E., Parks, T.: Dataflow process networks. In: Proceedings of the IEEE. pp. 773–799
(1995)

9. Modas, A., Casale-Brunet, S., Stewart, R., Bezati, E., Ahmad, J., Mattavelli, M.: Shared-
variable synchronization approaches for dynamic data flow programs. In: 2018 IEEE
International Workshop on Signal Processing Systems (SiPS). pp. 263–268. IEEE (2018)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_70

https://dx.doi.org/10.1007/978-3-030-22750-0_70

